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ABSOLUTE SUMMABILITY OF FOURIER SERIES
WITH FACTORS

H. P. DIKSHIT AND A. KUMAR

Kanno in 1969 and M. Izumi and S. Izumi in 1970 have
obtained results concerning the absolute Norlund summability
of Fourier series with factors. The present paper contains
theorems sharper than the aforementioned results.

1. Definitions and notations. Let {p,} be a given sequence of
constants, real or complex, such that P, = >i_, p, # 0 for n = 0 and
9, =P, =0, for n <0. A given series >,>_, @, is said to be summable
(N, p,), if t, tends to a finite limit as % — o, where

tn = ZnPn—lcak/an .
k=0
The series >.7_, @, is said to be summable | N, p,|, if Do, |t — tui] <
oo, The |N, p,| method reduces to the |C, 6| method in the special
case in which P, = A’, where A’ is defined by the identity
S, At = (L—2)", Jel <10 % — 1, -2, -

Let f(¢f) be a periodic function with period 27 and integrable
(L) over (—x, ) and

F@) ~ 3 (@, cosnt + b, sinnt) = 3, A,(0) .
We shall use the following notations throughout.
PO) = Zf@+ ) + o — )

O
R, = 1)p,/P,; S, = B
(n + 1)p,/ Sin

Given a function \(f) and a sequence {£,}, we write for » =1,
2 ..,

Mn) = Nps ANy = ANy = Ny — Ny s

Jup) = 3L
2P,

[#] denotes the greatest integer not greater than x, in particular
we write m = [n/2] and = = [C/2t], for some fixed positive constant C.
K denotes a positive constant which is not necessarily the same
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60 H. P. DIKSHIT AND A. KUMAR

at each occurrence. 3.} will be taken as 0, if a > b.

2. Introduction and the main results. Concerning the |C|-
summability of a Fourier series and a corresponding series with
factors the following is known ([1], [8])".

THEOREM A. For 0 < a <1, and B > «a the series > n*A,(x)
18 summable |C, B|, if

@.1) |[t1de@) = K.

Theorem A for a = 0 was proved by Bosanquet [1] who has also
shown that the result is the best possible in the sense that & cannot
be replaced by 0. For the other values of a the result was proved
by Mohanty [8].

In the direction of Theorem A, M. Izumi and S. Izumi [4] have
recently proved the following.

THEOREM B. Let {p,} be a positive monotonic decreasing sequence
and M\E),t > 0, be a positive increasing function, then the series
S MAn(x) 18 summable | N, p,|, if the following conditions hold.

(2.2) J.(1) = K\, /P, ,

2.3) {\,./n} is momotonic decreasing ,
and

2.4) RERIEZOIES: ¢

With a slight modification in the proof of Theorem B as contained
in [4] it may be seen that the result continues to hold even if \(t)
is a constant function. In view of this, we may obtain Theorem A
from Theorem B by taking Mt) =t 0 < a < 1. Examining the
hypotheses of Theorem B closely, it appears that the condition (2.2) is
indispensable. For, if M(t) = K, then the condition (2.2) is equivalent
to the boundedness of the sequence {S,} (see [2], Lemma 3) which
has been shown to be a necessary condition for the (X, p,) summability
of 3w, A,(x) by Hille and Tamarkin ([3], Theorem II). The condition
(2.4), of course corresponds to the condition (2.1) of Theorem A. The
following theorem, which we prove in the present paper, shows that
condition (2.3) is redundant in Theorem B.

1 We write Sk for lim Sj

0 &—0



ABSOLUTE SUMMABILITY OF FOURIER SERIES WITH FACTORS 61

THEOREM 1. Let \(t), t > 0, be a positive nondecreasing function
and {p,} be a positive monotonic monincreasing sequence such that
(2.2) holds and for some positive constant C

(2.4) RCELZOIES S
then >y N, A.(x) is summable | N, p,|.

Lemma 6 of the present paper shows the role that a specific
choice of \(t) plays in (2.4").

Another generalisation of Theorem A, in the form of the following
theorem is due to Kanno [5].

THEOREM C. Let {p,} and {4p,} are both nonnegative and mnon-
increasing and Mt),t >0, be a positive nondecreasing function
such that {\,/P,} is nonincreasing. Then the series >, B\, 4,.:(%)
18 summable |N, .|, if (2.4") holds and

(2.5) JuR) = K\, /P, .

Dropping the condition that {4p,} is nonincreasing and replacing
the condition: ‘{\,/P,} is nonincreasing’ by the condition: ‘{\,p./P,}
is nonincreasing’ which appears to be lighter than the former, we
obtain the following more refined result than Theorem C whenever

P,— .

THEOREM 2. Let {p,} be mommnegative nonincreasing sequence
with P,— co as n— oo and M), t > 0, be a positive nondecreasing
function such that {\,p./P,} is nonincreasing and (2.5) holds. Then
the series S,o-i Ryh, A, (2) is summable | N, p,|, if (2.4) holds.

In order to consider the remaining case of Theorem C in which
P,— 1 (finite) as n — oo, we observe that in this case (2.5) implies
that

& B _
kglk <o

Further, since \(t) is positive nondecreasing, (2.4") implies that
| do) < K.
Thus, applying Lemma 7 with ¢, = R,\,, we obtain the absolute

convergence of 32 B\, A,..(x) which a fortior: implies its |N, p,|
summability, since by virtue of Lemma 8, the method is absolutely
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regular whenever {p,} is nonnegative nonincreasing. Thus, a sharper
result under lighter assumptions is obtained for this case.

It may be observed that Theorem 2 and Theorem 1, which include
Theorem C when P,— -« and Theorem B respectively, are established
by a unified proof shorter than the existing proofs of Theorem B and

Theorem C. For some interesting corollaries of Theorem C and ¢
fortiori of Theorem 2 reference may be made to [5].

3. Preliminary results. We need the following lemmas for the
proof of our theorems.

LEMMA 1. Let {a,} be a given sequence, then for any x, we have
s s~—1
1 -2 3 et =a2 — ax — 3 daattt,
k=r k=r
where r and s are integers such that s = r = 0.

LEmMA 2. If {q.} 78 @ nonnegative nonincreasing sequence such
that Q, = Dii—oqi, then for 0 £ a < b < o and any n,

b
2 qwexpi(n — k)t| = KQ-,
uniformly in 0 <t = m.

Lemma 2 follows from the proof of Lemma (5.11) of [7], when
we take 7 = [C/2t] in place of [1/t].

LEMMA 3. If {p,} is nonmegative monincreasing, then for all
kzZ0and 1 a0 b < o,

> —_— 4 P'n—k — Pn—k—l <
éP(n,k)~é( P, Pn_1>=1

and for any n >0, P(n, k) = 0 so that the (N, p,) method is abso-
lutely regular.

Proof. We have

4 P,_. _ Py .____Pb—-k__Pa—-k—l <1
Z( b, Pn-1> P, P, =

n=a

For, n > 0 we observe that

P(%, k) — pn—k% ; pnPn—k g 0 R
nt n—1
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since {p,} is nonnegative nonincreasing. It is known [6] that necessary
and sufficient conditions for the absolute regularity of the (N, p,)
method are that

Poi/P,—0 as m—>o and 3|P(n, k)| <K

for all k. The latter of these conditions is already proved while the
former follows from the fact that (¢ + 1)p, < P,.

LeMMA 4. If {p.} is nonnegative nonincreasing, then

(i) for any positive integer r, P,, < rP, and, if in addition
{\,} is nonmegative nondecreasing such that (2.2) holds, or P,—
with n and (2.5) holds, then

(i) Ao = KN

Proof. Using the hypothesis that {p,} is nonnegative and non-
increasing, we write

Prnéi ipk§zpn=7"Pn-
v=1lFk v=1

=(v—1)n

This proves (i). Next, if {¢,} is a nonnegative sequence, then
for o = 2n,

0
> > e
Jn(#) = JZn(#) = >"2nk=224n kPk ’

since {\,} is nondecreasing. Taking p = 8n and g, = 1 for all n and
observing that {P,} is positive nondecreasing, we have

3.1 Ty = Pt Dl o 1 Ny
@-1) D= 3nP, ~— 9 P,

by virtue of the result (i). Similarly, since

3.2) J(R) = D > % Now

In view of the inequalities (3.1) and (3.2) and the hypotheses (2.2),
(2.5), we have

N Y
K22 >9J,(p) = =2,
p = (#)_P

” ”n
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where ¢, =1 or p, = R,. This gives the result (ii) and thus we
complete the proof of the lemma.

LemMmaA 5. If {p,} is nmonnegative monincreasing and {\,} is
positive nondecreasing such that (2.2) holds, then for all N = n,

1 31 40u/8)| < K, n=1,2

Proof. We first observe that {n/P,} is nondecreasing. For,

P 1
AJ':—_—‘—Pn_ n+1 20!
(£) gy (P = )

since {p,} is nonnegative nonincreasing. Thus, under the hypothesis
(2.2), we have

(3.3) KNz P, 5 -z 3t
k=n k k=n
Further, if N = n, then
he had A
3.4 _ N+ — - - S ____k__ R
3-4) "N+1 N+’kzzv'+1k(k+1) =" &%k + 1)

since {\,} is positive and nondecreasing. Thus,

3 Y% S Mear — Ny S Mk
w3 |45 s 2 hT1  CERRLD

i Y by

=2 k N+1 _7\‘“

AW+ "N+l

had A

<sn S M <,

=3 Tk D

by virtue of (8.3) and (8.4). This completes the proof of the lemma.
LEMMA 6. Let 6(t) and Mt) be two monnegative nondecreasing

Sfunctions such that 6(n) = Mn) = \,. Let a and b be two positive
numbers such that

16, 9) = [oamlae®)l and 10 €)= [ 2e0)ldot)|

exist, for every € > 0. If \,, < K\,, then I, 0) < « if and only
if I, 0) < .

Proof. We assume without loss of generality thata < b. Thus,
for 0 <t <b, we have
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a/t < bjt < 2[b/t]

and, therefore, using the hypotheses that 6(¢) and \(¢) are nondecreas-
ing, we have

(3.5) O(a/t) = M2[b/t]) = K NMb/t) ,

since 8(n) = AM(n) and A,, < K\,. Now taking 0 <t < a, we have
for some fixed integer r

b/t < 27[a/t]
and, therefore,
(3.6) Mb/t) < K\(a/t]) = Kb(a/t) .
The lemma readily follows from (3.5) and (3.6).

LEMMA 7. If So. (l6,|/n) < o and S:ldgo(t)l < K, then
S eadan(@)] < o

Proof. Since led¢(t)l < K, we have by integration by parts,

SR g t) | = L (lapw) < £
n n Jo n

4.@) = |2

0
The desired result now follows directly.

4. Proof of Theorem 1 and Theorem 2. If £, denotes the
nth (N, p,) mean of >, 4.(x)¢, N, then

to—t, =2 S”@(t)g(n, £)dt
T 0

where
g(n, ) = S P(n, k)pten, cos kt
k=1

¢, =1 or R, and P(n, k) is defined by Lemma 3.
Integrating by parts, we get

S:‘P(t)g(n, t)ydt = — S:(S:g(n, u)du)d@(t)

and, therefore,
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o
n=1

tn - tn——1

©o T
=5
n=1 J0

S:g(n, u)du] 'dg}(t)? .

Thus, using the hypothesis (2.4'), we observe that in order to prove
the |N, p,| summability of >, #.N,A,(x), it is sufficient to show
that uniformly in 0 <t < =,

n

S P(n, k)t sin kt( < EMC)Y) .

k=1

(4.1) =3

n=1

We write
2= zg l 5_3 P(n, k)™ "\t sin kt)

(4.2) + 3 ;<z+ ) )P(n, )k Nty sinkt‘

n=2r+2 k= k=7+1

=3+ +2,
say. Now, we observe that
(4.3) M2z + 1) < KN(C/t) .

For, if z > 1, then 27 + 1 < 2z and (4.8) follows from the result (ii)
of Lemma 4 and the hypothesis that M(¢) is a positive nondecreasing
function. The latter also implies (4.3) directly when 7 = 0.

Since |sin kt| < kt, we have by a change in order of summations
and Lemma 3

2 = t2§: #k)V;ilP(n, k)
(4.4) k=1 n=k

2r+1

=t o = KGR,
=

by virtue of (4.3). Again writing |sin k¢| < kt and applying the result
of Lemma 3, we get

5=t S S P, B,
(4.5) =:22‘+2 k=1 .
- 222 ZP(n, k) < K\(Ct) .

=L

>

In order to estimate 3,, we consider the following sum and write for
a sufficiently large N,

3% = i S P(n, Bk n exp (ike)|
n=27+2| k=7+1
(4.6) S (3 + 35 )P0, b exp (ikt)|
n=27+2 k=741 k=m+1

=3+ 27,
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say. Applying first, Lemma 1 with « = exp (¢¢) and then effecting
suitable changes in order of summations, we get

N

ST RS S PO, )k + Plo, T+ DA )

n=2t+42
N

+ K S, Pln, m)pem™ + K S P(n, © + Dftesdons

=27+2 n=2cv+2

N N
= K73 kT e 2
k=7+1 n=2k+1

4,(P(n, )|

@n o+ K ,A(k”lpkx,,)

=T

S P,k + 1)
n=2k+1

N
-1 —1 by pn—m — pnPn—'m—l
+ Kt ”=§+2’In Fom m( P, PP, )

N
+ Eheyy 3, P(n, 7+ 1)
n=2r+
=35+ 25+ 25+ 3%,

say. Since, due to nonnegative nonincreasing nature of {p.} —
4,P(n, k) = 0, for relevant values of %, we have

= Kt 3 ko, S (Bet - Pet)

k=t+1 aZgk+i\ P, , P,
(4.8) < Kt 3 ko
k=t+1 sz

é Kt—lpt+1‘]t+1(/‘e) é K)"(C/t) ’

by virtue of (4.8), the hypothesis (2.2) or (2.5) and the fact that
{R,}e B.

First taking g, = 1, we have by Lemma 8 and Lemma 5 with
(4.3)

M=

(4.9) shs K A(xk/k)l < KMCJE) -

T+1

Next, when g, = R,, that is, in the case of Theorem 2, we have

S

= KR...MClt) = KMCJt) ,

M=

S Kt
k

T+1

4.9')

by virtue of the hypothesis that {\,p./P,} is nonincreasing and the
result (4.3). Now,
Y 1
2?;3 § Kt_l Z m-lﬂm)"mpm‘ﬁ—
(4.10) e =
= Kt7'p.o () = KMCY)
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by virtue of (4.3), the hypothesis (2.2) or (2.5) and the fact that

{R,} € B. Further applying Lemma 3 and using (4.3), we directly
get

(4.11) 2h = KMCfR) .

Writing

P(n, k) = p‘np—-k _ p_;)P;J_k—l ,
n n n—1

we have

N
3 < -

- 2r+2P

N

D
+ n=%+2 PnPn—l

i P, _, Nk, exp ('ikt)! .

k=m+1

Observing that {k~'z¢,} is nonincreasing and applying Abel’s lemma,
we obtain by Lemma 2

¥ < ', max Z Pa-seXP (tkt)
n=2t+2 " m<vsn | k=m+
N v
(4.12) +KS —P paomip, max| S exp (ikt)l
aZzcv2 P, P, | m<vsn | k=m+1

= K(P: + (7 + Dpocsa)era(t) = KMCFE)

by virtue of Lemma 4 and the hypothesis (2.2) or (2.5) with (4.3).

Combining (4.6)-(4.12), we prove that X* < K\MC/t) which in
its turn implies that ¥; < K\MC/t). The last result combined with
(4.2), (4.4) and (4.5) shows that (4.1) is valid and we have, thus proved
the | N, p,| summability of >3, ¢\, A, (x). Observing that the above
proof remains unaffected, if A,(x) is replaced by A,..(x), we conclude
the | N, p,| summability of >, .\, A, ().

This completes the proof of our theorems.

The authors should like to thank the referee for suggesting
Lemma 6 and Lemma 7 which have helped to improve the presentation
of the paper.
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