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A RADON NIKODYM THEOREM FOR WEIGHTS
ON VON NEUMANN ALGEBRAS

A. VAN DEALE

Let ¢ and ¥ be normal positive linear functionals on a von
Neumann algebra M such that ¥ < ¢. Sakai proved the ex-
istence of a unique element 2€ M with 0 < 7 <1 such that
¥(x) = 3¢(hx + xh) for any xe€ M. A generalization of this
theorem is obtained for weights on von Neumann algebras. Let
¢ be a faithful normal semi-finite weight and ¥ any weight on
M majorized by ¢. Then there is a2 unique element 2 e M with
0=<Rh =1 such that ¥(z) =%¢(hx + xh) holds for z in a s-weakly
dense *-subalgebra of M. A stronger version is obtained when
9 is assumed to be a normal positive linear functional. More-
over counterexamples are given to show that in general one
can not expect this relation to hold for every xzc M.

1. Introduction. Let M be a von Neumann algebra with a
faithful normal state @. Sakai proved that for any positive linear
functional 4+ on M such that + < @ there exists a unique element
he M such that (x) = 3@(hx + xh) for all xe M [6]. In [10] we
established the relationship of this Radon Nikodym theorem with the
Tomita-Takesaki theory for von Neumann algebras with a separating
and cyclic vector. In fact in this paper we showed that from a slight
generalization of Sakai’s theorem, it follows that the resolvent (4 — w)™
of the modular operator 4 associated with a separating and cyeclic
vector &, for M, maps the set M'g, into M%, for any w e C with || =1
and w =+ 1.

Combes has shown [2] that with every faithful normal semi-finite
weight ® on a von Neumann algebra M is canonically associated a
left Hilbert algebra. In this paper we use some of the techniques
introduced in [9,10] and the Tomita-Takesaki theory to obtain a
generalization of Sakai’s Radon Nikodym theorem for weights. If +»
is any weight majorized by @ we construct a Radon Nikodym deriva-
tive he M with 0 < h < 1. If _#, denotes the subalgebra spanned
by the set {xe M*, ¢(x) < «} we prove that xh + hx e _#, for any «
in a certain o-weakly dense *-subalgebra of M and that (x) =
3o(hx + xh). Moreover we give a counterexample to show that in
general we can not expect that xh + hxe _#, for any x e _#, so that
@(hx + xh) would not even be defined.

If 4 would be invariant with respect to the modular automor-
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phism group associated with @ we would obtain that also the Radon
Nikodym derivative » would be invariant so that @(hx) = @(xh) for
any x€.#, and our result would follow from the one of Pedersen
and Takesaki [5]. However in this case they obtain much stronger
results: they show that the equality ¥ (x) = @(hx) holds for all xe M-,
in some sense, and that a similar result is true even when + is not
majorized by ®. So the theorem of Pedersen and Takesaki compares
two normal semi-finite weights on the whole of M* under the assump-
tion that one is invariant with respect to the modular automorphisms
of the other. Our theorem requires no such condition but assumes
that ¥ < @ and relates the weights only on a dense subalgebra.

For the theory of von Neumann algebras we refer to [4, 6], for
the one of left Hilbert algebras to [7, 9], for weights to [1, 8], and
for the connection between the last two to [2, 8]. This work was
initiated while I was a guest of Prof. J. Ringrose at the University
of Newcastle upon Tyne. It was completed during my stay at the
University of Pennsylvania and I would like to express my thanks
to Prof. R.V. Kadison for his kind hospitality. I am also indebted
to Dr. A. Connes who provided the essential idea (Lemma 2.6) for
the counterexample.

2. Some operator equations. Let 4 be a nonsingular positive
self-adjoint operator on a Hilbert space 24, In this section we will
obtain some operator equations very similar and closely related to
those obtained in [9, 10]. There we expressed 4%(4 — w)™ for we
C\[0, =) as an integral

+co
474 = oy =" p(oysat
where f is a nice L,-function on R, the integral being defined in the
strong operator topology. In some sense we also treated the ana-

logue of this relation for the operators a,: x € B(5#) — 4*x4~* instead
of 4%.

In this paper we are concerned with the operator (4 — 1)(4 + 1)
We also express it in terms of the unitaries 4. The main difference,
which turns out to imply the main difficulties in this paper, is that
the corresponding function on R is not anymore an L,-function. We
have to use principle values. We show at the end of this section
that in this case the analogue with the o, in general does not define
a bounded operator on B(S#°) anymore. And it is precisely this
trouble that causes the Radon Nikodym theorem only to hold on a
dense subset.



A RADON NIKODYM THEOREM 529

In this section, a part from 4, we also fix any element z, € B(Z#)
with 0 < x, < 1 and we define h e B(=#) by

+oo 2 i .

S T
—o erzt + e nt

in the strong operator topology. It is clear that & is positive. In

fact, as

S+°° 2 _gt=1

—w g7t - g7

we get also 0 <k =< 1. For more details we refer to [9,10]. The
last equality can e.g. be obtained by the analytic function method of
[9.10] or by replacing 4 =1 and » =1 in [9, Lemma 4.3]

NoTATIONS 2.1. By o we denote the real function on R\{0} with
values
2
o(t) = o
The function is odd and has a singularity at t = 0. For any bounded
continuous function f: R — C we will write

P o0rtyat = g

—o0

where ¢ € C when the limit of

| e@rwat + |" o7t = | o) @) — £(—that

exists when ¢— 0 and is equal to q. In other words P stands for
the principle value of the integral. Similar notations will be used
for functions f of R to 5# or B(S#) in which case the topology on
7 or B(S#) will be specified.

LEMMA 2.2. If € 2(47"%) and ne 2(4"%) we have
P S o)L, A5, M)dt = i(hA™E, £77) — i, 7) -

Proof. As &e 27(47V%) the function a € C— 4% is analytic inside
and bounded and continuous on the strip —3 < Rea < 0 [5, Lemma
3.2]. Similarly, as 7€ <7(4"?) the function o€ C— 4%y is analytic
inside and bounded and continuous on the strip 0 < Rea £ 3. The
norm topology on 57 is considered. A little thought shows that the
function
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z2eC— (wOA-—izA—-qu’ A—izdl/zv)

is defined, bounded and continuous on the strip 0 < Imz < 1 and also
analytic inside. On the other hand, the function z € C— 2(¢™* + ¢™**)*
is also analytic and continuous on this strip, except at the point
2z = 1/2 where there is a pole with residu (77)™'. Moreover this
function tends to zero when z-— c on this strip. Therefore by
integrating along the boundary we obtain

+oo
S_ em f e_” (xod—itd—uzs’ A'“Amﬁ)dt

= P[220 (v, a4 (ad, )

—oo 61rt —_ 6—-zt

and the lemma follows from the definitions of h and of p.

LEMMA 2.3.

+o0 . A—'l
PS 1) Aot =
__P@) )

in the stromg operator topology.

Proof. Take first £e &7(4"%) and apply the same method as in
Lemma 2.2 with the function

2eC—s—2 g,

6 z + e—ﬁz
We obtain
+oo 2 o +oo (_21:) .
— = AFAVEE = PS — = A%edt +
S—oo eﬂ.'t + e—n:t 5 o ent — e-m 5 E

in the strong operator topology.
From [9, 10] we know that

vz +oo )
el W R
in the strong operator topology.
So that
i Az_f —e=P Si: o(t)dedt + iz
or
4-1

™ o(t)4edt .
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Replacing 4 by 47 we obtain for any ne =(47%)

Al-—l »
A4~
i = P ot)a-yat

+°° N
- —PS o(t) Ayt

by a change of variable. Again

41—1_ _4-1
Iyl 4+1

so that

;4= )
PS B At .
) ly= o) 4*7)
This now holds for any e =2 (4"*) and 7e =7 (47"%). Therefore by
linearity it holds for ne =(4'*) + =Z(47"%).
Finally the formula

1 1 1
- 1+ 47 + 1+ 47 1+ 4 + 1+ 4

—o0

shows that 5 = o7(4*) + =(47"*) and the proof is complete.
LEMMA 2.4. If &€ <r(log 4) then
P Si: o)Lz, Edt
exists. If moreover &€ 2 (47%) then hd™*& e 7 (4"%) and
A AE — g = —@PS o(8) Ltw d—2dt .
Proof. Assume first that ¢ e &(log 4). Then
Argg 474 = Li'pg + Aitg (47 — 1)& .

From Lemma 2.3 we know that PSJm o(t) 4 x,Ede exists. As fe
F(log 4) we have that

o gt e 2t (41
o a(a = g = —E g (L= Le)

is continuous at the point £ = 0 in the norm topology. So it is con-
tinuous everywhere and as it tends fast to zero at infinity it is
integrable. The combination of the two results yields the first state-
ment of the lemma. To prove the second statement, assume that
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also ¢ 27(47%) and take any ne <7(4*). Then we have
+oo . .
(P oy maear, 7)

+o0
= P o(t)amag, myae
= i(hd, 47) — (o, 7)

using Lemma 2.2. This shows, as 4“? is self-adjoint, that h4 Y% ¢
9(4"*) and

+

" o) Srw,dedt .

A“zhd_ws — x,f = _,LPS

We will now proceed to show that in general one can not expect

Lemma 2.4 to hold for any &€ 2# This result will provide a counter-
example in §4.

LEMMA 2.5. Suppose that for any £ 57 there is a vector Y&
+oo
such that y& = PS o) Litw, 4~ Edt in the weak topology. Then y is

a bounded linear operator on 5%,
Proof. For any &, ne 57 we have

we, m) = P| oo, m)as
= P o(te, 4*manpat
= (& ym)

where we use the fact that o is real and x, self adjoint. Therefore
y is symmetric and has a closed extension which is y again because
it is everywhere defined. By the closed graph theorem y is continuous.

LEMMA 2.6. There exists a Hilbert space 57, a positive non-
singular self-adjoint operator 4 in S# and o positive operator x, <
B(S#) such that the map

+

£ e o (log 4) — PS " o(t) St A edt

18 mot continuous.

Proof. Take 57 = L,(R) and let 4 be defined by
(£¢)(s) = &(s —t)  for se Ly(R).
Let x, be defined by (x,£)(s) = g(s)&(s) where
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9(s) =1 when s < 0
and
g(s) =0 when s =90.
For any &e L,(R) we have
(4*2,475E)(s) = (md*E)(s — 1)
= g(s — t)(47%E)(s — t)
= g(s — t)&(s) .
For any 7e¢ L(R) and &e =2 (log 4) we have

P p(t)a a7, mydt
= " oty ma — s s, mpat
= {"ow([” tats = ) — s + De(s s )t .

It follows from Lemma 2.4 that this integral always exists for any
7 € L(R).

If we multiply » with a suitable function of modulus one, the
integrand would become positive and the integral would still exist.
Therefore the integral converges absolutely and we may apply Fubini’s
theorem. Then

P| " (e aaig, pat
€T (96 = 1) = g + Ohe(tit)ds

Y(8)E(s)7(s)ds

S‘Foo
S+oo
where

w(s) = STI o(t)dt = r 2 4.

1sl ent — 6—7rt

As p(t) behaves like ¢™* for small ¢, it is not integrable and
therefore + is not bounded. It is easily seen that in this case the
integral cannot be continuous on ¢ € < (log 4).

Consider the functions

£.(t) =V 'n exp —(nt) .

Clearly &, is analytic for 4" and therefore belongs to < (log 4). More-
+oo
over || £,|| is independent of % while S V(s)&,(s)n(s)ds clearly tends
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to o because 4 is not bounded at the origin when 7 is e.g. not zero
in a neighborhood of s = 0.

3. The main theorem. Let @ be a faithful normal weight on
a von Neumann algebra M. The set 4, = {xe M| P(z*x) < ~} is a
o-weakly dense left ideal of M. The subalgebra _#, = A4* 15 is
spanned by its positive elements _#Z," and _#," = {xe M| p(x) < o}.
Therefore @ can be uniquely extended to a linear functional on _~7,,
still denoted by . The set 7% is a pre-Hilbertspace with the scalar
product (x, ¥) = ®(y*x). The completion is denoted by 5#,. The map
x € Ny —Yxr € 4, is continuous with respect to the inner product and
therefore can be extended to a bounded operator 7w, (y) on S7,. It
follows that =, is a *-representation, and from the normality of @
that 7, is normal. In fact 7, is an isomorphism. The subalgebra
AN Ap* turns out to be an achieved left Hilbert algebra with left
von Neumann algebra z,(M).

For more detailed information and proofs we refer to the works
of Combes [1, 2] and Takesaki [8]. The results in this section are
heavily based on the relationship between weights and left Hilbert
algebras as described above.

THEOREM 3.1. Let @ be a faithful mormal semifinite weight on
a von Neumann algebra M. There exists a o-weakly dense *-sub-
algebra M, of M such that for amy weight v on M majorized by @
there is an element he M with 0 < h < 1 such that xh + hx € _#, for
any x€ M, and y(x) = 3P(xh + hx).

Proof. Without loss of generality we may assume that M is the
left von Neumann algebra (.%) of an achieved left Hilbert algebra
. and that @ is the canonical weight on #°(.%7). Then for any &,
ne . we have m(&)) e _~, and

P(r(En) = (1, &) .

Given any other weight 4 such that (x) < @(x) for any xe M*,

there exists an element x)e M’ such that 0 < 2} <1 and
P(m(6%€)) = (xié, &)

for any e .o/ [1].
Define

x, = JugJ

and

+o 2 . .
h= S o A
—w € e
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where J and 4 are the cannonical involution and the modular operator
of %% Then 2, and h are in M*. For any £c.v N 2(og 4=
(4" N 2(log 4) we have JE e 2(47V*) N 2(log 4) as J4J = 47 and
J(log 4)J = —log 4. Therefore we can apply Lemma 2.4 to obtain
that

hA-x/ZJE c 9([1”2)
and that

ShSe = JAhA-2JE = JuJE — iP S“" o(t)T ditz, A= Jedt .
So

(ShSe, &) = (JaJe, £) — iP S”’ o)L e T, &)dt .

As x, = JwyJ and x; is positive it follows that
Re (ShS¢, &) = (JuoJ§, §) = (wi§, &) .
Next we show that hS& € .o~ Therefore take 7€ .27’ and consider
T'(MhSE = h'(9)SE = hr(§)*7 .

Knowing that also hS& e =(S) we obtain hS¢ e .o and w(hS¢) = hm(&)*.
Then

(@, €) = Re(ShS¢, &)
= Re ¢(x(£)*7(ShS¢))
= Re P(n(§)*n(hS§)*)
= Rep(x(§)*n()h) .

So y(w(£%)) = 3P(r (&R + hr(£%)).

To complete the proof, observe that for any £¢ .9, the Tomita
algebra associated with .o we have £e€ or(log 4). Moreover 7(.8%)
as well as 7(.9%)* generate (.%7). Therefore with M, = n(.4)* we
obtain xh + hx e 4, for x € M, and y(x) = 3P(hx + xh).

In §4 we will obtain a counterexample showing that in general
one cannot expect that ah + hx e _#, for any x € _#,, so that certainly
¥(x) = 3@(hx + xh) will not make sense for some xe M™.

Under some conditions we can show that & is unique. Suppose
e.g. that h, € M with h, = h} and satisfies the properties h, 4 < &
and ¥(x) = 3@(hx + xh,) for all xew(.9%4):. Then we can show that
h, = h. Indeed for any &e .o we have

P(7(£*%)) = 3P(w(E*)h, + h,(5%))
= Re (Sh, S¢, ¢)
= Re(ShSg, &) .
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When we put ¢ = J(h — h,)J then

(ad¢, 47728) = —(ad™%, 4%)
and by linearity

(ady, 47%) = —(ad™", 42)

for any &, ne . Clearly 472,94 = .94 and therefore (42 + 47%).%% =
(1 + 4)4 is dense [7]. As in [9, Lemma 3.3] it follows that the
above relation then holds for any & ne 2(4')N 2(47%) and in a
similar way that a = 0.

In the case where v is a normal positive linear functional one
can obtain a better result, and it is not necessary to use the results
of §2.

THEOREM 3.2. Let @ be a faithful normal semi-finite weight on
a von Neumann algebra M. For every normal positive linear func-
tional f on M majorized by P there is a unique element h € _#, with
0<h=1 such that

f(x) = ip(ha + xh) for all xe 45N NF.

Proof. Again we may assume that M is the left von Neumann
algebra of an achieved left Hilbert algebra .27 and that @ is the
canonical weight on M. As f is now continuous there is a vector
ac5” and an operator xoe M’ with 0 < z; <1 such that f(x) =
(za, @) for all x € M and z;"*n = n(P)e for all e .4 [1, 2]. So ac .’
and 7'(a¢) = 2;**. Then 8 = xi"’a € "’ and FB = g and 7'(B8) = x.

Put & = 2/(4 + 1)B, then e % [7,9]. From the fact that
FpR = B and J4J = 47 it follows that Sg, = &,.

For any £e€.%7 we have

f(@(§) = (@($)a, a)
= (7%, @)
= (§, 2"a)
= 8)
= 3(§, 4&) + 3(&, &)
= 3(§, FS&) + 3(¢, &)
= 3(&, S&) + 3(¢, &)
= 3P(n(&)7(&) + (&) (8)) .
As () = A4, N A* we get for any xe. ;N 4% that f(x) =
3P(xh + hx) where h = 7(&,).
To continue the proof of our theorem we show that he._#, and
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that 0 < h £ 1.
As h = 7(&,) and &, € 7 with S&, = &, it is clear that he 4, N A5*
and h = h*.
Now
2

= JA4
: A—I—lB

+oo 2
—e eﬂt + e—?l’l

4*Jpdt 9, 10] .
It follows that

+oo .
h=a) = | —En(aIg)at

e 2 it Tt —it
S_wmd Jr'(B) T4~ dt

+oo 2
o e;rt + e—xt

AT J A7 dt .

As 0 < z) <1 it again follows that 0 < h < 1. Moreover

P(h) = p(JuyJ) = (Ja, Ja) < o

by the invariance and the normality of @. Therefore he _#,.
To finish the proof we must show that & is unique. So suppose
h,e #,, h, = h¥ and

f(x) = tp(hx + xh,) for any xe ;N A*.

Let h, = h, — h and &, € .o~ such that 7(¢,) = h,. Then ®P(h,x + zh,) = 0
for any x € #;N _#5* and therefore (&, &) + (&, S&) = 0 for any e &%
As &, = 8¢, this would imply —(&, &) = (S&, S&) = 0 for all £e.7 and
S¢, e 2/ (F) with FS§ = —¢,. This would imply & =0 as 4= FS is
positive.

In the next section we will give an example to show that also
in this case one can not hope that in general f(x) = 3®(hx + xh) for
all xe M.

4. Two counterexamples. In this section we will obtain counter-
examples to show that the Theorem 3.1 and 3.2 are the best possible
in some sense. In connection with Theorem 8.1 we will construct
two faithful normal semifinite weights ¥ and ¥ on a von Neumann
algebra M with ¥ < # and an element x € _#, such that hx + 2h ¢ _#,
where h is the Radon Nikodym derivative. This will show that in
general one can not expect Theorem 3.1 to hold for every xzec. 4.
In the case of Theorem 3.2 we will show that there is a faithful
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normal semi-finite weight # on a von Neumann algebra M and an
x e M such that zh + hx¢ _#, for any he _#, Therefore Theorem
3.2 will not hold for all xe M in general.

Let 27" be a Hilbert space, and k a positive nonsmgular self
adjoint operator in 9% Let x, be any positive operator in B(5%").
As before define

+o0 2 . .
b= S ke

The following lemma is closely related to Lemma 2.5.

LEMMA 4.1. With the above notations, suppose that for any &€
(k%) we have hk™*¢c 2(k'*) and fo'r any Ne 2(k"?) we have

hkV*ne (k™) then ¢ € 2(log k) — S o)k x k™ edt 1s continuous.

Proof. Define two operators a, and a, by

ag = KRk — 2, for £e (k™)
a.E = __k—uzhkuzé + x,8 for te @'(k”z) .

If ce (k") N 2 (k") then &e o (log k) and
af = —iPSM o(6) k" edit

by Lemma 2.4.
Similarly, by replacing & by k™' we obtain

g = —iPS+°° otz Joedt

—o00

(Remark that k remains unchanged.) And by a change of variable
aé = @ .

As o = (k") + 2(k"*) and 0. = a,f for € (k) N 2(k™7)
we can define an operator a on %" by a(& + &) = @& + a,&, where
g e k) and & e (k).

We will now prove that a is continuous by showing that the
restriction of —a to 2(k*) N =2(k™*) is contained in the adjoint of
o so that a is closed and everywhere defined.

So take

nezE )N 2k, tez(k™)
then
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(—an, &) = (—a, &)
= (k"hk", &) — (247, &)
= (hk'*y, k™%8) — (a7, &)
= (K", hk™%€) — (@, &)
= (1, K"*hk™*€) — (7, %,8)
= (7, @) = (7, ad) .

Similarly (—a7, &) = (1, aé) for & e =r(k'?) and therefore for all £ 227
Finally take &ée 22(k™*) N = (log k), then

af = a& = —iP S“" o(t)kta k—edt

and similarly for &e =2r(k'?) N =r(log k).
As again

2(og k) = 2(logk)N 2k + 2(og k) N (k") .

The equality holds for any &€ <r(log k). Therefore the lemma follows
from the continuity of «a.
If we combine the previous result with Lemma 2.6 we get,

replacing k& by k™' if necessary:

LEMMA 4.2. There exists o Hilbert space 22, a positive non-
singular self adjoint operator k im 9%, an element x,€B(F%") with
0= 2, =1 and a vector & € = (k™*) such that hk™*&, ¢ (% "*) where

+oo 2 X .

h= S 2 ks
—oo 6n’t + e Tt

In what follows °%; k, x, and & will be objects satisfying the condi-

tions of this lemma.

Let M = B(¢") and let » be the faithful normal weight Tr(k-)
as defined in [5]. We will consider the rank one operators in M and
we will use the tensor product notation. So for any & ne. % the
operator £ Q 7 is defined by

¢E® Ny, = (1, N)é for n,e 27 .
LeMMA 4.3. Let & ne 227 Then EQne #, iff & ne 2(k"™).

Proof. Take first & € 22" and ne D(k"*) and put v = £,®7. Then
*=7Q¢ and z*x = (&, &) @ . As in [5] let k. = k(1 + ck)™.
Then ka*z = (&, &)k ® 7 and Trk.(e*x) = (&, &)k, 7).

By definition
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P(x*x) = sup Tr (k.x*x)
= (&, &) sup (k7), 7)
= (&, &) sup (1 + ek)7'k", B7)

So p(z*z) = (&, &)K™), k'*n) and xz e 1.
So if & ne 2(k"?) then

EXN=(EQX*(5®7n)  when ||&] =1

so that £ QR e I* N, = A,
Conversely suppose £ Q 7€ .#,. Then &Xn e _+; and the previous
computation shows that

sup (B, ) < oo .

This clearly implies that 7€ =7 (k"?). On the other hand .#,< 45*
so that 7 ® &e _+; and £ e (k3.

THEOREM 4.4. There exist a von Neumann algebra M, two faith-
ful normal semi-finite weights v and ® on M with + £ @, and an
element x € _#, such that hx + xh & _#, where h is the Radon Nikodym
derivative obtained in Theorem 3.1.

Proof. Let M and @ be as before. Consider elements x, € B(2")
and & €.% as in Lemma 4.2.

Replacing «, by 3 + ix, we may assume that $ <, < 1. Indeed
this would induce the replacement of # by 3 + 3k and (3 + 3R)k™%&, =
k7V2e, + dhkTVE ¢ 2(KY*) as hk™V?&,¢ 2(kY?). This little modification
will make sure that our weight 4 will be normal and faithful.

Let & = k7%, then & e 22(k'®) but hé ¢ (kY. Take also 7, €
(k) N =2(log k), and put n», = k™*n,. Then 7, ¢ 2(k**) and h7, €
@'(k”z).

If x =7 ®E§E then clearly by Lemma 4.3 we have x€ _#,, hx =
), Q& e #, while ah = 9, @ hé ¢ _#, and therefore hx + wh & _#7,.
Therefore to prove the theorem it will be sufficient to find a faithful
normal semi-finite weight + on M such that ¥ < @ and & is the Radon
Nikodym derivative.

For this purpose we assume again that M is identified with the
left von Neumann algebra &°(.%) of an achieved left Hilbert algebra
& and that @ is the canonical weight on (). If J is the
canonical involution then « defined on M+ by () = (Jx,JE, £ when
x = m(£%) with £e .97 and y(x) = «~ otherwise, defines a weight on
M. The proof is essentially the same as for the canonical weight [2].
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It is clear that i < ¢+ < ® as $§ <, <1 and that & is the Radon

Nikodym derivative since the modular automorphisms are given by

o(x) = k*zk™* [5, Theorem 4.6]. It is also clear that ¥ is faithful

and semi-finite. Therefore it remains to show that ¥ is normal.
Suppose we can show that z, is the upper bound of an increasing

net of positive elements {z,} in _#,". For any a we have 2/’ 75 N

A = n() so there exists a vector &, €. such that z* = w(&,).
Then

U (m(&%€)) = (JxJE, &)

sup (Jz.J¢, €)

= sup (@2 JE, a2 JE)

= Sup (7'(JE)e, T'(JE)E0)
Sup (w(§%8)Ee, JEo) -

It follows that 4 is the upper envelope on _#," of normal positive
linear functionals majorized by + on _#,". On the other hand ® is
normal and so is the upper envelope of normal positive linear func-
tionals on M*. As i@ < + the supremium of the values of the normal
positive linear functionals majorized by ¥ in M*\_#," is <. There-
fore + is the upper envelope on all of M* of normal positive linear
functionals, so that + is normal.

It remains to show that x, is the upper bound of an increasing
net of positive elements {x,} in _#" .

Consider the left ideal .#; of M generated by the rank one
operators & & x;?¢, where & e 2(k'?) and & e .27 Those operators
are clearly norm dense in the finite rank operators and hence .77 is
o-weakly dense. By [3, Lemma 2.3] there is an increasing net x, in
(A5*A5)T with supremum 1.

Then z, = sup, 2, X ,;* and as 22 45*S _4.* we have x,3 X &% €
NFN o = Ay

Finally we turn our attention to Theorem 3.2.

THEOREM 4.5. There exists a von Neumann algebra M, and a
faithful normal semifinite weight ® on M and an element x € M such
that xh + hx ¢ _#, for any he _#,. So in general Theorem 3.2 will
not hold for all xe M.

Proof. Let M and ® be as in Theorem 4.4. Take &€ 2(k"?) and
ne 2(k?) and put = £® 7. Then x e _7;* so that xh € _#, because
of Lemma 4.3. Therefore hx + xh ¢ _#,.
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