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FULL CONVEX /-SUBGROUPS AND THE EXISTENCE
OF α*-CLOSURES OF LATTICE

ORDERED GROUPS

RICHARD N. BALL

An affirmative answer to the question of whether an
arbitrary lattice-ordered group has an α*-closure is the main
result of this paper. This result is obtained by first intro-
ducing the notion of a full convex Z-subgroup which is closely
analogous to the notion of a closed convex Z-subgroup.

The first two sections of this paper are a development of the
basic properties of full convex Z-subgroups. In §3 we define an /-
extension of an Z-group, the direct analogue of the definition of an
α*-extension. It is the existence of /-closures which we prove in §4;
the existence of enclosures is a corollary to the proof. We believe
the study of full convex Z-subgroups will continue to enrich the theory
of lattice-ordered groups.

G and H will denote lattice-ordered groups throughout. G ̂  H
will mean that G is an Z-subgroup of H. For a subset X of G,
Cn (G, X) and Cl (G, X) will denote the smallest convex Z-subgroup
of G containing X and the smallest closed convex Z-subgroup of G
containing X, respectively. This notation will be shortened whenever
the result is unambiguous; for example, Cn(G, {x}) and Cn(G, X[j{x})
may be written Cn (x) and Cn (X (J {x})

l Full convex ^-subgroups* A set X of positive elements of
G is full if, for positive y, Cl (x) = Cl(y) and xeX imply yeX. A
convex Z-subgroup will be said to be full if the set of its positive
elements is full.

THEOREM 1.1. For a convex l-subgroup C of the l-group G the
following are equivalent:

( i ) C is full.
(ii) C is a union of closed convex l-subgroups.
(iii) C = U{Cl(c)|l^<?eC}.
(iv) If D is a finitely generated l-subgroup of C then Cl (D) Q C.
( v ) For each ce C, the strictly positive elements of each positive

coset of Cn (c) which lies outside C have a strictly positive lower bound.

Proof. The equivalence of the first four conditions is clear upon
recollecting that every finitely generated convex ί-subgroup is gen-
erated by a single element. To show that (iii) implies (v), let c be
a member of C, let X be the strictly positive elements of some
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positive coset of Cn (c) which lies outside C, and let y be any member
of X. If X has no strictly positive lower bound then inf X = 1
whence sup {yx~ι\x e X} — y. Since yx~ιe Cn (c) for all xe X, y e Cl(c),
contradicting (iii). Now suppose (iii) does not hold; let g satisfy 1 <
g e Cl (c) — C for some ce C. Now g = sup X for some set X of
positive elements of Cn (c). Therefore 1 = inf {x^glxe X}. Since this
last is a set of positive elements of Cn (c)g, (v) does not hold.

For any subset X of G let Fl (G, X) be the smallest full convex
Z-subgroup of G containing X. A set X of elements of a partially
ordered set is upper {lower) directed if for all x and y in X there
is a £ in X such that z Ξ> a? and 2 ^ 2/(2 ^ a? and z ^ 2/).

LEMMA 1.2. // X is cm upper directed set of positive elements
of G then Fl (X) = U {Cl(a?)|a?e X}.

Proof. By Theorem 1.1 part (ii) it is enough to show that A =
U {Cl (x)\xe X} is a convex Z-subgroup of G. Note that 1 ^ g ^
as A implies y £ A since this implication is true for each Cl (x). For
the same reason, ge A if and only if \g\eA. Consider first positive
elements a and b of A; say α e Cl (x) and 6 e Cl (#) for a? and 2/ in X.
Then ab e Cl (2) where z is an element of X exceeding a? and ?/. Now
for arbitrary a and b from A we have | a |, 161 e A so that | α | |δ| | α | e
A which implies | ab \ e A and ab e A. The arguments for a V 6 e A
and α Λ 6 G A are similar.

If Fl is replaced by Cl or Cn in parts (ii) and (iii) of the next
lemma, the resulting statements are known to be true (ref. Proposi-
tion 3.4 of [4], lemma 3.2 of [3]).

LEMMA 1.3. For an l-group G,
( i ) Cl (g) = Fl (g) for any geG.
(ii) Fl (A Π B) = Fl (A) D Fl (B) for convex l-subgroups A and B.
(iii) Fl (A U {a}) Π Fl (A U {b}) = Fl (A U {a A b}) for positive ele-

ments a and b and convex l-subgroups A of G.

Proof, (i) is a result of Theorem 1.1 part (ii). If 1 < x e Fl (A) Π
Fl (B) then by Lemma 1.2 there are positive elements a in A and
b in B such that

αeCl(α)ΓlCl(δ) - Cl(α Λ 6) Q F1(A n B).

Since the opposite containment is clear, (ii) is proved. Part (iii) follows
from part (ii) and the statement which results from replacing Fl by
Cn in (iii).

2* Full prime convex ^-subgroups* The theorem for closed
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convex ϊ-subgroups analogous to the following theorem is known to
be true.

THEOREM 2.1. The full convex l-subgroup K of G is prime if
and only if the full convex l-subgroups containing K form a totally
ordered set.

Proof. If K is prime then all convex ^-subgroups containing K
form a totally ordered set. If K is not prime there are elements
a and b not belonging to K such that a A b — 1. Then

Fl(Kl) {a}) ΓΊ Fl(K[j {&}) - Fl(ίΓU {a A b}) = Fi(K) = K.

Therefore if Fl(K{J{a}) QFl(Kl){b}) then Fl(JKΌ{a}) = K, contradicting
a$K. Similarly Fl(K{J{b}) cannot be contained in Fl(K\J{a}).

THEOREM 2.2. Suppose S is a lower directed set of positive
elements of G and D is maximal among convex l-subgroups of G
which do not intersect S. Then D is prime and if S is full then
so is D.

Proof. Suppose a A b = 1 but neither a nor b is in D. Then there
are elements s and t of S such that seGn (flu {a}) and t e Cn (DU {b}).
Let v be a member of S beneath t and s. By the Cn version of
Lemma 1.3 (iii), v e Cn (DU {a}) Π Cn (DU {&}) = D, a contradiction. If S
is full but D is not, then F1(Z?) must properly contain D and therefore
must intersect S. By Lemma 1.2. Fl (D) = (j {Cl (d) \ 1 < d e D) so
there must be positive elements de D and seS with seCl(d). There-
fore Cl (s) = Cl (s A d). The fullness of S implies d A s e S, contradict-
ing sn D= 0 .

If "full" is replaced by "closed" in any one of the next four
propositions, a false statement results. These properties represent
important differences between the full prime and the closed prime
convex ί-subgroups.

COROLLARY 2.3. Suppose S is α lower directed set of positive
elements of G and D is maximal among full convex l-subgroups of
G which do not intersect S. Then D is prime.

Proof. Let T = {1 ̂  g e G\Cl (g) = Cl (s) for some seS}. T is
full, lower directed, and contains S but does not intersect D. By
Zorn's Lemma, let C be maximal among convex ^-subgroups of G
which contain D but do not intersect T. Theorem 2.2 assures us
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that C must be not only full but also prime. The maximality of D
forces C = D.

COROLLARY 2.4. Every full convex l-subgroup is an intersection
of prime full convex l-subgroups.

THEOREM 2.5. If C is a full convex l-subgroup of G and P is
minimal among the prime convex l-subgroups containing D, then P
is full.

Proof. Let S be the set of positive elements not in P. S is
lower directed since P is prime. By Zorn's lemma let D be maximal
among full convex Z-subgroups containing C and not intersecting S.
Since CQ DQ P and D is prime by Corollary 2.3, P' = D.

COROLLARY 2.6. Minimal prime convex l-subgroups are full.

An ideal N of G is closed if and only if for all convex Z-subgroups
Q of G containing N, Q is closed whenever Q/N is closed (Lemma
3.4 of [1]). If "closed" is replaced by "full" in the previous state-
ment, the result is false. The next two corollaries, however, are
partial analogues.

COROLLARY 2.7. If N is a closed ideal of G and K/N is full
in G/N then K is full in G.

Proof. Theorem 1.1 part (ii) with the theorem cited above.

COROLLARY 2.8. If N is a full ideal of G and Q/N is minimal
prime in G/N then Q is full in G.

Proof. Q/N is minimal prime in G/N if and only if Q is minimal
among prime convex Z-subgroups of G containing N. Such a Q must
be full by corollary 2.6.

In [3] Byrd and Lloyd prove that every convex Z-subgroup con-
taining a closed prime convex Z-subgroup is closed and prime. The
failure of the analogous phenomenon for full prime convex Z-subgroups
constitutes another important distinction between closed and full prime
convex Z-subgroups.

COROLLARY 2.9. For an l-group G, every convex l-subgroup of
G containing a full prime convex l-subgroup is itself full if and
only if every convex l-subgroup is full.
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Proof. If every convex i-subgroup containing a full prime convex
i-subgroup is full, then, since minimal prime convex Z-subgroups are
full, every prime convex Z-subgroup is full. Since every convex ϊ-
subgroup is an intersection of prime convex i-subgroups, every one
is full.

3. /-extensions* The methods and results of this section are
closely analogous to those of §1 of [1].

Suppose G is an i-subgroup of H. If every pair of distinct full
convex ^-subgroups of H have distinct intersections with G then we
say H is an /-extension of G and write G < H. Every α-extension
is an /-extension and every /-extension is an α*-extension.

Suppose G ̂  Hf X is a set of positive elements of G, and g e G.
In the next several lemmas it will be necessary to distinguish between
g = sup X in G and g — sup X in H. The first notation means that
every element of G exceeding all members of X must exceed g. The
second means every element of H exceeding all members of X must
exceed g. g = sup X in H implies g = sup X in G but not conversely.

LEMMA 3.1. Suppose G <; H. Then
( i ) Cl (H, g) Π G Q Cl (G, g) for all positive g in G.
(ii) Fl (H, K) Π G = K for K a full convex l-subgroup of G.
(iii) Fl (H, K n G) £ K and Fl (H, KΠ G) Π G = KΠ G for K a

full convex Isubgroup of H.

Proof. If 1 < x 6 Cl (jff, g) Π G then x = sup {x A gn \n = 1, 2, •}
in iϊ. Therefore x = sup {x Λ #"} in G so x e Cl (G, #). (ii) follows
from (i) and Lemma 1.2. (iii) is clear.

JΠG), ^r(G), and ίT(G) will denote the complete distributive
lattices of full convex Z-subgroups of G, of closed convex i-subgroups
of G, and of convex i-subgroups of G, respectively. S (̂G) will denote
the distributive lattice {Cl (g)\ge G}. A subset /of a lattice L is an
ideal if / is upper directed and I ̂  ke I implies I e I for all I in L.

LEMMA 3.2. The ideals of the lattice &{G) are in one-to-one
correspondence with

Proof. If I is an ideal of 5f(G) then L J / e J ^ G ) by Lemma
1.2. Conversely, I = {Cl(g)l< ge K} is an ideal of gf(G) for any
convex i-subgroup K of G, and U I = K if K is full.

A convex ϊ-subgroup G of H is Zαr#e m if if every nontrivial
convex ϊ-subgroup of H has nontrivial intersection with G.
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THEOREM 3.3. Suppose G ^ H, KeJ^iH), MeJ?~(G). Define
Kτ = ϋΓΓΊ G and Mδ = Fl (H, M). Then the following are equivalent:

( i ) G < H (τ is one-to-one).
(ii) τ is a lattice isomorphism from ^{H) onto ^{G).
(iii) δ maps ^{G) onto ^{H).
(iv) For every positive h in H there is a positive g in G such

that Cl (H, h) = Cl (H, g).
(v) τ is a lattice isomorphism from 5f(H) onto

Proof, (i) implies (ii). If G < H then every nontrivial full convex
Z-subgroup of H has nontrivial intersection with G. By the corollary
to Theorem 1.7 of [1], G is large in H. By Lemma 1.8 of [1], if X
is a subset of G then g = sup X in G if and only if g = sup X in if.
Therefore Cl (jff, #) Π G = Cl (G, #) for 0 in G, so r must map ^~(H)
into ^ ( G ) . Lemma 3.1 part (ii) now yields (ii).

(ii) implies (iii) follows from Lemma 3.1 part (ii). If (iii) holds
then for each positive h in H there is some full convex ϊ-subgroup
K of G such that

Cl (H, h) = Kδ = PI (H, K) = (j {Cl (if, fc)|l< ke K) .

This is only possible if there is some positive g e K with Cl {H, g) —
Cl (if, h); that is, if (iv) holds.

To show that (iv) implies (i) suppose J and K are full convex
Z-subgroups of H having identical intersection with G, and that 1 <
k e K. By (iv) let g satisfy 1 < g e G and Cl (H, g) = Cl (if, fc). Now
0 6 G D JSΓ = G Π J so & e Cl (H, g) £ J. That is, iΓ S /. A symmetrical
argument gives J £ K.

Thus far we have the equivalence of the first four conditions.
That (ii) implies (v) is clear since an element K of ^ may be dis-
tinguished in the lattice ^ by the lattice property: for every subset
X of ^ 7 if i£ £ Fl (U X) then there is a finite subset 7 of I such
that jfiΓCFl(UF). Conversely, if τ is a lattice isomorphism from

onto S (̂G) it may be extended to a lattice isomorphism of
onto ^(G) by Lemma 3.2.

COROLLARY 3.4. Suppose G ^ H <L K. Then G < K if and only
if G<H and IKK.

4* Existence of /-closures and α*-closures* Suppose U is a
class of ϊ-groups containing H. If H has no proper /-extensions
in U then H is said to be f-closed relative to U. If Ge U, G < H,
and H is /-closed relative to U then we say that H is an f-closure of
G relative to U. The purpose of this section is to show the existence
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of /-closures relative to various classes (Theorem 4.10). The general
procedure is that of §2 of [1].

THEOREM 4.1. The union of l-groups which is totally ordered
by < is an f-extension of each l-group in the set.

Proof. Suppose G is a member of X, a set of ^-groups totally
ordered by -<. Let / and K be full convex ^-subgroups of U X
such that J Π G = K Π G. For the sake of contradiction assume J Φ
K whence JίΊ M Φ K Γ) M for some Me X with G < M. Now (JίΊ
M) (Ί G = (K Π M) Π G SO J n M and K Π M cannot both be in J^(ikf);
let x and y be positive members of M with xe K but y e Cl (M, x) —
K. That is, y = sup {xn A y\n = 1, 2, •} in ikf but not in U X.
Therefore there must be a positive z in I) X — M with y > 2 Ξ> xn A
y for all n. Let ΛΓ be a member of X containing z. Then yeCl(M,
x) - (Cl (JV, x) D M), contradicting M < N by Theorem 3.3 part (v).

The next several lemmas have as their goal the establishment
of a cardinality bound on G dependent only on ^~(G) (Theorem 4.8).
For this purpose we first consider A(T), the Z-group of order-preserving
permutations of the totally ordered set T (ref. [6]). An i-subgroup
G of A(T) is said to be transitive on T if for every s and t in T
there is some g in G such that (s)g = t. For fixed t in Γ, Gt = {ge
G\(t)g = £}, a prime convex ϊ-subgroup of G.

LEMMA 4.2. Suppose G is a transitive l-subgroup of A(T) for
some totally ordered set T. Suppose se T and S — {te T\G8 = Gt}.
Then for r and v in S there is a unique θ in A(T) such that (r)θ =
v and θg = gθ for all g in G.

Proof. For each ί in T define (t)θ = (v)g for some g in G such
that (r)g — t. It is routine to verify that θ is well-defind and has
the required properties, and that these properties specify θ uniquely.

The next result relies heavily on the methods of Khuon [7]. \X\
denotes the cardinality of the set X, P{X) denotes the set of subsets
of X, Xγ denotes the set of all maps from Y into X, and R denotes
the set of real numbers.

THEOREM 4.3. Suppose G is a transitive l-subgroup of A(T)
for some totally ordered set T, and that se T. Let β be \{Gt\te T}\,
7 be \{Qe^(G)\Gs £ Q}\, and δ be max(/S, R). Then \T\£δ and
\G\£\P(δ)\.
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Proof. L e t S = {te T\Gt = G8}. F o r e a c h r e S l e t θr b e t h e
unique member of A(T) which takes s to r and which commutes
with every member of G. Let Z = {θr \r e S}. It is routine to verify
that Z is a totally ordered ί-subgroup of A(T) and that the map
r—*θr is an order isomorphism from S onto Z. By a result of
Conrad [5], \Z\ ̂  \R^{Z)\

Claim.

Proof of Claim. For Xe^(Z) let V = {re S\θre X). Notice
that X is transitive on V and that Vθ = V for all θ in X. Let T{X)
be the smallest convex subset of T containing V.

T(X) is a convex G-block; that is, (T(X))g Π T(X) is either empty
or T(X) for each positive g in G. If not, elements t, u, and v from
Γ(X) and w from T - T(X) can be found such that (t)g = u and
(v)g = w for some positive ^ in G. The symmetry of the argument
and the convexity of T{X) allow us to assume t ^ u < v < w. Let
g and r from F satisfy q^Lt and -i; ̂  r. Let θeX take g to r.
Then

The outer members of this inequality are in V, which implies we
T{X), a contradiction.

The correspondence X-+ T(X) is one-to-one. For if X and Y
are distinct members of ^(Z) and 1 < ^ G 7 - I , then, because
Z is totally ordered, X £ Γ and 6>r > ^4 for all θt e X. Therefore
teT(Y) - T(X), which is to say T(X) and T(Y) are distinct. Since
distinct convex (?-blocks correspond to distinct convex ί-subgroups of
G containing Gs, the claim is proved.

To complete the proof of the lemma observe that S Π Sg is either
empty or S for every g in G. By the transitivity of G on Γ, the
translates of S partition T into disjoint order isomorphic classes, each
containing no more than Rr elements. Since β is the number of
distinct classes, the result follows.

LEMMA 4.4. For Ce

Proof. The map K-+FI (G, K) is one-to-one from J^(C) into
by Lemma 3.1 part (ii).

LEMMA 4.5. Suppose Π ^ — 1 where ^£ is the set of maximal
convex l-subgroups of G. Then \G\ ^ max(|Λ|, \P(^(G))\).

Proof. With each positive g in G associate the map g defined
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by (M)g = Mg for each M in ^ . g is a member of Π{G/M\Me
the set theoretic product of the totally ordered sets G/M. The
association g —> g is one-to-one since g Φ h implies gh'1 $ M for some
I e J " which gives Mg Φ Mh. Therefore it is enough to bound
ΠG/M.

\^ I :g \^(G)\ since distinct maximal convex ^-subgroups contain
distinct minimal prime convex Z-subgroups, each of which is full by
Corollary 2.6.

Fix i k f e ^ Let N be n {g^Mgll ^ ge G], H be G/N, T be
G/M and s be Me T. We wish to apply Theorem 4.3 to i ί viewed
as a transitive Z-subgroup of A(T). The stabilizers {Ht\teT} are
conjugates of M and therefore in ^*C In the terminology of Theorem
4.3, βS\^{G)\ and 7 = 1 from which it follows that \GjM\<L
max(|iί|, |J^(G)|). Finally,

\ΠG/M\ £ KG/AO'̂ I ^ max (I Λ |f

A positive member g of G is a strong unit if Cn (G, #) = (?. If
an i-group has a strong unit, then every convex ϊ-subgroup is contained
in a maximal [convex Z-subgroup. For each positive g in G define
L(g) to be Cl ((?, Λf) where M is the intersection of the maximal
convex Z-subgroups of Cn (G, g). Conrad and Bleier point out (dis-
cussion preceding Lemma 2.6 of [1]) that g ί L(g) £ Cn (G, g). This
fact implies that L(g) = Cl (Cn (G, g)9 M). The normality of M in
Cn (G, flr) implies that L(g) is normal in Cn (G, #).

LEMMA 4.6. Le£ g be a positive element of G, and let L(g) be as
above. Then the cardinality of the set of cosets of L(g) in Cl (G, g)
is bounded by max(\R\, \P{^{G))\).

Proof. Let H be Cl (G, g)/L(g). By Lemma 4.5, \H\£
max (I Λ I, \P(J?~(H))\). Since L(g) is closed in Cn (G, g), Corollary 2.7
gives | ^ ( I Γ ) | ^ | ^ ( C n ( G , flf))|. By Lemma 4.4, |^(Cn(G, g)\ ^
| ^ ( G ) ) | . Therefore |jff| ^ max (|Λ|, \P(^(G))\). Consider now a
positive k in Cl (G, #). W e know fc = sup {k A g% \ n = 1, 2, •}, which
implies !/(#)& = sup {L(g)(k Λ ^Λ)} since L(g) is closed in G. By as-
sociating with each coset L(g)k the countable subset {L(g)(k Λ g*)\n =
= 1, 2, •} of H, the result follows.

The next lemma, due to McCleary, is proved in [1].

LEMMA 4.7. Let X be a set of ordered pairs of subgroups of a
group G such that AQB for each pair (A, B) € X, and such that
for all g e G there is a pair (A, B)e X with g e B — A. Then there
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is a one-to-one function taking G into the set theoretic cartesian
product Π{A/B \ (A, B)e X), where A/B is the set of cosets of B
in A.

THEOREM 4.8. For any l-group G, \G\^ max(|i?|, \P(^{G))\).

Proof. Take {(Cl (G, g), L{g))\l < ge G} to be X in McCleary's
lemma. Since the number of such pairs is at most \St~(G)\2, the
theorem follows from Lemma 4.6.

COROLLARY 4.9. For any l-group G, \G\ ^ max(|Λ|, |P2(G))|).

Proof. Since every full convex ϊ-subgroup is a union of closed
convex ^-subgroups, \3T(G)\ ^ \^~(G)\ ^

By a standard induction argument we arrive at the main result:

THEOREM 4.10. Suppose U is a class of I-groups with the pro-
perty that the union of any set of members of U totally ordered by
< (α*-extension) is itself a member of U. Then every l-group of U
has an f-closure (α*-closure) relative to U.

Some examples of important classes to which the preceding
theorem applies are: the class of all ί-groups, the class of abelian
Z-groups, the class of archimedean Z-groups, the class of normal-
valued Z-groups, and the class of representable ϊ-groups.
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