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FULL CONVEX /-SUBGROUPS AND THE EXISTENCE
OF a*-CLOSURES OF LATTICE
ORDERED GROUPS

RICHARD N. BALL

An affirmative answer to the question of whether an
arbitrary lattice-ordered group has an a*-closure is the main
result of this paper. This result is obtained by first intro-
ducing the notion of a full convex /-subgroup which is closely
analogous to the notion of a closed convex [-subgroup.

The first two sections of this paper are a development of the
basic properties of full convex Il-subgroups. In 8§83 we define an f-
extension of an l-group, the direct analogue of the definition of an
a*-extension. It is the existence of f-closures which we prove in §4;
the existence of a*-closures is a corollary to the proof. We believe
the study of full convex l-subgroups will continue to enrich the theory
of lattice-ordered groups.

G and H will denote lattice-ordered groups throughout. G < H
will mean that G is an [-subgroup of H. For a subset X of G,
Cn (G, X) and Cl (G, X) will denote the smallest convex [-subgroup
of G containing X and the smallest closed convex I-subgroup of G
containing X, respectively. This notation will be shortened whenever
the result is unambiguous; for example, Cn (G, {x}) and Cn (G, XU {x})
may be written Cn (z) and Cn (X U {x}).

1. Full convex l-subgroups. A set X of positive elements of
G is full if, for positive y, Cl(x) = Cl(y) and z€ X imply ye X. A
convex l-subgroup will be said to be full if the set of its positive
elements is full.

THEOREM 1.1. For a convex l-subgroup C of the l-group G the
following are equivalent:

(i) C s full.

(ii) C is @ union of closed convex l-subgroups.

(ili) C= U{Cl(e)|1 £ ceC}.

(iv) If D is a finitely generated l-subgroup of C then Cl (D) < C.

(v) For each ce C, the strictly positive elements of each positive
coset of Cn (¢) which lies outside C have a strictly positive lower bound.

Proof. The equivalence of the first four conditions is clear upon
recollecting that every finitely generated convex l-subgroup is gen-
erated by a single element. To show that (iii) implies (v), let ¢ be
a member of C, let X be the strictly positive elements of some
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positive coset of Cn (¢) which lies outside C, and let ¥ be any member
of X. If X has no strictly positive lower bound then inf X =1
whence sup {yz~'|xe X} = y. Since yx '€ Cn (c) for allz e X, y € Cl(c),
contradicting (iii). Now suppose (iii) does not hold; let g satisfy 1 <
geCl(c) — C for some ce C. Now g =sup X for some set X of
positive elements of Cn (¢). Therefore 1 = inf {x™'g|x € X}. Since this
last is a set of positive elements of Cn (c)g, (v) does not hold.

For any subset X of G let F1(G, X) be the smallest full convex
l-subgroup of G containing X. A set X of elements of a partially
ordered set is upper (lower) directed if for all x and y in X there
is a z in X such that 2 =« and 2z = y(z < « and z < ¥).

LEMMA 1.2. If X is an upper directed set of positive elements
of G then Fl1(X) = U {Cl(x)|xe X}.

Proof. By Theorem 1.1 part (ii) it is enough to show that A =
U{Cl(x)|xe X} is a convex Il-subgroup of G. Note that 1 <g =<
a € A implies y € A since this implication is true for each Cl (x). For
the same reason, g€ A if and only if |g|e A. Consider first positive
elements @ and b of A; say a€Cl(z) and be Cl(y) for  and ¥ in X.
Then abe Cl(2) where z is an element of X exceeding z and y. Now
for arbitrary a and b from A we have |a|, |b]|€ A so that |a]||b] |a]|€
A which implies |ab|€ 4 and abe A. The arguments for a Vbe A
and a A be A are similar.

If Fl is replaced by Cl or Cn in parts (ii) and (ili) of the next
lemma, the resulting statements are known to be true (ref. Proposi-
tion 3.4 of [4], lemma 3.2 of [3]).

LEmMMA 1.3. For an l-group G,

(i) Cl(g) = Fl(g) for any geG.

(ii) Fl(AN B) =FI1(A) NFL(B) for convex l-subgroups A and B.

(iii) Fl(AU{a) NF1(A U {8}) = F1(A U {a A b}) for positive ele-
ments a and b and convex l-subgroups A of G.

Proof. (i) is a result of Theorem 1.1 part (ii). If 1l <zeFl(4)N
F1 (B) then by Lemma 1.2 there are positive elements ¢ in A and
b in B such that

2eCl(@)NCl(}) =Cl@aAb)SFI(ANB).

Since the opposite containment is clear, (ii) is proved. Part (iii) follows
from part (ii) and the statement which results from replacing F1 by
Cn in (iii).

2. Full prime convex l-subgroups. The theorem for closed
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convex l-subgroups analogous to the following theorem is known to
be true.

THEOREM 2.1. The full convex l-subgroup K of G is prime if
and only if the full convex l-subgroups containing K form a totally
ordered set.

Proof. If K is prime then all convex l-subgroups containing K
form a totally ordered set. If K is not prime there are elements
o and b not belonging to K such that ¢« A b =1. Then

FI(KU{@)NFI(EUPB) =FI(KU{a A b)) =FI(K) =K.

Therefore if F1(K U {a}) S F1 (K U {b}) then F1 (K U {a}) = K, contradicting
a¢ K. Similarly FI1 (K U {b}) cannot be contained in FI1(K U {a}).

THEOREM 2.2. Suppose S is a lower directed set of positive
elements of G and D is maximal among convex l-subgroups of G
which do not intersect S. Then D is prime and if S is full then
so 18 D.

Proof. Suppose a Ab=1 but neither @ nor b is in D. Then there
are elements s and ¢ of S such that se Cn(DU{a}) and t<cCn (DU {b}).
Let v be a member of S beneath ¢ and s. By the Cn version of
Lemma 1.3 (iii), v€ Cn (DU {a}) NCn (DU {b}) = D, a contradiction. If S
is full but D is not, then F1(D) must properly contain D and therefore
must intersect S. By Lemma 1.2. Fl (D)= U{Cl(d)|1 < de D} so
there must be positive elements d € D and se S with se Cl(d). There-
fore Cl (s) = Cl (s A d). The fullness of S implies d A se S, contradict-
ing SND=@.

If “full” is replaced by “closed” in any one of the next four
propositions, a false statement results. These properties represent
important differences between the full prime and the closed prime
convex [-subgroups.

COROLLARY 2.8. Suppose S is a lower directed set of positive
elements of G and D is maximal among full convexr l-subgroups of
G which do not intersect S. Then D is prime.

Proof. Let T={1<geG|Cl(9) =Cl(s) for some seS}. T is
full, lower directed, and contains S but does not intersect D. By
Zorn's Lemma, let C be maximal among convex l-subgroups of G
which contain D but do not intersect T. Theorem 2.2 assures us
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that C must be not only full but also prime. The maximality of D
forces C = D.

COROLLARY 2.4. Ewvery full convexr l-subgroup is an intersection
of prime full convex l-subgroups.

THEOREM 2.5. If C is a full convex l-subgroup of G and P is
minimal among the prime convex l-subgroups containing D, then P
18 full.

Proof. Let S be the set of positive elements not in P. S is
lower directed since P is prime. By Zorn’s lemma let D be maximal
among full convex l-subgroups containing C and not intersecting S.
Since C< D< P and D is prime by Corollary 2.3, P = D.

COROLLARY 2.6. Minimal prime convex l-subgroups are full.

An ideal N of G is closed if and only if for all convex l-subgroups
Q of G containing N, Q is closed whenever Q/N is closed (Lemma
3.4 of [1]). If “closed” is replaced by “full” in the previous state-
ment, the result is false. The next two corollaries, however, are
partial analogues.

COROLLARY 2.7. If N is a closed ideal of G and K/N is full
in G/N then K is full in G.

Proof. Theorem 1.1 part (ii) with the theorem cited above.

COROLLARY 2.8. If N is a full ideal of G and Q/N is minimal
prime in G/N then Q is full in G.

Proof. Q/N is minimal prime in G/N if and only if @ is minimal
among prime convex [-subgroups of @ containing N. Such a @ must
be full by corollary 2.6.

In [3] Byrd and Lloyd prove that every convex l-subgroup con-
taining a closed prime convex l-subgroup is closed and prime. The
failure of the analogous phenomenon for full prime convex l-subgroups
constitutes another important distinetion between closed and full prime
convex [-subgroups.

COROLLARY 2.9. For an l-group G, every convex l-subgroup of
G containing a full prime convex l-subgroup tis itself full if and
only if every convex l-subgroup is full.
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Proof. If every convex l-subgroup containing a full prime convex
l-subgroup is full, then, since minimal prime convex l-subgroups are
full, every prime convex l-subgroup is full. Since every convex I-
subgroup is an intersection of prime convex l-subgroups, every one
is full.

3. f-extensions. The methods and results of this section are
closely analogous to those of §1 of [1].

Suppose G is an l-subgroup of H. If every pair of distinet full
convex l-subgroups of H have distinct intersections with G then we
say H is an f-extension of G and write G < H. Every a-extension
is an f-extension and every f-extension is an a*-extension.

Suppose G = H, X is a set of positive elements of G, and g€ G.
In the next several lemmas it will be necessary to distinguish between
g=supX in G and g = sup X in H. The first notation means that
every element of G exceeding all members of X must exceed g. The
second means every element of H exceeding all members of X must
exceed g. g = sup X in H implies g = sup X in G but not conversely.

LEMMA 3.1. Suppose G =< H. Then

(i) Cl(H, 9) N G<CL(G, 9) for all positive g in G.

(ii) FI(H, K)N G = K for K a full convex l-subgroup of G.

(iiiy FIH, KNG S Kand FIH, KNG NG=KNG for K a
full convex l-subgroup of H.

Proof. If1<xzeCl(H,g)NGthenx =sup{x A g*|n=12 --.}
in H. Therefore  =sup{x A ¢} in G so xe€Cl(G, g). (ii) follows
from (i) and Lemma 1.2. (iii) is clear.

F(@), (@), and &(G) will denote the complete distributive
lattices of full convex l-subgroups of G, of closed convex l-subgroups
of G, and of convex [-subgroups of G, respectively. Z(G) will denote
the distributive lattice {Cl(g)|ge G}. A subset I of a lattice L is an
ideal if I is upper directed and ! < keI implies [ eI for all [ in L.

LEMMA 3.2. The ideals of the lattice Z(G) are in one-to-one
correspondence with F (G).

Proof. If I is an ideal of & (G) then UIe & (G) by Lemma
1.2. Conversely, I = {Cl(9)1 < g€ K} is an ideal of £ (G) for any
convex l-subgroup K of G, and UI= K if K is full.

A convex [l-subgroup G of H is large in H if every nontrivial
convex [-subgroup of H has nontrivial intersection with G.
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THEOREM 3.3. Suppose G < H, Ke & (H), Me & (G). Define
Kr=KnNGand Mo =FL(H, M). Then the following are equivalent:

(i) G< H (r is one-to-one).

(ii) 7 is a lattice isomorphism from & (H) onto F (G).

(iii) 0 maps Z (G) onto & (H).

(iv) For every positive h in H there is a positive g in G such
that Cl (H, h) = Cl (H, g).

(v) 7 is a lattice isomorphism from < (H) onto Z(G).

Proof. (i) implies (ii). If G < H then every nontrivial full convex
l-subgroup of H has nontrivial intersection with G. By the corollary
to Theorem 1.7 of [1], G is large in H. By Lemma 1.8 of [1], if X
is a subset of G then g =sup X in G if and only if ¢ = sup X in H.
Therefore Cl (H, g) N G = C1 (G, g) for g in G, so ¢ must map .&# (H)
into .# (G). Lemma 3.1 part (i) now yields (ii).

(ii) implies (iii) follows from Lemma 3.1 part (ii). If (iii) holds
then for each positive 2 in H there is some full convex Il-subgroup
K of G such that

Cl(H,h)=Ko=FI(H K)= U{Cl(H, k)|]1<keK}.

This is only possible if there is some positive g e K with Cl(H, g) =
Cl (H, R); that is, if (iv) holds.

To show that (iv) implies (i) suppose J and K are full convex
l-subgroups of H having identical intersection with G, and that 1 <
ke K. By (iv) let g satisfy 1 < ge Gand Cl (H, g9) = C1(H, k). Now
deGNK=GNJsokeCl(H, g)=J. Thatis, K<J. A symmetrical
argument gives J & K.

Thus far we have the equivalence of the first four conditions.
That (ii) implies (v) is clear since an element K of & may be dis-
tinguished in the lattice & by the lattice property: for every subset
X of &, if K< F1(U X) then there is a finite subset ¥ of X such
that K Fl1(UY). Conversely, if ¢ is a lattice isomorphism from
< (H) onto £ (@) it may be extended to a lattice isomorphism of
Z (H) onto # (G) by Lemma 3.2.

COROLLARY 3.4. Suppose G < H= K. Then G< K if and only
if G< H and H< K.

4. Existence of f-closures and a*.closures. Suppose U is a
class of l-groups containing H. If H has no proper f-extensions
in U then H is said to be f-closed relative to U. If Ge U, G < H,
and H is f-closed relative to U then we say that H is an f-closure of
G relative to U. The purpose of this section is to show the existence
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of f-closures relative to various classes (Theorem 4.10). The general
procedure is that of §2 of [1].

THEOREM 4.1. The union of l-groups which is totally ordered
by < is an f-extemsion of each l-group in the set.

Proof. Suppose G is a member of X, a set of I-groups totally
ordered by <. Let J and K be full convex l-subgroups of U X
such that JN G = KN G. For the sake of contradiction assume J #
K whence JN M+ KN M for some Me X with G< M. Now (JN
MNG=(KNM)NGsoJN M and KN M cannot both be in & (M);
let # and y be positive members of M with z€ K but y € Cl (M, x) —
K. That is, y =sup{z"Ay|n=12 ---} in M but not in UX.
Therefore there must be a positive z in UX — M withy > 2= 2" A
y for all n. Let N be a member of X containing 2. Then y e Cl(M,
x2) — (C1 (N, 2) N M), contradicting M < N by Theorem 8.3 part (v).

The next several lemmas have as their goal the establishment
of a cardinality bound on G dependent only on .# (G) (Theorem 4.8).
For this purpose we first consider A(T), the l-group of order-preserving
permutations of the totally ordered set T (ref. [6]). An l-subgroup
G of A(T) is said to be transitive on T if for every s and ¢ in T
there is some ¢ in G such that (s)g =¢. For fixed tin T, G, = {g€
G|(t)g = t}, a prime convex l-subgroup of G.

LEMMA 4.2. Suppose G is a transitive l-subgroup of A(T) for
some totally ordered set T. Suppose se T and S ={tec T|G, = G}.
Then for r and v in S there is a unique 0 in A(T) such that ()0 =
v and 0g = gf for all g in G.

Proof. For each t in T define (¢)0 = (v)g for some g in G such
that (r)g = t. It is routine to verify that 6 is well-defind and has
the required properties, and that these properties specify 6 uniquely.

The next result relies heavily on the methods of Khuon [7]. |X]|
denotes the cardinality of the set X, P(X) denotes the set of subsets
of X, X¥ denotes the set of all maps from Y into X, and R denotes
the set of real numbers.

THEOREM 4.3. Suppose G is a transitive l-subgroup of A(T)
for some totally ordered set T, and that se€ T. Let B be |{G,|te T}|,
7 be [{Qe (@G, = Q}, and 6 be max(B, R). Then |T| <0 and
|G| =< | P@)].
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Proof. Let S={teT|G, = G,}. For each rcS let 6, be the
unique member of A(T) which takes s to r and which commutes
with every member of G. Let Z = {4,|re S}. It is routine to verify
that Z is a totally ordered l-subgroup of A(T) and that the map
r— 0, is an order isomorphism from S onto Z. By a result of
Conrad [5], | Z| = |R*™7|.

Claim. |&(Z)| <.

Proof of Claim. For Xe & (Z) let V = {reS|0,e X}. Notice
that X is transitive on V and that V6 =V for all § in X. Let T(X)
be the smallest convex subset of T containing V.

T(X) is a convex G-block; that is, (T(X))g N T(X) is either empty
or T(X) for each positive g in G. If not, elements ¢, , and v from
T(X) and w from T — T(X) can be found such that (¢)g = w and
(v)9g = w for some positive g in G. The symmetry of the argument
and the convexity of T(X) allow us to assume t < u < v < w. Let
g and r from V satisfy ¢ <t and v < r. Let e X take ¢q to r.
Then

g <w= ()= @W0"'90 = (r)f~gf = (g)g0 < (t)g0 = (W) < (r)0 .

The outer members of this inequality are in V, which implies we
T(X), a contradiction.

The correspondence X — T(X) is one-to-one. For if X and Y
are distinet members of #(Z) and 1< 6, Y — X, then, because
Z is totally ordered, X Z Y and 6, > 6, for all 6, X. Therefore
te T(Y) — T(X), which is to say T(X) and T(Y) are distinct. Since
distinct convex G-blocks correspond to distinct convex l-subgroups of
@G containing G,, the claim is proved.

To complete the proof of the lemma observe that SN Sy is either
empty or S for every g in G. By the transitivity of G on T, the
translates of S partition T into disjoint order isomorphic classes, each
containing no more than R’ elements. Since B is the number of
distinet classes, the result follows.

LEMMA 4.4. For Ce (@), | (O)| = |7 (G)|.

Proof. The map K— Fl1(G, K) is one-to-one from & (C) into
Z (G) by Lemma 8.1 part (ii).

LEMMA 4.5. Suppose N .#Z =1 where _# 1is the set of maximal
convex l-subgroups of G. Then |G| < max (|R|, |P(F (G))]).

Proof. With each positive g in G associate the map § defined
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by (M)§ = Mg for each M in _#. § is a member of II{G/M|Me _#},
the set theoretic product of the totally ordered sets G/M. The
association g — § is one-to-one since g = h implies gh™'¢ M for some
Me _# which gives Mg = Mh. Therefore it is enough to bound
IG/M.

| A~ | < | (Q)] since distinet maximal convex l-subgroups contain
distinet minimal prime convex l-subgroups, each of which is full by
Corollary 2.6.

Fix Me _#. Let N be N{g*Mg|1<ge G}, H be G/N, T be
G/M and s be Me T. We wish to apply Theorem 4.3 to H viewed
as a transitive l-subgroup of A(T). The stabilizers {H,|te T} are
conjugates of M and therefore in _# In the terminology of Theorem
43, BZ | Z# (@)] and ¥ =1 from which it follows that |G/M| <
max (|R|, | # (G)|). Finally,

| IG/M| = [(G/IM)™ 9| < max (|R], | P(F (G))]) -

A positive member g of G is a strong unit if Cn (G, g) = G. If
an [-group has a strong unit, then every convex l-subgroup is contained
in a maximal [convex l-subgroup. For each positive g in G define
L(g) to be Cl(G, M) where M is the intersection of the maximal
convex l-subgroups of Cn (G, g). Conrad and Bleier point out (dis-
cussion preceding Lemma 2.6 of [1]) that g¢ L(g) S Cn (G, g). This
fact implies that L(g) = Cl(Cn (G, g), M). The normality of M in
Cn (G, g) implies that L(g) is normal in Cn (G, g).

LEMMA 4.6. Let g be a positive element of G, and let L(g) be as
above. Then the cardinality of the set of cosets of L(g) in Cl(G, g)
1s bounded by max (|R|, | P(F (G))]).

Proof. Let H be Cl(G, 9)/L(g). By Lemma 4.5, [H|=
max (| R|, | P(# (H))|). Since L(g) is closed in Cn (G, g), Corollary 2.7
gives | Z (H)| = | (Cn (G, 9))|. By Lemma 4.4, | # (Cn(G 9)| =
|.#(G))|. Therefore |H| < max (|R|, |P(¥Z (@))]). Consider now a
positive k in C1(G, g). We know k = sup{k A ¢"|n =1, 2, -..}, which
implies L(g)k = sup {L(9)(k A g™)} since L(g) is closed in G. By as-
sociating with each coset L(g)k the countable subset {L(9)(k A g™)|n =
=1,2, ...} of H, the result follows.

The next lemma, due to McCleary, is proved in [1].
LEMMA 4.7. Let X be a set of ordered pairs of subgroups of a

group G such that A S B for each pair (4, B)e X, and such that
for all ge G there is a pair (4, B)e X with g B — A. Then there



16 RICHARD N. BALL

18 a one-to-ome function taking G into the set theoretic cartesian
product II{A/B|(A, B)e X}, where A/B s the set of cosets of B
m A.

THEOREM 4.8. For any l-group G, |G| < max (IR, | P(Z(G))

)-

Proof. Take {(C1(G, g), L(9))|1 < g€ G} to be X in McCleary’s
lemma. Since the number of such pairs is at most | .227(G)|}, the
theorem follows from Lemma 4.6.

COROLLARY 4.9. For any l-group G, |G| < max (|R|, |P¥G))

)

Proof. Since every full convex l-subgroup is a union of closed
convex l-subgroups, | (@) £ | F(Q)| £ |P((G))

By a standard induction argument we arrive at the main result:

THEOREM 4.10. Suppose U is a class of l-groups with the pro-
perty that the union of any set of members of U totally ordered by
< (a*-extension) is itself a member of U. Then every l-group of U
has an f-closure (a*-closure) relative to U.

Some examples of important classes to which the preceding
theorem applies are: the class of all l-groups, the class of abelian
l-groups, the class of archimedean I-groups, the class of normal-
valued l-groups, and the class of representable I-groups.
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