PACIFIC JOURNAL OF MATHEMATICS
Vol. 61, No. 1, 1975

KATO-TAUSSKY-WIELANDT COMMUTATOR RELATIONS
AND CHARACTERISTIC CURVES

FERGUS GAINES

Let A and B be n X n matrices with elements in a field
% and let 4,B= AB — BA. Let fi(x)= x*%* — ¢, x?% +
C X X% + « .o + (—1)%cgx, where the c¢; are in ¥ and K=
k(k — 1)/2. In this paper we examine the consequences of
the relation f,(4,)B =0, where 1 < k <n, and show how the
replacement of A by xA + yB, when k = 2, leads to a splitt-
ing of the characteristic curve, det (xA+yB—=zI) =0, into
lines and conics.

1. Introduction. We open with some notation and some defini-
tions. Let & be a field and let &, denote the % X % matrices with
elements in #. If A and Be.%,, the characteristic curve of the
pencil A + yB is the curve in the projective z, 9, 2-plane whose
equation is det (x4 + yB — 2I) =0. If Ae #,, the operator 4, is
given by 4,X = AX — XA, for all X in &#,. If k=1 is an integer
and K= k(k —1)/2 and if ¢, ¢y -+, cx€.F, we let f,(x) = 2 —
e % + oo + (—1)%cxx. Next we need some ideas usually associated
with the Perron-Frobenius theory of nonnegative matrices. If X =
(x:;) € &, the digraph Z(X) consists of vertices labeled 1,2,3, ---,
n and there is an edge from % to j, i.e. ¢ —j, if and only if z;; = 0.
The matrix X e &, is permutation-irreducible if and only if it can

not be transformed by a permutation similarity to the form (3, V%’)

where Y and W are square matrices.
In [4] Taussky and Wielandt proved.

THEOREM 1. If A and Be ¥, and «, ,, ---, &, are the eigen-
values (in some extension field of &) of A, then f,(4,)B = 0, where
¢; 18 the ith elementary symmetric function of the N = n(n — 1)/2
quantities (o, —a ), 1<r<s=<n;1=12,..., N.

Since f,(4,)B = AB — BA, the relation f,(4.)B =0, with 1<k <
n, for some ¢, ¢, -+, cx €., iS a generalization of commutativity.
As a generalization of matrix commutativity it is, however, quite
weak, since it is still possible for A and B to satisfy such an identity
(when n = 3) and to generate .&#; (see the examples in §4). However,
it will be shown that the relation f,(4,)B = 0 imposes a restriction
on the eigenvalues of 4, when A and B generate .#,. We call an
expression of the form f,(4,)B a Kato-Taussky-Wielandt commutator.

We shall need one well-known result from graph theory which
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can be found, for example, in [5].

THEOREM 2. Xe.#, is permutation-irreducible if and only if
Z(X) is strongly connected.

2, The main theorem. Our principal result is

THEOREM 3. Let A and Be &, and suppose A and B generate
., 1.e. every matriz in Z, has the form P(A, B), where P(x, y) is
a polynomial over F im the moncommuting indeterminates x and
y. If the characteristic of & does not divide n and if, for some
JSized integer k with 1 =k < mn, there exist ¢, ¢, -+, €x W F 80
that f.(4)B = 0, then the eigenvalues of A belong to the splitting
field of fi(x) over #.

Proof. If k=1 then AB = BA and, since A and B generate
“., we get n = 1. The theorem is then obvious.

If A has only one eigenvalue «, then na = trace A is in &
and, consequently, ac . &, since the characteristic of &% does not
divide .

So assume that 1 < k < n, that A has at least two distinct
eigenvalues and that there exist ¢, ¢, -+, cx €. so that f,(4,)B =
0. By extending .# to its algebraic closure .#, we may assume
(via similarity) that A = >\, @ A4, is in Jordan canonical form, where
A, is a direct sum of Jordan blocks, all of which have the same
eigenvalue «; and «a, # a; when 7 == j. We then view B as a matrix
over .7 (via the similarity above) and let B = (B;;) be the partition
of B into blocks corresponding to that of A= >, P A,. We shall
prove

LEMMA 1. If B;; # 0, then a, — a; satisfies fi(x) = 0.
LEMMA 2. B = (By;) is permutation-irreducible as a block matriz.

If we assume these lemmas we can complete the proof of the
theorem in a few lines. Let £ (B) be the digraph of B viewed as
a block matrix, i.e. 71— J if and only if B,; # 0. Then Lemma 2
and a modification of Theorem 2 (for block matrices) imply that
Z(B) is strongly connected. Thus, if «,, a; are distinct eigenvalues
of A, there exists a sequence 1, 7,, 9, +++, 9, J S0 that @, — a;, a; —
a,, +++, ; — a; are roots of fi(x) = 0. Let <& be the splitting field
of f,(x) over &#. Then

ai_a.’iz(ai_ai1)+(ail_ai2)+ —I—(C( —a)e < .

*m
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Let n; be the multiplicity of «; as an eigenvalue of A. Then
injai — > ;e ¥,
=1 =1

i.e. na;, — trace Ae ¥ Thus a,e &£, 1=1, 2, ---, r, since the charac-
teristic of & does not divide n.

It remains to prove the lemmas to complete the proof of the
theorem.

Proof of Lemma 1. We use the relation f(4,)B = 0. Suppose
B;; # 0. Let b,, be the “first” nonzero element of B,; in the following
sense: if the lower left-hand corner element of B,; is nonzero let it
be b,,; otherwise let b,, be a nonzero element of B,; so that b,, =0
if u=s and v <t and (u, v) # (s, t), where, of course, we only
consider those elements b,, of B;;. Thus

* X
0 0 b
B;; =10 0
*
0O - - - 00

If b,, is the (s, t) element of B,; we calculate the (s, t) element of the
(%, 7) block of f,(4,)B. To simplify calculations assume that A; has
eigenvalue zero and A, has eigenvalue «,; = @, — «; (Subtract «a;I
from A. Since we take commutators, this operation does not affect
the end result of the calculations). The matrix f,(4,)B is a linear
combination of matrices of the type 47B. The (3, j) block of 4,B is
A.B;; — B;;A;. The (¢, j) block of 47B only involves B,;, 4; and A;;
it consists of a linear combination of matrices of the type A:B,;Aj
where ¢ + d = m. The (s, t) element of A:{B,;A% is obtained by mul-
tiplying the ¢th column of B,;A¢ by the ¢th row of A5. Those elements
in the ¢th column of B,;A} from the sth row down are all that matter
here. But these elements are zero, except when d = 0, since A; has
zeros on and below the main diagonal. Thus the (s, t) element of
the (i, j) block of 47B is apb,,. So the equation f,(4,)B =0 gives
fila;;) = 0, since b,, = 0.

Proof of Lemma 2. Suppose there exists a block permutation
matrix @, partitioned conformally with B=(B;;), so that @ *BQ has the
form (f) where m<r. Then A and B are reduced by @Q, since @ simply
permutes the blocks on the diagonal of A. Thus the algebra generated
by A and B over .&# is reducible. But A and B generate .#,. This
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contradiction proves that B = (B;;) is permutation-irreducible as a
block matrix.

—Bn cot e me Bl m+1 e er |
Bm ¢t Bmm Bm m—+1 ¢t er
() ’ :
0 - 0 Bm+1 m+1 Bm-H r
0 - 0 Br m+1 ¢t Brr

THEOREM 4. Let A and B satisfy the conditions of Theorem 3
with k= 2 and let A have at least two distinct eigenvalues. Then
there exists an ordering &, &, -+, &, of the distinct eigenvalues of
A so that o, — @, =0y, — 0y = +++ = ,_, — &, satisfies x* — ¢, = 0.

Proof. As in the proof of Theorem 3, let B = (B;;) be the block
form of B (over .#) corresponding to the Jordan canonmical form
S DA, of A. We have f,(4,)B = 0, for some ¢, €. Z.

We claim that B can not have more than two nonzero off-diagonal
blocks in each row or column. For if B;;, B, and B,, are nonzero
off-diagonal blocks, where j, I, and m are distinct, then ; — a;, a; —
o, and a, — «, satisfy the equation 2* — ¢, = 0. Thus two of these
a’s, at least, are equal, contradicting the fact that the @’s are distinct.
If B;; and B, (resp. B;; and B,;) are nonzero off-diagonal blocks with
j # I, and B,(resp. B,,) is also a nonzero off-diagonal block, a similar
argument proves m = j or m = l.

Let £ (B) be the digraph of B viewed as a block matrix. We
write 1 ~j if t—j or j—14. So if 4~ 5 and 7 ~ 1, where %, 7 and
! are distinet, then ¢ ~ m implies either 7 or [ is m. We claim that,
by relabeling the vertices of £ (B), we get the subgraph

1 2 3 r—1 r
where ¢t ~7+ 1, for 4 =1,2, ..., » — 1. For let

l,t = e———— e — . e e o ——

1 2 3 s—1 s
be a maximal “path” in £ (B) (on relabeling vertices), where ¢ ~
1+ 1for i=1,2 ---,8—1, and suppose s #r. If jis a vertex
not in g then neither 5 ~ 1 nor j ~ s can hold, since ¢ is maximal.
Since Z(B) is strongly connected, there exists an internal vertex ¢ €t
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and a vertex j¢ # so that i~ j. But ¢+~4+ 1 and ¢~ ¢ —1 and,
since neither or these is 7, we get a contradiction. Thus £ (B) contains
the required subgraph. By Lemma 1, this means the distinct eigen-
values «; of A can be relabeled so that a, — a,, &, — @y, -+, A, — @,
satisfy the equation #* — ¢, = 0. Since the a’s are distinct, we get

Ay — Qg = Wy — Ay 1=1,2.--.

This completes the proof of the theorem.

3. Generalized L-property. Let A and B be n X n matrices
with elements in & and suppose the eigenvalues of A and B are
also in #. If there exist fixed orderings «,, a,, «--, @, and By, B
«++, B, of the eigenvalues of A and B, respectively, so that the
eigenvalues of #A + yB are za, + yB;, for all # and ¥ in &, where
1=1,2, ..., m, then A and B have property L. Property L has been
discussed by Motzkin and Taussky [3]; it is clearly equivalent to the
assertion that the characteristic curve of the pencil x4 + yB is the
union of % lines (if & is big enough). In this section we discuss
a condition which forces the characteristic curve to decompose into
lines and conices.

Let # [, y] be the integral domain of polynomials over & in
the (commuting) indeterminates ¢ and y. Let & (2, y) be its quotient
field.

LEMMA 3. Let p(x, y, 2) be a homogeneous polynomial in x, y
and 2z, with coefficients in . Suppose

o, ¥, 2) = g ¥,

where each p; is an irreducible polynomial in z over F (x, y). Then
each D; 18 a homogeneous polynomial in x, y, and z, with coefficients

n F.

Proof. & [z, y] is a unique factorization domain (UFD). Since
a UFD is integrally closed ([2], p. 84), the coefficients of the powers
of 2z in p; must be polynomials in 2 and y.

Suppose p, is not homogeneous in z, ¥ and z. Let M(q) (resp.
m(q)) be the maximum (resp. minimum) degree of the monomials in
a polynomial q. Then M(p;) > m(p,) and M (resp. m) has the property
that M(q.q.) = M(q,) + M(q.)(m(q.9:) = m(q,) + m(q:)) for polynomials
q, and ¢,. Hence M(p) > m(p), which is false. The Lemma is proved.

We now apply the results of §2 to A + yB and B.

THEOREM 5. Let A and Be &, where F 1is an infinite field
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whose characteristic does mot divide n. If A and B generate #,
and if, for each x and y in F, there ewxists ¢, in F so that

fZ(AxA+yB)B =0,

then the characteristic polynomial p(x, ¥, 2) of A + yB splits into
linear and quadratic homogeneous factors with coefficients in Z.

Proof. Without loss, we may assume that n=8. Let X=xA+yB.
If 4,B=0, for £ = 0, then AB = BA, which implies n =1. So
A4yB # 0 (for x == 0) and the relation f,(4y)B = 0 imply that ¢, is a
rational function of 2 and y. Since .&# is infinite, we may replace
2 and y by two algebraically independent indeterminates and the
relation f,(4x)B = 0 still holds. X and B clearly generate & (z, ¥).,
and thus we may apply Theorem 3. Since fi(w)= w®— c,w, each
eigenvalue of X = zA + yB satisfies an equation of degree at most
2 over # (x, ¥). Lemma 8 is now used to complete the proof.

COROLLARY. Let & be an algebraically closed field of charac-
teristic zero or greater than n. If A and Be &, and if, for each
x and Y€ F, there exists ¢,€ F so that

fildoasun) € F

where _Z is the radical of the algebra gemerated by A and B over
F, then the characteristic polynomial p(x, ¥, 2) of vA + yB splits
into linear and quadratic homogeneous factors in %,y and z with
coefficients in F.

Proof. If A, and B, are the representatives of A and B respect-
ively, in an irreducible representation of the algebra generated by
A and B over &, then fy(4,,)B, =0, where X, =24, + yB,. Also
A, and B, generate a complete matrix algebra, since & is algebraically
closed. A and B may be transformed by a similarity into block up-
per triangular form, where the corresponding diagonal blocks generate
irreducible matrix algebras. The conclusion follows.

REMARK. Nothing we have said so far forces the characteristic
curve of A + yB to contain a line. If .&# has characteristic zero
or greater than n and fy(4,,.,5)B = 0 for some ¢,€ . Z (v, y), where
2 and y are algebraically independent over &, and if xA + yB has
an odd number of distinct eigenvalues, then at least one of the
eigenvalues has the form xza + yB3, where «a, e #. For let z, z,,
.+, 2z, be the distinct eigenvalues of A + yB, with » odd. If » =
1 the result is trivial. Let » = 3; then, by Theorem 4, we may assume
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the eigenvalues are ordered so that z, — 2, =2, — 2, = +++ 2,_, — 2,
satisfies w* — ¢, = 0. By the condition on the characteristic of &,
the irreducible factors of »(x, v, 2) — the characteristic polynomial of
24 + yB — are separable. Hence >\, 2,€.& (¢, ¥). Now

Wr) Sz = 2, + (0 = /el

since #;, — 2, =c¢i4,1=1,2 ..., —1. Since r is odd, (»r —1)/2 = s
is an integer and z,_, = 2. + ((r — 1)/2)¢!® is in .# (x, ¥). By Lemma
3, 2,_, = xa + yB, where @ and Be .

4. Examples.

ExampLE 1. This example illustrates the main results of the

paper. Let & Dbe a field of characteristic not 2 or 3. Let
110 1 00

A=|1 1 1| and B=|0 2 0

01 1 0 0 3

Then A and B generate &#,. If X = xA + yB, where «© and y are
algebraically independent over &, then X and B generate & (z, ¥):
and, if ¢, = 1/22® + ¢, then f;(4,)B = 0. The characteristic polynomial
of A + yB is

(@ + 2y — 2)(z* — (22 + 4y)z — «* + 4zy + 3y?)
(cf. Theorem 5). The eigenvalues of x4 4 yB are
2, =+ 2y
2=+ 20+ V2T Y, zm=2+20 — V2 F 9.

Clearly

B2 = 2y — 2 = V20 + o
(cf. Theorem 4). We see that

2y % %€ F (2, ¥, V207 + ¥°)
(cf. Theorem 3).

ExAMPLE 2. The example we give here is a counterexample to

Theorem 3 and Theorem 5, when the condition on the characteristic
of & is not satisfied. Let & have characteristic 3 and let
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0 -1 -1 010
A=|1 0 1| and B=1(0 0 1.
1 —1 0 0 0 O

Then A and B generate .%; and, if X = x4 + yB and ¢, = 0, then
f:(4x)B=0. Now f,(w)= w® and the characteristic polynomial of
2A + yB is 2y — 2° = ((xy?)"® — 2)°. Theorems 3 and 5 clearly fail
here.
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