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STARSHAPED SETS AND THE HAUSDORFF
METRIC

GERALD A. BEER

Let C be a compact set in Rn. The r-parallel body of
C, Br(C), is the union of the family of closed r-balls whose
centers lie in C. If C is starshaped with respect to the origin,
the gauge of Br(C) is a Lipschitz function; this observation
in conjunction with the Arzela-Ascoli theorem yields Blaschke
selection theorem for starshaped sets. In addition, each
parallel body is a union of a finite collection of parallel bodies
of starshaped sets. From this decomposition, we show that
Lebesgue measure is continuous on the metric space of parallel
bodies of a fixed radius in Rn relative to the Hausdorff metric.

l Introduction* The dual cone of a convex set C in Rn is
the epigraph of its support function. Using this concept Valentine
[6] and others have obtained elementary proofs of many theorems
in convexity.

The Blaschke selection theorem states that a uniformly bounded
sequence of compact convex sets in Rn contains a subsequence con-
vergent in the Hausdorff metric to a compact convex set. The
"compactness" of the corresponding sequence of dual cones follows
immediately from the Arzela-Ascoli theorem: let {fn} be a pointwise
bounded equicontinuous sequence of real-valued functions on a compact
metric space. Then {fn} contains a uniformly convergent subsequence.
The sequence of support functions corresponding to the particular
convex sets under consideration clearly satisfy the hypotheses of the
theorem. Extracting a convergent subsequence of functions, its limit
must be a positively homogeneous subadditive function. Thus, the
limit function is the support function of a compact convex set [6].
Since the Hausdorff distance between two compact convex sets is
the supremum norm of the difference of their support functionals
when restricted to the unit sphere, this set is easily seen to be the
Hausdorff limit of the corresponding subsequence of convex sets.
Of course, the Blaschke selection theorem remains valid when the
assumption of convexity is deleted: each closed and bounded collec-
tion of compact sets in Rn relative to the Hausdorff metric is compact
[4]. Heil [3] in fact obtains this result by utilizing the Arzela-Ascoli
theorem.

A main purpose of this article is to establish the selection theorem
for starshaped sets by considering those functions intrinsically related
to such sets: gauges. In light of the correspondence between gauges
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and support functions of polar convex sets, our method is in some
sense a generalization of the one outlined above. Certain properties
of parallel bodies of starshaped sets not only disclose the appropriate
modifications required but also yield an interesting measure theoretic
result for convergent sequences of parallel bodies of a fixed radius.

2* Preliminaries. Let Br(x) denote the closed r-ball about a
point x in Rn. If C is compact set in Rn, then the r-parallel body of
C, symbolized by Br(C), is the compact set \Jx&cBr{x). If C and K are
compact subsets of Rn, the Hausdorff distance of C from K is given
by d(C, K) = inf {r: Br(C) Z) K and Br(K) 3 C}. If {Q is a sequence
of sets in Rn, then a point x belongs to lim sup {Ck} if and only if
each neighborhood of x intersects infinitely many terms of {Ck}.

Conv ker C and conv C will indicate the convex kernel and convex
hull of C. Finally xy denotes the line segment joining points x and
y, and R(x, y) denotes the ray emanating from x through y.

We now develop some properties of gauges of compact sets star-
shaped with respect to the origin.

DEFINITION. Let C c Rn be starshaped with respect to the origin.
The gauge of C is the function g: Rn —> [0, co] defined by

g(x) = inf {λ: x e \C} .

If g is the gauge of a nontrivial closed set starshaped with re-
spect to the origin, then g is a nonnegative extended valued positively
homogeneous lower-semi continuous function, and there exists x0 Φ 0
satisfying g(x0) Φ co. Conversely, any function / with these properties
is the gauge of such a set, namely, C = {x: f(x) <i 1}. C is closed
as / is lower-semicontinuous. Moreover, 0 6 C since

lim inf f(^-x0) = H m ^ / ( O = 0 .
\ f Jk-+co

The positive homogeneity of / implies that 0 e conv ker C. Note that
C is compact if and only if its gauge assumes the value zero only
at the origin.

If C is compact and 0 e conv ker C Π int C, then its gauge is
finite valued. In this case a necessary and sufficient for continuity
of the gauge is obtained from Dini's theorem: the gauges for Bl!n(C),
n = 1, 2, 3, , converge uniformly to the gauge of C on compact
subsets of Rn. If 0 6 int conv ker C, then the gauge is clearly con-
tinuous. Moreover, it is Lipschitz.

LEMMA 1. Let CaRn be a compact starshaped set containing
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J3ε(0) in its convex kernel. If f is the gauge of C, then for all z
and y in Rn

- l l * - v l | .ε

Proof. For each xe C, letfx denote the gauge of conv ({x} U Bε(0)).
Clearly, fx(z) ^ f(z) for all xe C and zeRn. For fixed nonzero z,
choose λ > 0 satisfying Xz 6 bd C. Then fλz(z) = 1/λ = f(z) so that
f(z) = infxeί7/β(s).

We now show that the functions {fx: xe C} are equi-Lipschitzian,
each with Lipschitz constant 2/ε. Choose x in C. It suffices to show
that 2/ε is a Lipschitz constant for /, restricted to i?ε/2(0), since the
positive homogeneity of fx then forces 2/ε to serve as a global
Lipschitz constant. If 2/ε fails to serve as a local Lipschitz constant
at the origin, then there exists w, y in Bεj2(0) satisfying

fM ~ /.(w) > 2/ε/
\\y-w\\

Choose z satisfying yewz and \\z — y\\ = ε/2. Since fx is convex we

obtain

ΛQg) - /x(y) > fM - / . M > 2 / ε

l l s 3 / l l ~ II3/ M7III3/ —

so that fx(z) - fx(y)>l. Thus /.(«)> 1. However, seJ5£(0)c
conv ({x} U Bε(0)) requires that fx(z) ^ 1. This contradiction implies
that 2/ε serves as a Lipschitz constant for fx.

The proof is now completed by observing that the infimum of
a collection of equi-Lipschitzian functions is Lipschitz with the expected
Lipschitz constant.

COROLLARY. Let C be starshaped with respect to the origin.
If e is positive, then the gauge of Bε(C) is Lipschitz with Lipschitz
constant 2/ε.

Let m denote ^-dimensional Lebesgue measure. The following
structural lemmas will be later used to establish the continuity of
Lebesgue measure (relative to the Hausdorίf metric) on the family
of parallel bodies of a fixed radius in Rn.

LEMMA 2. Let C be a compact starshaped set in Rn A point
x belongs to bd Br(C) if and only if inf {|| x — y ||: y e C} = r.

Proof The necessity of the condition is obvious. Conversely,
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suppose that inf {|| x — y | |: y e C} = r. Ghoosing # arbitrarily in
conv ker C, a simple argument involving the convexity of the Euclidean
norm yields R(q, x)ΠBr(C) = qx. Hence, x must belong to bd Br(C).

The following lemma sharpens an observation of M. Brown [2].

LEMMA 3. Let C be a compact set in Rn. If r > 0, then
( i ) Br(C) is the union of finitely many compact starshaped

sets whose convex kernels have nonempty interiors
(ii) m{cc:inf {|| a? - y | |: ye C} = r) = 0.

Proof. First, suppose that r exceeds the diameter of C. Let
ri conv C denote the interior of conv C relative to the smallest flat
containing C. If C is a single point, Br(C) is starshaped. Otherwise,
pick q in rΐ conv C, and choose ε > 0 so small that J?ε(g)ίΊconv C c
r i c o n v C . We claim that conv ker Br(C) includes Be(q). Choose x
in Br(C) and p in Bε(q) arbitrarily, and select u in C satisfying
|| x — u || <̂  r. Since the diameter of C equals the diameter of conv C,
we have

|| u — p || ^ || u — g || + || q — p || ^ diameter of C < r .

It follows that || λa? + (1 — X)p — u \\ ̂  r whenever 0 ^ λ ^ 1 so
that xpaBr(C). The proof of (i) is completed in the general case
as in [2] by decomposing C into finitely many compact sets {Cl9 , CJ,
each of whose diameters is less than r. By Lemma 2, if inf {\\x —
y\\:yeC} = r, then # belongs to bd Br(Ci) for some i in {1, •••, k}.
Since m(bdjBr(C<)) = 0 for each i [1], assertion (ii) is established.

3* Blaschke^s theorem via the Arzela-Ascoli theorem•

THEOREM 1. Let {Ck} be a sequence of compact starshaped sets
each contained in {xeRn: \\x\\ ̂  M}. Then {Ck} has a subsequence
convergent in the Hausdorff metric to a compact starshaped set.

Proof. If {pk} is a bounded sequence of points in Rn, then {Ck}
has a convergent subsequence iff {Ck — pk) does. Thus we may assume
each Ck is starshaped with respect to the origin.

Let ε be positive and let fk represent the gauge of Bε(Ck). By
the corollary to Lemma 1, each member of {fk} is Lipschitz with
Lipschitz constant 2/ε. Hence, {fk} is an equicontinuous sequence.
Moreover, \fk(w)\ ^ | |w||/ε holds for each weRn and keZ+ so that
the family of functions is pointwise bounded. By the Arzela-Ascoli
theorem {fk} has a subsequence uniformly convergent on compact
subsets of Rn to a function / which clearly is the guage of the closed
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starshaped set S = {w: f(w) <; 1}. Since fk{w) ^\\w \\/(M + ε), the set
S is compact.

Since f(ew/\\ w ||) £ 1 for all weRn\{0}, we have 5 ε ( 0 ) c S . In
addition, the convergence of the subsequence of gauges is uniform on
{w: f(w) — 1}. From these observations, it follows that {w: f(w) — 1}
is the Hausdorff limit of a subsequence of {{w. /^w) = 1}}, and the
corresponding subsequence of {Bε(Ck)} converges to S.

We now produce a convergent subsequence of {Ck} itself. First,
there exists a subsequence of {Ck} whose parallel bodies of radius 1
converge to a compact set Sx starshaped with respect to the origin;
this subsequence may be filtered to obtain one whose parallel bodies
of radius 1/2 converge to S2, a subset of Sίt and so forth. We claim
that the subsequence of {Ck} whose ίth term is the ίth term in the
ith subsequence as generated above converges to ΠΓ=i Si9 a compact
set starshaped with respect to the origin. Denote this "diagonal"
subsequence by {Dk}.

Let ε be positive. Choose m so large that 2/m < ε. Since
{B1}m(Dk):ke Z+} converges to Sm, we have for all but finitely many
k

Bε(Dk) =) B2lJDk) = Bllm(Bljm{Dk)) => Sm =) fϊ &

On the other hand, B1}m(Sm) contains all but finitely many terms of
{Dk}. We claim that if xeBl!m(Sm), then xe B2ιm (ΠΓ=i£y, a subset
of Bε (Π?=i St). If i>m, the uniqueness of limits implies Sm=B1ιm-1n(Sί).
Thus, Bιim(Sn) — Biiw-wiSi) for each such i. Let x be an arbitrary
member of B1/w(/Sm). Choose yteSt satisfying \\y{ — x\\ <±2/m for
each i> m. Since the collection {S^. i e Z+} is nested, {y^ has a
subsequence convergent to a point y in ΠΓ=m+i cl Si — Π?=i St. Since
|| x — y || <; 2/m < ε, we have xeBε (fV=i SJ. Hence all but finitely
many terms of {Dk} are contained in Bε(C\Z1Si).

4* Lebesgue measure and parallel bodies of a fixed radius*
The assignment C —* m(C) is an upper-semicontinuous function on the
metric space of compact subsets of Rn under the Hausdorff metric.
If {Ck} is a sequence of compact sets satisfying lim^oo d(Ck, C) = 0,
then the following are equivalent (1) lim^oo m(Ck) = m(C) (2)
lim^oo m(CACk) = 0 (3) m(C\Ck) = 0 (4) the sequence of characteristic
functions corresponding to {Ck} converges in measure to the charac-
teristic function of C When these conditions hold, we say that {Ck}
also converges in measure to C. The following results show that
Lebesgue measure is continuous on the subspace of parallel bodies of
a fixed radius.
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LEMMA 4. Let {Ck} be a sequence of compact sets in Rn convergent
in the Hausdorff metric to a compact set C. If r is a fixed positive
number, then {Br(Ck)} converges in measure to Br(C).

Proof. Clearly, {Br(Ck)} converges in the Hausdorff metric to
Br(C). Hence, we need only show that lim,^ m{Br(C)\Br(Ck)) = 0.

Suppose that for infinitely many k, we have m(Br(C)\Br(Ck)) >
δ > 0. By passing to a subsequence, we may assume that this occurs
for each Ck. In each set Br(C)\Br(Ck) pick a compact set Fk satis-
fying m(Fk) > δ. We claim that if x belongs to lim sup {Fk}, then
inf {|| x — y ||: yeC} = r. Suppose instead that \\x — y\\ < r — ε for
some y in C and ε > 0. Since Bεj2{x) contains points from infinitely
many Fk and d(Ck, C) —* 0, there exists a positive integer k and points
xk in Fk and yk in Ck satisfying || xk — x || < ε/2 and || yk — y \\ < e/2
It follows || xk — yk || < r, and this contradicts xk $ Br(Ck). By Lemma
3, m (lim sup {Fk}) = 0. We now show that m (lim sup {Fk}) ^ δ; this
yields the desired contradiction. Let {Fkι} be a convergent subse-
quence of {Fk} with limit F. Since lim sup {Fk} includes F, we have

m (limsup {Fk}) ^ m(F) ̂  lim sup m(Fk) ^ δ .

THEOREM 2. Let {Ck} be a collection of parallel bodies of a fixed
radius convergent in the Hausdorff metric to a compact set C. Then
{Ck} converges in measure to C.

Proof. It suffices to show that every subsequence of {m(C\Ck)}
has in turn a subsequence convergent to zero. Suppose that Ck =
Br(Ek) for k = 1, 2, . Given a subsequence of {Ck}, choose a subse-
quence of this subsequence for which the corresponding subsequence
of {Ek} is convergent. Clearly, the r-parallel body of the limit of
the above subsequence of {Ek} is G. An application of Lemma 4 now
yields the desired result.

We present a simple application of this result. If C is a compact
subset of Rn, define the visibility function vϋ'- Rn—*R by vc(x) =
m{y: xy c C}. For each compact set C of positive measure define I(C)

by I (vc/m(C)2) dm. This set function measures the relative convexity
of C. Otherwise, set I(C) = 1. If {Ck} is a sequence of compact sets
convergent both in the Hausdorff metric and in measure to a compact
set C, then I(C) ̂  lim s u p ^ I(Ck)) [1]. Theorem 2 now implies that
/ is upper-semicontinuous on the metric space of parallel bodies of
a fixed radius relative to the Hausdorff metric.
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