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KATO-TAUSSKY-WIELANDT COMMUTATOR RELATIONS
AND CHARACTERISTIC CURVES

FERGUS GAINES

Let A and B be n X n matrices with elements in a field
sr and let ΔAB = AB - BA. Let fk(x) = x2K+1 - c.x2^1 +
c2x

2K~s + ••• + (—lĴ CjεO?, where the ct are in *F" and ϋΓ =
&(& —1)/2. In this paper we examine the consequences of
the relation fk(ΔA)B — 0, where 1 ^ k < n, and show how the
replacement of A by xA + 2/JS, when & = 2, leads to a splitt-
ing of the characteristic curve, det {xA+yB—zl) = 0, into
lines and conies.

1* Introduction* We open with some notation and some defini-
tions. Let &~ be a field and let ^ denote the n x n matrices with
elements in ^ 7 If A and J 5 e ^ , the characteristic curve of the
pencil xA + yB is the curve in the protective %, y, 2-plane whose
equation is det (xA + yB — zl) = 0. If A e <β\, the operator ΔA is
given by z/̂ X = AX - XA, for all X in J ^ . If & ^ 1 is an integer
and K= k(k - l)/2 and if clf c2, , cκ e J^T we let /ft(a?) = α?2ίΓ+1 -
cxx

2K~z + .. + ( — 1 ) ^ ^ . Next we need some ideas usually associated
with the Perron-Frobenius theory of nonnegative matrices. If X =
(%ij) € ̂ lf the digraph %f(X) consists of vertices labeled 1, 2, 3, ,
n and there is an edge from i to j , i.e. i—*i, if and only if xiS Φ 0.
The matrix J e ^ is permutation-irreducible if and only if it can

o w)
where Y and W are square matrices.

In [4] Taussky and Wielandt proved.

THEOREM 1. If A and Bej^l and au a2y , an are the eigen-
values (in some extension field of &~) of A, then fn(JA)B — 0, where
Ci is the ith elementary symmetric function of the N = n(n — l)/2
quantities (ar — a8)

2, 1 ^ r < s ^ ?ι; i = 1, 2, , AT.

Since f^AA)B = AB - BA, the relation fk(JA)B = 0, with 1< fc <
%, for some cx, c2,

 # ,cs:Gt-^7 ^s a generalization of commutativity.
As a generalization of matrix commutativity it is, however, quite
weak, since it is still possible for A and B to satisfy such an identity
(when n = 3) and to generate _^(see the examples in §4). However,
it will be shown that the relation fk{ΔA)B = 0 imposes a restriction
on the eigenvalues of A, when A and B generate &\. We call an
expression of the form fk(JA)B a Kato- Taussky- Wielandt commutator.

We shall need one well-known result from graph theory which
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can be found, for example, in [5].

THEOREM 2. I e ^ is permutation-irreducible if and only if
is strongly connected.

2* The main theorem* Our principal result is

THEOREM 3. Let A and ΰ e ^ and suppose A and B generate
, i.e. every matrix in J^~n has the form P(A, B), where P(x, y) is

a polynomial over J?" in the noncommuting indeterminates x and
y. If the characteristic of ^ does not divide n and if, for some
fixed integer k with 1 ^ k < n, there exist clf c2, •••, cκ in ^ so
that fk{ΔA)B = 0, then the eigenvalues of A belong to the splitting
field of fk(x) over ^ 7

Proof. If k = 1 then AB = BA and, since A and B generate
*β\, we get n = 1. The theorem is then obvious.

If A has only one eigenvalue a, then na = trace A is in ^
and, consequently, a e Jβ^, since the characteristic of ά?~ does not
divide n.

So assume that 1 < k < n, that A has at least two distinct
eigenvalues and that there exist cl9 c2, , eκ e ^ so that fk{ΛA)B =
0. By extending J^ to its algebraic closure ^ 7 we may assume
(via similarity) that A — ΣΓ=i Θ A+ is in Jordan canonical form, where
At is a direct sum of Jordan blocks, all of which have the same
eigenvalue at and at Φ a3- when i Φ j . We then view B as a matrix
over &~ (via the similarity above) and let B = {Bi3) be the partition
of B into blocks corresponding to that of A = ΣΓ=i Θ A+ We shall
prove

LEMMA 1. // Bi3 Φ 0, then at — aό satisfies fk(x) = 0.

LEMMA 2. B = (Bi3) is permutation-irreducible as a block matrix.

If we assume these lemmas we can complete the proof of the
theorem in a few lines. Let ^(B) be the digraph of B viewed as
a block matrix, i.e. i—+j if and only if Biά Φ 0. Then Lemma 2
and a modification of Theorem 2 (for block matrices) imply that
&(B) is strongly connected. Thus, if atf aό are distinct eigenvalues
of A, there exists a sequence i, iu i2, , im, j so that at — ah, ah —
aH, , aim — a3 are roots of fk(x) = 0. Let Sf be the splitting field
of fk(x) over ^ . Then

α t - aj - (at - ah) + (ah - ai2) + + (atm - a3) e & .
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Let n3- be the multiplicity of ec3 as an eigenvalue of A. Then

r r

i.e. nai — trace A e =2̂ . Thus at e £f, i = 1, 2, , r, since the charac-
teristic of βS

27 does not divide n.
It remains to prove the lemmas to complete the proof of the

theorem.

Proof of Lemma 1. We use the relation fk{AA)B = 0. Suppose
Bi3 Φ 0. Let bst be the "first" nonzero element of Bi3 in the following
sense: if the lower left-hand corner element of Bi3 is nonzero let it
be bst; otherwise let bst be a nonzero element of Bi3 so that buυ — 0
if u ^ 8 and v ^ t, and {u, v) Φ (S, έ), where, of course, we only
consider those elements buv of Bi3 . Thus

0 0 b8t

0 . . . 0 0

0 0 0

If bst is the (s, t) element of Bi3 we calculate the (s, t) element of the
{i, j) block of fk(ΛA)B. To simplify calculations assume that A3 has
eigenvalue zero and At has eigenvalue atj — at — aό (Subtract a3l
from A. Since we take commutators, this operation does not affect
the end result of the calculations). The matrix fk{AA)B is a linear
combination of matrices of the type J™B. The (i, j) block of ΔAB is
AiBij — BijAj. The (ί, j) block of z/ î? only involves Bi3, A{ and A3 ;
it consists of a linear combination of matrices of the type A\Bi3A

d

3-
where c + d = m. The (s, t) element of AciBi3A

d

3 is obtained by mul-
tiplying the tth column of BiόA

d

3 by the έth row of A\. Those elements
in the ίth column of Bi3 A* from the sth row down are all that matter
here. But these elements are zero, except when d — 0, since A3 has
zeros on and below the main diagonal. Thus the (s, t) element of
the (i, j) block of ΛAB is a%bat. So the equation fk{ΔA)B = 0 gives

= 0, since δ s ί Φ 0.

Proof of Lemma 2. Suppose there exists a block permutation
matrix Q, partitioned conf ormally with B=(Bi3), so that Q~ιBQ has the
form (t) where m<r. Then A and B are reduced by Q, since Q simply
permutes the blocks on the diagonal of A. Thus the algebra generated
by A and B over ^ is reducible. But A and B generate J^[. This
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contradiction proves that B — (Bi3) is permutation-irreducible as a
block matrix.

(t)

Bn Blm Bγ • Bιr

Bml

0

0

• J3mm J^m m+1

0 Bm+1 mj

0 Br, Brr

THEOREM 4. Let A and B satisfy the conditions of Theorem 3
with k = 2 and let A have at least two distinct eigenvalues. Then
there exists an ordering alf <x2, , ar of the distinct eigenvalues of
A so that a1 — a2 = a2 — a3 — = ar_x — ar satisfies x2 — c1 = 0.

Proof. As in the proof of Theorem 3, let B = (B^) be the block

form of B (over J^) corresponding to the Jordan canonical form

Σί=i θ At o f A- W e h a v e MΛΛ)B = 0, for some c, e J^.
We claim that B can not have more than two nonzero off-diagonal

blocks in each row or column. For if Bih Bu and Bim are nonzero
off-diagonal blocks, where j , I, and m are distinct, then at — ah at —
a i and ai — am satisfy the equation x2 — cx = 0. Thus two of these
a's, at least, are equal, contradicting the fact that the a's are distinct.
If Bij and Bu (resp. BH and BH) are nonzero off-diagonal blocks with
j Φ I, and JSmi(resp. Bim) is also a nonzero off-diagonal block, a similar
argument proves m = j or m — I.

Let &{B) be the digraph of B viewed as a block matrix. We
write i ~ j if i —+j or j —• i. So if i ~ j and i ~ I, where i, j and
I are distinct, then i ~ m implies either j or I is m. We claim that,
by relabeling the vertices of &{B), we get the subgraph

1 2 3 r - l r

where i ~ i + 1, for i = 1, 2, , r — 1. For let

μ =
s - l

be a maximal "path" in ^(B) (on relabeling vertices), where i ~
i + 1 for i = 1, 2, , s — 1, and suppose s Φ r. If j is a vertex
not in μ then neither i ~ 1 nor j ~ s can hold, since μ is maximal.
Since 5f(B) is strongly connected, there exists an internal vertex i e μ
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and a vertex j$ μ so that i ~ j . But i ~ i + 1 and i ~ i — 1 and,
since neither or these is j , we get a contradiction. Thus &(B) contains
the required subgraph. By Lemma 1, this means the distinct eigen-
values at of A can be relabeled so that a1 — a2, a2 — ai9 , αr_i — ar

satisfy the equation x2 — cx = 0. Since the α's are distinct, we get

This completes the proof of the theorem.

3* Generalized L-property* Let A and JS be n X n matrices
with elements in &~ and suppose the eigenvalues of A and B are
also in J^. If there exist fixed order ings aί9 a2, •• , α n and /Si, /S2,
• • ,/3u of the eigenvalues of A and 5, respectively, so that the
eigenvalues of xA + yB are xat + y&, for all x and ?/ in ^ 7 where
i = 1, 2, ••-,%, then A and 2? have property L. Property L has been
discussed by Motzkin and Taussky [3]; it is clearly equivalent to the
assertion that the characteristic curve of the pencil xA + yB is the
union of n lines (if &~ is big enough). In this section we discuss
a condition which forces the characteristic curve to decompose into
lines and conices.

Let ^\x, y] be the integral domain of polynomials over &~ in
the (commuting) indeterminates x and y. Let ^~(x, y) be its quotient
field.

LEMMA 3. Let p(x, y, z) be a homogeneous polynomial in x, y
and z, with coefficients in _̂ T Suppose

p(x, y,z) = f[ pU ,
ί=i

where each pt is an irreducible polynomial in z over ^{x, y). Then
each Pi is a homogeneous polynomial in x, y, and z, with coefficients
in

Proof, ^"[x, y] is a unique factorization domain (UFD). Since
a UFD is integrally closed ([2], p. 84), the coefficients of the powers
of z in Pi must be polynomials in x and y.

Suppose Pi is not homogeneous in x, y and z. Let M(q) (resp.
m{q)) be the maximum (resp. minimum) degree of the monomials in
a polynomial q. Then M(pt) > m(Pi) and M (resp. m) has the property
that Miq&z) = M(q^ + M( 2̂)(m(g1g2) = m(gθ + m(q2)) for polynomials
qx and q2. Hence M(p) > m(p)9 which is false. The Lemma is proved.

We now apply the results of § 2 to xA + yB and B.

THEOREM 5. Let A and ΰ e ^ , where j ^ is an infinite field
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whose characteristic does not divide n. If A and B generate
and if, for each x and y in ^~, there exists cλ in ά^ so that

f2{AxA+yB)B = 0 ,

then the characteristic polynomial p(x, y, z) of xA + yB splits into
linear and quadratic homogeneous factors with coefficients in

Proof. Without loss, we may assume that w^3. Let X—xAΛ-yB.
If ΔXB = 0, for x Φ 0, then AB = BA, which implies n = 1. So
ΔXB Φ 0 (for x Φ 0) and the relation f2(Ax)B = 0 imply that cx is a
rational function of x and y. Since ^~ is infinite, we may replace
x and y by two algebraically independent indeterminates and the
relation f2(Ax)B = 0 still holds. X and B clearly generate ^~(x, y)n,
and thus we may apply Theorem 3. Since f2(w) = w* — cλwy each
eigenvalue of X = xA + yB satisfies an equation of degree at most
2 over J^~(x, y). Lemma 3 is now used to complete the proof.

COROLLARY. Let &~ he an algebraically closed field of charac-
teristic zero or greater than n. If A and B e <β~n and if, for each
x and y e ̂ 7 there exists cx e J^~ so that

f2(AxA+yB) e

where ^J? is the radical of the algebra generated by A and B over
J^i then the characteristic polynomial p{x, y, z) of xA + yB splits
into linear and quadratic homogeneous factors in x, y and z with
coefficients in ^ 7

Proof. If Aγ and By are the representatives of A and B respect-
ively, in an irreducible representation of the algebra generated by
A and B over ^ 7 then f2(Ax)B1 = 0, where Xλ = xAx + yBγ. Also
Ay and By generate a complete matrix algebra, since ^ is algebraically
closed. A and B may be transformed by a similarity into block up-
per triangular form, where the corresponding diagonal blocks generate
irreducible matrix algebras. The conclusion follows.

REMARK. Nothing we have said so far forces the characteristic
curve of xA + yB to contain a line. If &~ has characteristic zero
or greater than n and f2(ΔxA+yΊl)B — 0 for some Cy€^{x, y), where
x and y are algebraically independent over ^ and if xA + yB has
an odd number of distinct eigenvalues, then at least one of the
eigenvalues has the form xa + yβ, where ccf βe J^ For let zlf z2,
• ••, zr be the distinct eigenvalues of xA + yB, with r odd. If r =
1 the result is trivial. Let r ^ 3; then, by Theorem 4, we may assume
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the eigenvalues are ordered so that zι — z2 = z2 — z3 = zr_γ — zr

satisfies w2 — cι = 0. By the condition on the characteristic of ^ 7
the irreducible factors of p(α?, y, z) — the characteristic polynomial of
xA + yB — are separable. Hence Σί=i ^ G ^ " ( ^ !/)• Now

since zt — 3<+1 = cj/2, i = 1, 2, , r — 1. Since r is odd, (r — l)/2 = s
is an integer and # r_ s = zr + ((r — l)/2)cl/2 is in *^~(x, y). By Lemma
3, zr_s — xa + 2//9, where α: and / 5 G ^ 7

4* Examples*

EXAMPLE 1. This example illustrates the main results of the
paper. Let ^ be a field of characteristic not 2 or 3. Let

1 1 0"

1 1 1

Oil.

1

0

0

0

2

0

0

0

3

and B =

Then A and B generate ^\. If X = xA + T/JB, where x and i/ are
algebraically independent over ^ 7 then X and 5 generate ^(α?, i/)8

and, if c± = V2x2 + y\ then f2{Δx)B = 0. The characteristic polynomial
of #A + 2/i? is

(a? + 2# - z)(z2 - (2a? + iy)z - x2 + 4xy + Sy2)

(cf. Theorem 5). The eigenvalues of xA + yB are

z1 = x + zy + V zx* + 2/* f z* = %

Clearly

(cf. Theorem 4). We see that

(cf. Theorem 3).

EXAMPLE 2. The example we give here is a counterexample to
Theorem 3 and Theorem 5, when the condition on the characteristic
of ^ is not satisfied. Let &~ have characteristic 3 and let



128

0

1

1

- 1

0

- 1

FERGUS

-r
1

0.

GAINES

and B =

"0

0

.0

1

0

0

0

1

0

A =

Then A and B generate ^ 7 and, if X = xA + yB and ct = 0, then
fz{Δz)B = 0. Now f2(w) = wz and the characteristic polynomial of
xA + yB is CM/2 — z* = {{xy2)υz — zf. Theorems 3 and 5 clearly fail
here.
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