A NOTE ON STARSHAPED SETS

P. R. Goodey

Abstract

If S is a compact subset of R^{d}, it is shown that S is starshaped if and only if S is nonseparating and the intersection of the stars of the (d-2)-extreme points of S is nonempty.

Let $S \subset R^{d}$. The (d-2)-extreme points of S are by definition those points of S such that if $D \subset S$ is a (d-1)-dimensional simplex then $x \notin$ relint D (the relative interior of D). The totality of ($d-2$)-extreme points of S is denoted by $E(S)$. For each $y \in S$ we define $S(y)$, the star of y by $S(y)=\{z:[y, z] \subset S\}$, where $[y, z]$ denotes the closed line segment from y to z. S is said to be starshaped if $\operatorname{Ker} S \neq \varnothing$ where $\operatorname{Ker} S=\{S(y): y \in S\}$. In [2] it is shown that if S is a compact starshaped set in R^{d} then $\operatorname{Ker} S=\bigcap\{S(y): y \in E(S)\}$. Thus the following question arises: if S is such that $\bigcap\{S(y): y \in E(S)\} \neq \varnothing$, under what hypothesis is S starshaped? It is clearly desirable that the hypothesis should be as weak as possible in order to indicate to what extent $\bigcap\{S(y): y \in E(S)\} \neq \varnothing$ implies that S is starshaped. In [3] it is shown that one suitable hypothesis is that S should have the halfray property, that is, for any point x in $R^{d} \backslash S$ there is a half-line l with vertex x such that $l \cap S=\varnothing$. Now we note that this hypothesis is a rather strong one especially as it is being used to deduce the fact that a certain set is starshaped. Thus one suspects that a much weaker hypothesis might suffice. This suspicion is further strengthened by the example given in [3] to show that, in fact, some hypothesis is necessary. More precisely, the example given is a separating set that is, its complement is not connected. The purpose of this note is to prove the following

Theorem. If $S \subset R^{d}$ is a nonseparating compact set and $\bigcap\{S(y): y \in E(S)\} \neq \varnothing$, then S is starshaped.

Proof. Let $z \in \bigcap\{S(y): y \in E(S)\}$. We shall show that for any x in $R^{d} \backslash S, l(x, z) \cap S=\varnothing$ where $l(x, z)$ is the half-line with vertex x which does not contain z but is such that the line containing $l(x, z)$ does contain z. Clearly this suffices to show that S is starshaped.

Choose x_{0} in the complement of the convex hull of S, then $l\left(x_{0}, z\right) \cap S=\varnothing$. Now since S is a nonseparating compact set, its complement is a path-connected unbounded open set (see [1, p. 356]). Thus any point in $R^{d} \backslash S$ can be "joined" to x_{0} by a finite polygonal path in $R^{d} \backslash s$ such that if t is any segment of the path then the line
containing t does not contain z.
Now we assume $l(x, z) \cap S \neq \varnothing$ for some point x in $R^{d} \backslash S$ and seek a contradiction. Let P be a polygonal path as described above with consecutive vertices $v_{1}=x, v_{2}, v_{3}, \cdots, v_{n}=x_{0}$. Put $i=$ $\max \left\{j: l\left(v_{j}, z\right) \cap S \neq \varnothing\right\}$ then $1 \leqq i<n$. Let the closed segment [v_{i}, v_{i+1}] be the image under the continuous function f of the unit interval, with $f(0)=v_{i}$ and $f(1)=v_{i+1}$. Note that if $p \neq q$ then $l(f(p), z) \cap l(f(q), z)=\varnothing$. Now $l(f(1), z) \cap S=\varnothing$ and so, since S is compact we can put $p=\max \{q: l(f(q), z) \cap S \neq \varnothing\}$ and then $0 \leqq p<1$. Let y be the point of S on $l(f(p), z)$ which is furthest from z. Now suppose D is a $(d-1)$-simplex with $D \subset S$ and $y \in \operatorname{relint} D$.

Then y must be the mid-point of a segment which is contained in $S \cap Q$ where Q is the plane through z, v_{i}, v_{i+1}. But this is impossible because of the definition of y and the fact that $l(f(q), z) \cap$ $S=\varnothing$ for $p<q \leqq 1$. Hence $y \in E(S)$ and so $f(p) \in S$. This contradiction shows that $l(x, z) \cap S=\varnothing$ and thus completes the proof.

Finally, as a result of the above theorem and the comments made in [2] we are led to ask: if S has the half-ray property and has a point which "sees" just the extreme points of the convex hull of S and not all the (d-2)-extreme points, is S necessarily starshaped? The following example shows that the answer is negative:

$$
S=\left\{(x, y) \in R^{2}:|x| \leqq 1,|y| \leqq 1\right\} \left\lvert\,\left\{(x, y) \in R^{2}:|x|<\frac{1}{2} \cdot|y|>\frac{1}{2}\right\}\right.
$$

Similarly we observe that if we rotate S about the y-axis we obtain a three dimensional set with the required properties.

References

1. J. Dugundji, Topology, Allyn and Bacon, Boston 1968.
2. J. W. Kenelly and W. R. Hare et al., Convex components, extreme points, and the convex kernel, Proc. Amer. Math. Soc., 21 (1969), 83-87.
3. N. Stavrakas, A note on starshaped sets, (k)-extreme points and the half ray property, Pacific J. Math., 53 (1974), 627-628.

Received May 30, 1975, and in revised form July 4, 1975.
Royal Holloway College

