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LOCAL CONNECTEDNESS IN DEVELOPABLE
SPACES

HARoLD W. MARTIN

A space is spherically connected if and only if it has an
admissible semi-metric d such that d-spheres of radius less
than one are connected. It is shown that a developable space
is locally connected if and onmly if it is spherically connected.
A semi-metric space is K-semi-metrizable if and only if it
admits a semi-metric d such that d(4, B) > 0 whenever A
and B are disjoint compact sets. It is shown that in the
class of locally connected rim compact spaces, the K-semi-
metrizable spaces are precisely the developable r-spaces. An
example is given of a locally connected, locally compact K-
semi-metrizable Moore space which is not metrizable.

1. Introduction. A topological space is said to be rim compact
provided that each point has a local basis of open sets which have
compact boundaries. A space is locally connected provided that each
point of the space has a local basis of connected open sets. If R is
the set of all rational points of the plane E?, the E? — R is an example
of a locally connected, rim compact space which is nowhere locally
compact.

If d is a semi-metric for a space X, then d is said to be a K-
semi-metric provided that d(A, B) > 0 whenever A and B are disjoint
compact subsets of X. It seems to be unknown whether every regular
semi-metrizable space,' or even developable space,? has a compatible
K-semi-metric. We define a topological space X to be d-spherically
connected provided that X has a compatible semi-metric d such that
every d-sphere S,(x, ¢) = {y: d(x, ¥y) < e} of radius less than one is
connected. A space is said to be spherically connected provided that
it is d-spherically connected for some compatible semi-metric d.

Theorem 5.2 of [3] may be phrased as follows: let X be a rim
compact space; if X is d-spherically connected by virtue of a K-semi-
metric d, then X is metrizable. Also, P. Zenor has shown that a
locally connected rim compact space is metrizable if and only if it

! A space X is semi-metrizable provided there exists a nonnegative, real-valued
function d on X X X, called a semi-metric, which satisfies the following three condi-
tions: (i) d(z, ¥) = d(y, ©); (ii) d(z, y) = 0 iff z = y; (iii) for # in X and AcX, we have
x€cl(A) iff d(d(x, A)) = inf {x, a): a € A} = 0.

2 A sequence Gy, Gs, -+ of open covers of a space X is called a development
provided that {St(x, G.):n€ Z*} is a local base at x for each x in X. A space is de-
velopable provided it has a development. A regular developable space is called a Moore
space.
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has a regular G,-diagonal® [6]. A comparison of these two theorems
suggests the question of whether local connectedness and spherical
connectedness are equivalent concepts in the class of semi-metrizable
spaces. The purpose of this note is to give a partial answer to this
question by showing that local connectedness and spherical connected-
ness are equivalent in the class of developable spaces. Heath’s theorem
also suggests the question of whether a rim compact, spherically
connected space is metrizable. We answer this question negatively
by showing that there exists a locally compact, locally connected,
completely regular Moore space X which is K-semi-metrizable but
not metrizable. This same example shows that Zenor’s theorem cannot
be improved by replacing “regular G;-diagonal” by “GF-diagonal’.
We shall also show that a locally connected rim compact space is
K-semi-metrizable if and only if it is a developable 7-space.’

2. Theorems and example.

THEOREM 1. Ewvery spherically connected space is locally con-
nected; every locally connected developable space is spherically con-
nected.

Proof. Let X be a d-spherically connected space. The space X
is locally connected provided that each component of each open set
is open. Let G be an arbitrary open subset of X and let C be an
arbitrary component of the subspace G. Given xze C, there exists
¢ > 0 such that ¢ <1 and S,(x, ¢) © G. Since S,(x, ¢) is connected,
we have S,(x, ¢)c C. It follows that xe¢int(C), that is, that C is
an open set, whence X is locally connected.

To prove the second part of Theorem 1, let X now denote a
locally connected developable space. Let V., V,, ---, be a development
for X. Since X is a developable space, X has a compatible semi-
metric p such that if x e X and ¢ > 0 is given, then x has a neigh-
borhood V such that p(a, b) < ¢ for every a, be V [1, page 128]. For
each € X and natural number =, let d,(x) denote a connected open
neighborhood of x such that p(a, b) < 1/n for all a, be d,(x) and such
that d,(x) Cc v for some ve V,; furthermore, choose the sets d,(x) so

8 A space X has a regular Gs-diagonal provided X has a sequence Gy, G; - -+ of open
covers such that if « and y are distinct points of X, then « has a neighborhood V for
which y&cl(Si(V, G,)) for some natural number =.

¢ A space X has a G¥-diagonal if X has a sequence Gy, Gs, - -+ of open covers such
that if « and y are distinet points of X, then y&cl(St(z, G,)) for some natural number n.

5 A space X is a y-space iff there exists a function g from Z+ X X into the open
sets of X such that: (i) {g(n, ): ne Z*) is a local base at x with g(n + 1, 2) C g(n, x)
and (ii) if A c G where A is compact and G open, then there exists n€ Z+ such that
g(n, a) C G for every ac A.
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that d,..(x) Cd.(x) for all n. Let G, = {d.(x): x€ X}; then, G, G,,
.++, is a development for X. ForrxeXandn =12, -.-, set g,.(x) =
St(x, G,). If xeg,(x,) for ne Z*, then there exists a sequence {y,}
in X such that z, z, € d,(y,), whence p(x, z,) < 1/n, that is, {x,} con-
verges to . Note also that d,.,(x) < d,.(x) implies that g,.,(x) C g.(x).
Consequently, we may define a semi-metric d for X, which is equivalent
to p, in the following standard way [3, Theorem 3.2]: if z =y, let
d(z, ¥) = 1/n where n is the least natural number %k such that x¢
g:(y) and ¥y ¢ g,(x).

Let xe X and 0 < ¢ < 1. The proof will be completed by showing
that S;(x, ¢) is connected. Let n be the particular natural number
which satisfies the relations 1/(n + 1) < ¢ < 1/n. Observe that S,(x,
e) = Sy(x, 1/n). Let ye S,(x, e); then d(z, ¥) < 1/n, so that z€ g,(¥)
ory€ g,(x). There must exist a set S,€ G, with z, ye S,. If ze S,
then z e St(z, G,) = 9.(2), so that d(x, z) < 1/n, that is, z¢€ S,(x, ¢);
consequently, S,CS,(x, ¢). It follows that S,(x, e) = U {S,: ¥ € Si(x, e)};
but then S;(X, e) is connected since each set S, is connected and
contains the common point «, completing the proof.

In the proof of Theorem 1, we have p(x, ¥) < d(x, y) for all «,
ye X. Then, p is a K-semi-metric implies that d is a K-semi-metric.
But, Zenor has shown that a developable space X has a regular G;-
diagonal if and only if X has a K-semimetric p such that if xe X
and ¢ >0 is given, then « has a neighborhood V such that p(a, b) <e
whenever a, be V, [7]. These remarks, together with the proof of
Theorem 1, imply the following:

COROLLARY 2. If X is a locally connected developable space which
has a regular G,diagonal, then X has a K-semi-metric d such that
X s d-spherically connected.

Corollary 2 suggests the question of whether a locally connected,
K-semi-metrizable developable space has a K-semi-metric d such that
the space is d-spherically connected. This question is important since
an affirmative answer, in conjunction with Theorem 5.2 of [3], would
imply that every K-semi-metrizable, locally connected, rim compact
space is metrizable. This, however, is not the case, as shown by
the following example, which is a variation of the space Yz of [5,
page 376], of a locally compact, locally connected, nonmetrizable, K-
semi-metrizable, quasi-metric® Moore space.

Given a quasi-metric space (X, d) we let T, denote the topology

6 A space X is said to be quasi-metrizable provided that there exists a nonnegative
real-valued function d on XX X, called a quasi-metric, which satisfies the following con-
ditions: (i) d(z, )=0 iff x=y; (ii) d(x, y)<d(x, 2)+d(z, ¥); (iii) the collection {Ss(z, ¢): € X
and e > 0} forms a base for the topology for X, where Su(z, ¢) = {y€ X: d(z, ¥) < e}.
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having sets of the form {y: d(x, ¥y) < 1/n} as an open basis, where x
ranges over the set X and ne Z* =11, 2, ---}.

ExAMPLE 3. Let P={(z,¥}:0 <2z <land 0<y=<1}. If x is
a real number and 0 < a < 7, then let R(x, @) denote the ray, emanat-
ing from the point (x, 0) in the plane, which lies in the upper half
plane and makes an angle of a radians with the positive direction
along the z-axis. Let R={R(z,a):0 <z <1 and 0 <a <7} and
let X=PUR.

Let I={(x,0):0=<2 =<1} and let » be a fixed point of I. Let
x and y be elements of P. Define d,(z, y) = ||z —»p| — |y —»ll +a
where |p — ¢| is the usual Euclidean distance between points p» and
g of the plane and a is the positive angle, in radians, between the
line segment joining » to = and the line segment joining p to y.
Now define d(x, y) = sup {d,(x, ¥): pe I}.

If ye P and R(z, )€ R, let d(y, R(x, a)) = 2z and let d(R(x, a),
Y¥) = |(x, 0) — y| + b where b is the positive angle, in radians, between
the ray R(z, a) and the line segment joining (z, 0) to ¥.

If R(x, ) and R(y, b) are elements of R, define d(R(z, a), R(y, b)) =
2z if x #+ y and d(R(z, a), RB(y, b)) =-|a — b| if x = y.

It is straightforward to show that d is a quasi-metric for the
set X. The topological space (X, T,) is a nonnormal, locally compact,
locally connected, completely regular, quasi-metrizable Moore space.

If R(x, @) € R, define g,(R(x, a)) as follows: R(y, b) € g,.(R(z, a)) if
and only if x =¥ and |a — b] < 1/n, and (p, ¢) € P belongs to g,(R(zx,
@)) if and only if V'(x — p)’ + ¢* < 1/n and |a — ¢| < 1/n where ¢ is
the angle in radians between the ray R(x, @) and the line jsegment
connecting the points (p, ¢) and (x, 0). The topology T; has the collec-
tions {g.(R(x, @)): ne Z*} as local open bases for points R(x, @) in R
and the points of P have their usual neighborhood systems. We shall
now construct a compatible K-semi-metric for the space (X, T).

Let y and z denote distinct points of P and let I be defined as
above. Let L denote the line ¥y = 1 in the plane. If zel and pe
P, let 7, (p) be the point of intersection of the line L with the line
connecting the points x and p. Now define d(y, z) = max {|7,(y) —
7(2)|:xeI}. If peP and R(x, a)c R, define d(p, R(x, a)) = |p — (,
0)| + b where b is the angle, in radians, between the ray R(z, a) and
the ray emanating from (x, 0) and containing the point p. Finally,
if R(x,a) and R(y, b) are points of R with z =y, let 0(R(z, a),
R(y, b)) = 1 and let d(R(z, a), R(x, b)) = |& — b|. It is easy to show
that 6 is a compatible semi-metric for the space (X, T;). It remains
only to show that ¢ is a K-semi-metric. Note that ¢ is a K-semi-
metric for the space X if and only if whenever é(w,, 2,) — 0, w, —
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w and z,— 2, then w = 2. With respect to this criterion for K-semi-
metrizability, the only nonobvious case is that in which w = R(z, a),
z = R(x, b) and the sequences {w,} and {z,} are in the set P. Therefore,
suppose that w, — R(x, @) and z, — R(x, b) where w,, z,€ P for all n
and a = b. Let p(a) be the point of intersection of the line L and
the ray R(x, a) and likewise let p(b) be the point of intesection of L
with the ray R(x, b). Since w, — R(x, @), we must have 7, ,(w,) —
p(a) along the line L; similarly, x, ,(2,) — p(b) along the line L. Since
o(w,, z,) = max {|r(w,) — 7,(2.)]: y€ I}, we have

ln-(a:,o)(wn) - ﬂ:(a:,o)(zn)l § a(wm zn) .

It follows readily that o(w,, z,) > 1/2(|p(a) — p(b)]) for sufficiently
large values of n, completing the proof that § is a K-semi-metric.
The space of Example 3 is K-semi-metrizable and spherically con-
nected, but not d-spherically connected whenever d is a K-semi-metric
for X.
In the class of locally connected, rim compact spaces, we have
the following coincidence theorem.

THEOREM 4. A locally connected, rim compact space is K-semi-
metrizable of and only if it is a developable V-space.

Proof. It is easy to show that a developable 7-space is K-semi-
metrizable and we therefore omit the details. Let d be a compatible
K-semi-metric for a locally connected, rim compact space X. We
may choose a system {g(n, x): x € X; ne Z*} of open, connected subsets
of X such that the following two conditions hold: (i) {g(n, ): n € Z*}
is a local base at x with g(n + 1, ) C g(n, x); (i) if ye€ g(n, ), then
d(x, y) < 1/n. Note that if C and D are disjoint compact subsets of
X, then there exists a natural number n such that g(n, C)N D = &,
where g(n, C) = U {9(n, ¢):cc C).

Let A be an arbitrary compact subset of X and n be a natural
number. Choose a finite number of points in A, say x, s, ++*, T,
such that AcU{g(n, z):¢1=1,2, .-+, m}. Let A, = ANgn, x,;); the
sets g(n, 4,) are connected for 1 <4 < m.

We are now in a position to show that X is a 7-space. Let K
be a compact subset of X and let W be an open set containing K.
Choose a finite number of open sets G, @,, ---, G, such that for each
t=12 ..., p, the set Bd(G,;) is compact, G, W, and Kc U {G;:
1=1,2,-..,p}=G. Since Bd(G)c=U {Bd(G,):2=1,2,...,p}, we have
that Bd(G) is compact. Then, KN Bd(G)= & and there exists a natural
number n such that g(n, K) N Bd(G)= 2. By the preceding paragraph,
we have K=K, U --.-UK,, for some natural number m, where g(n, K,)
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is connected for 1 < ¢ < m. Since K,C KC G and g(n, K,) is con-
nected, and since g(n, K;) N Bd(G) = @, we must have g(n, K)C G
for 1<7<m. Note that g(n, K)= U {g(n, K;):1=i=<m}. It follows
that g(n, K) © GC W, completing the proof that X is a 7-space. It
is easy to show that a semi-metrizable 7Y-space is developable, e.g.,
use Theorem 3.3 of [3], and the proof of Theorem 4 is complete.

3. Open questions. In [2], Fletcher and Lindgren conjectured
that every quasi-metrizable space admits a compatible non-Archimedean
quasi-metric. Y. A. Kofner gave a counterexample to this conjecture
[4]; however, Kofner’s space is not developable, so the Fletcher-
Lindgren conjecture remains open for developable spaces. Recall that
a developable space admits a compatible non-Archimedean quasi-metric
if and only if it is orthocompact [2]. We therefore ask:

QUESTION 1. Is the space X of Example 3 orthocompact?

Question 2 is motivated by Theorem 1 and Question 8 by Theorem
4 and other theorems in the literature.

QUESTION 2. Is every locally connected, semi-metrizable space
necessarily spherically connected?

QUESTION 3. Is every regular semi-metrizable space necessarily
K-semi-metrizable? If not, is every Moore space a K-semi-metrizable
space? -
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