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LINEAR OPERATORS FOR WHICH T*T AND
T + T* COMMUTE

STEPHEN L. CAMPBELL

This paper is about the bounded linear operators T acting
in a separable Hilbert space .~ such that 7*T and T + T*
commute. It will be shown that such operators are normal if
they are either compact or quasinilpotent. It is conjectured
that if 7*T and T + T* commute, then 7= A -+ Q where A =
A* AQ = QA, and Q is quasinormal. This conjecture is shown
to be equivalent to [T*T— TT*|T[T*T— TT*] being hermitian.

For bounded linear operators X, Y, let [X, Y] = XY —YX. Let
0 ={T:[T*T, T + T*] = 0}. The defining condition for 6 appears in
the work of Embry. She has shown that if o(T*) N o(T) = @ and
T or T* are in 6, then T is normal [9, p. 236]. She has also shown
that if Te€@ and [T*T, TT*] = 0, then T is quasinormal [8, p. 459].
On the other hand if @ is quasinormal, 4 = A*, and [4, Q] =0,
then 4 + Qe d. Thus Embry’s result shows that the intersection of
the class (BN) = {T: [T*T, TT*] = 0} (see [4] and [5]) and ¢ is trivial,
i.e., the quasinormals. In particular, there are no nonquasinormal
centered [11] operators in #. These last observations are helpful
when trying to construct examples of nonquasinormal operators in 8
since (BN) includes all weighted shifts and most weighted translation
operators. Using [13] it is also easy to see that if 7*is normal and
Te@, then T is normal.

It seems reasonable to make the following conjecture:

©) 0={A+Q:[Q,Q*Q]=0,[Q, A] =0, A* = 4} .

If (C) is true, then using the canonical form for quasinormals given in
[1], it is easy to see that every operator in 6 is subnormal. While
we have not been able to resolve (C) we shall present several results
which show that the operators in 6 behave much as if they were
hyponormal. In particular, we shall show that if Tef is compact
or quasinilpotent, then it is normal. This will strengthen the result
in [6] which asserts that if Ted and T is trace class, then T is
normal.

Finally, let B(A) = AW —T*Y(A\ — T) = M = N(T* + T) + T*T.
Note that if Ted, then the values of B(A) form a commutative
family of normal operators.

2. Main results. Recall from [6] that if Te6, then . + Teé
for real A. Also if T €6, then the null space of T, N(T), is reducing.
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Finally, Te g if and only if T*[T*, T = [T*, T]T.

THEOREM 1. Suppose that T <6 and N\ is an eigenvalue of T.
Then the eigenspace of T associated with N is reducing.

Proof. Suppose that Te# and X\ is an eigenvalue. If \ is real,
we are done. Suppose that A is not real. Since N(T) is reducing
we may also assume that T is one-to-one. Let ¢ be such that T¢ =
Ao, Then [T*, Tlg = (n — T)T*4. Thus T*[T*, Tlg = [T*, T]T¢ be-
comes B(\)T*s¢ = 0. Since B(\) is normal, and B(\)* = B(A), we
have B(\)T*¢ = 0. Thus

0 = AB(\)T*¢ = B\)T*Tp = T*TB(\)é ,
so that B(\)¢ = 0. But then
0=BM)s =K~ TR - T)p = & — NE — T)5 .
Hence T*¢ = \¢ and the eigenspace is reducing.

That the eigenspaces of a hyponormal operator are reducing is
well known. See, for example, [12, p. 420].

THEOREM 2. If Te0 and T is quasinilpotent, then T = 0.

Proof. Suppose that Ted and o(T) = {0}. We may assume that
T is one-to-one if T is not zero. If T*T(T + T*) =0, we are done.
Suppose then that T*T(T + T*) = 0. Since o(T) = {0}, B(\) is inver-
tible for all x = 0. Let E(-) be the spectral measure associated with
the commutative Banach x-algebra generated by T*T and T + T*.
Then there exist E measurable functions g, & such that

T*T = Sdg(s)E(ds), T* 4 T = SJh(s)E(ds)

and 4 is a compact subset of the plane. (In fact 4 S o(T*T) x
o(T* + T).) Since (T*TYT + T*) # 0, there exists s,€ 4, s, in the
support of E, such that g(s,), h(s,) are in the FE-essential ranges of
g, h, respectively, and both g¢(s,), 2(s,) are nonzero. The polynomial
A+ h(s)n + g(s,) has at least one nonzero root. Call it A, Then

BO\) = S (xg + I + g(s))E(ds)

4

is not invertible which is a contradiction. Hence T = 0.

As an immediate consequence of Theorems 1 and 2 we get:
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COROLLARY 1. If Te6 and T is compact, then T is normal.

Our next result has two interesting corollaries.

THEOREM 3. Suppose that N is normal, Be 6, and [N, B] = 0.
Then N + Beb if and only if, relative to the same orthogonal
decomposition of the underlying Hilbert space, N= N, N,, B =
B, ® B,, N, = N} and B, is normal.

Proof. The only if part is clear. Suppose then that T = N +
Be 6 where N is normal, [N, B] =0, and Be §. Note that [N, B¥*] =10
by Fuglede’s theorem. Then [T*, T] = [B*, B], so that T*[T*, T] =
[T*, T]T becomes (N* — N)[B*, B]=0. Let P be the orthogonal
projection onto the null space of N* — N. Then PN = NP and PB =
BP since P is a measurable function of N. Thus the range of P
reduces both N and B, so that N= N, N,, B = B, P B, relative
to R(P) @ R(I — P). But N} = N, by definition of P and B, is normal
since P[B*, B] = [B*, B].

COROLLARY 2. If Teb, N+ Teb, and N ts not real, then T is
normal.

COROLLARY 3. If Tef and T is completely monnormal, then
there does not exist any monhermitian normal operator N such that
[T,N]=0and T+ Neé.

3. Block matrix representation. If Conjecture (C) is true, then
if Tef and T is completely nonnormal, 7 must have a lower trian-
gular block matrix representation with all zero entries except on the
diagonal and first subdiagonal. All diagonal entries are the same
self-adjoint operator A, and all subdiagonal entries are the same
positive operator P. This decomposition follows easily from the work
of Brown on quasinormal operators [1].

It is easy to compute what subspace the first block corresponds
to. It is the closure of the range of T*T — TT*. Morrel has deve-
loped a decomposition for operators T which have a subspace of
N[T*T — TT*] invariant [10]. Applying this to T €@ yields a lower
triangular block representation for 7 provided that 7*7T — TT* is
not one-to-one. If this approach is to verify Conjecture (C) then it
will be necessary and sufficient to show that [T*T — TT*|T[T*T —
TT*] is hermitian.

THEOREM 4. Suppose that Te@ is completely nonnormal. If
[T*, TIT[T*, T] is hermitian, then T = A + Q where [A, Q] =0, A =
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A%, 1@, @*Q] = 0.

Proof. Suppose that T'e€6 is completely nonnormal and [T*,
T1T[T*, T] is hermitian. If [T*, T] is one-to-one we have T = T*
and are done. Assume then that {[T*, T'] is not one-to-one. Since
T is nonnormal we have [T*, T] # 0. Thus from [10] we get that

A, 0 O
B, A, 0
1
(1) 0 B 4,
on £=3i,DH, H=R(T* T]), | < , dimH, =dim H,;,,. By

assumption 4, = A¥. But then [T*, T] = B}B, so that B, is one-to-one.
Using the fact that H, = R([T*, T]) one gets by direct computation
from (1) that

(2) B;ikAi+1 = AtB;'k ’ A?+1Ai+1 + Bf+1Bi+1 = BiB;'k + Ai+1A1>$*+1

for 1 =1,2,.-- where A;,, = B, = 0 if | < . Furthermore, by
definition of the H; we have B; has dense range so that By is one-
to-one. Now since T*[T*, T]=[T* T]|T we have that A,BfB, =
BfB,A,, or BfA,B, = BX¥AXB, Since B, is one-to-one with dense range
we get that 4, = AF. But then from (2), we see that B¥B, = B,Bf
and B, is one-to-one. Thus from BfA, = A,B we get that BfA;B, =
A,B¥B, = A,B,Bf = B,A,B} = B,BfA,. Hence A,= A} and [A,,
*B,] = 0. Suppose now that A, = A}, [A,, B{B,] =0, B}.B,,, = BB},
and B, is one-to-one with dense range for 2 < %k. Then B,., is one-
to-one with dense range. Also BfA,,.B, = A,B}B, and hence A}, =
A.. Thus Bf.B,., = B, B}, so that B,., is one-to-one with dense
range. But then A4,,.,B¥ B,.,=A,,,B,Bf=B,A,Bf=B,BiA,.,. Hence
[Ais, BBy = 0.
If 1 < o, then the Ith equation is A}.,4,, = B,Bf + A, , A}
As before we get A}, = A,,, and hence B, =0. But then B, =0
for all 7 which is a contradiction of the nonnormality of 7. Thus
l = . Now let
A 0 0 0 O
A=1‘0 4 and B = B, 00
. 0 B 0

[

Then B*A = AB* from (2). But 4 = A* so that [B, A] = 0. Hence
B=T-— Aef. However B*[B*, B] = 0 so that B*(B*B) = (B*B)B*
and B is quasinormal as desired.
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3. Comments. The conclusion of Theorem 1, that eigenspaces
are reducing, appears in the work of Berberian. Using Theorem 1,
it follows immediately from [3, p. 276] that if T'c 6, o(T) is countable,
and T is reduction-isoloid [3, p. 277], then T is normal.

In studying nonnormal operators one usually picks off a normal
summand and studies the completely nonnormal operator that is left.
Theorem 1 tells us that any condition which provides for eigenvalues
is incompatible with the complete nonnormality of a T'e . Thus one
can prove results such as [2, p. 190], [3, p. 277].

THEOREM 5. If Te6 is completely nonnormal and T is also (G,)
or restriction convexoid, then o(T) has no isolated points.

Finally, we note that the restriction of a Te€f to an invariant
subspace is not necessarily in 4. The quasinormal operator in [7]
whose restriction to an invariant subspace is not quasinormal is an
example.
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