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THE SOLUTION OF SINGULAR EQUATIONS,
I: LINEAR EQUATIONS IN HILBERT SPACE

THOMAS I. SEIDMAN

The theorem on which this paper is based is an easy
generalization of the fact that the nullspace of an operator
is the orthocomplement of (the closure of) the range of its
adjoint. Its significance, here, is the observation that this
may be applied to give a computationally feasible algorithm
for the problem of the title.

Consider a pair of hilbert spaces U, V and a linear transformation
A: U-+V. For any b in the range of A there is, by definition, a
solution of the equation:

(1) Ax = b .

It is specifically not assumed here that the range of A is closed in
V so, in general, the solution cannot be taken to depend continuously
on b. Since, in many contexts, the inhomogeneous term b is known
only through 'measurement' hence, only to 'arbitrary but finite'
accuracy this lack of continuous dependence has heretofore been
taken to preclude useful computation; see, e.g., Hadamard's discussion
of a 'well-posed' problem [4]. There has been, however, considerable
interest (some references are noted in § 5) in computational approaches
to various problems which are ill-posed in Hadamard's sense. Even
for well-posed problems it has proved desirable to distinguish in
principle (cf. [9], p. 224) between the notions of solvability (existence)
and approximation-solvability (obtaining a solution — granting solva-
bility — as a limit of solutions of finite dimensional problems).

Numerous examples of such singular situations as we consider
might easily be adduced at this point: the backward heat equation,
integral equations of the first kind, analytic continuation, inversion
of the Laplace transform, etc. The particular application through
which the author came to the algorithm described here concerned
synthesis of a boundary null-control for the heat equation. This has
already been discussed in greater detail elsewhere [2] but will be
treated briefly here §6 as an example. The author would like to
dedicate this paper to the memory of W. C. Chewning, who initiated
that work, with thanks and in regret for his untimely death.

2* Basic theorem* We consider the following general setting:
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— a pair of hilbert spaces U, V,

— a densely defined linear map A: DczU-+V,

— an element b e R(A) so 6 — Ax* for some x*e D ,

— a subspace Y of D* (the domain of the adjoint A*).

We let X be the closure in U of A*Y and let

S= {xeD: (Ax - δ) ± Γ}, S' - {xe U: (A*y, x) = (y, b) for yeY} .

Let P be the orthoprojection onto X.

REMARKS. (1) It is important for the argument below that U
be a hilbert space but, with minor (notational) modifications, V may
be more general. A further generalization of the algorithm to be
presented applies when U is also more general (a uniformly convex
banach space) but this requires a more subtle convergence argument
and will be discussed elsewhere [12].

(2) If, as is the case in each of the examples adduced above,
the transformation A is continuous, one has D = £7 and D* = F*(= V)
so the restriction: Ya D* is automatically satisfied, as is the condition:
XdD which appears in the Theorem below.

THEOREM I. Let the setting be as described above. Then the
following are equivalent:

( i ) x = Px*,
(ii) x is the nearest point in X to the solution x*,
(iii) ίGlίlS',
(iv) x has minimal norm in S\

If XaD, then S' may be replaced by S in (iii), (iv).

Proof. The equivalence of (i), (ii) is standard. Observe that
x*eSaS' and that S' is a translate (e.g., by x*) of the closed sub-
space X1( = (A*Y)± since A*Y is dense in X). Thus,

( 3 ) S' - x* + X1 , S = x* + (X1 n D).

It follows that xeXΓ) S' implies x = Px = Px* so (iii) implies
(i); conversely, Px = x = Px* implies x e S' Π X. This also shows
that (iii) determines a unique point #3(i.e., S' Π X = {#3}); if XaD,
then #3e D and X c S ' = X π S . Now (3) implies that the minimum
of \\x\\ for cce S' is attained for x = xze Xso (iii), (iv) are equivalent.
If XaD, this also shows that | |g| | actually attains a minimum in
S even though S need not be closed.

3* Finite dimensional subspaces* The cases of practical (com-
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putational) importance involve finite dimensional subspaces: Y =
sp{ylf -- ,yn} so X = sp {z19 ••-,£*} w i t h z3 = A*yd f o r e a c h j .

It will be apparent that there is no loss of generality in assuming
Y is such that {zlf ••-,£„} is linearly independent: i.e., the restriction
of A* to Y is nonsingular. It is now computationally easiest to work
with the characterization (iii) of the Theorem — which here reduces
to the finite set of conditions for x e X:

( 4) (zd9 x) = (yd9 b) for j = 1, - , n .

Note that if each zd is in D (each yd in the domain of AA*) s o l c ΰ ,
then (4) is equivalent to:

(4) (yd, Ax - by = 0 f o r j = 1, ...9n .

Expanding x e X with respect to the basis {zl9 •••,£»} (i.e., setting
£ = £i3i + + f »zΛ) the conditions (4) provide n linear equations for
the n unknown coefficients:

Ύ £ -4- . . . -I- Ύ A — /Q' i,i£i ~ ^ Ί , n s » — P i

( 5 ) i

where

ft = (jj, by (j = 1, , ^) .

Thus the matrix G = ((Ύ3,k)) is the Gramian matrix for the basis
K> •••> 3n} of X and is clearly nonsingular.

From the nature of the formulation (5), (6) it is clear that the
point x determined thereby will be stable under small perturbations
of the data and computational imprecisions even though the original
transformation A may be singular. Indeed, it is this consideration
which makes the method a useful approach to singular problems.

4* Solution of singular problems* In applying the discussion
above to the computational solution of a (possibly singular) problem
of the form (1), we consider the following general setting:

— a pair of hilbert spaces U, V,

— a densely defined linear map A: DaU—>V,

— an element 6 e R(A) so b — Ax* for some x* e D ,

— a sequence {y19 y?9 } in the domain of A* .

For j = 1 = 1, 2, we let zd = A*yd and for each n = 1, 2 we
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let Yn = sp{yu , yn}, Xn = sp{z19 , zn) and define α?n as the (unique)
solution in Xn of the conditions (4).

THEOREM II. Let the setting be as above and suppose that A is
closed and that A, {yιy y2, •} are such that N(A) c'sp{z11 z2, -}1 so:

( 7 ) <sif x) = 00' = 1, 2, . . •) — xe N(A) .

Then:
( i ) for each n = 1, 2, the conditions (4) determine a unique

(ii) έΛβ sequence (xlf x2, •••) so defined converges to a limit, x,
(iii) έfeβ ίίmiέ x is in D and satisfies (1) Ax = δ. // JV(A) is

nontrivial, x will be the unique solution of (1) having minimum
norm.

REMARK. Observe that if A is not only closed but continuous,
then the condition: {yά} in D* is automatic and (7) is equivalent to
requiring that sp{N(A*), ylf y2, •} be dense in F(e.g., one might take
{Vι, VZJ •••} to be any (orthonormal) basis for V) so sp{zίy z2, •••} is
dense in R(A*).

Proof (of Theorem II). The unique determination of each xn by
(4) follows from Theorem I and the discussion of the finite dimensional
case. Let Y be the closure in V of UL^(so Y= sp{ylf y29 •}) and
let X be the closure in U of U * ^ ( s o -Σ" = sp{zlf z2, •••}). It follows
from Theorem I that there is a unique point x = Px* (P is the ortho-
projection onto X) satisfying: (A*y, x) = (y, b) for all y e Y and so,
in particular, satisfying (4) for j = 1, 2, Setting x = ( ί — #*),
one has

<sy, x> = <A*2/y, x> - (yi9 Ax*} = 0 (j = 1, 2, . •)

so, from (7), (x — a?*) = a? e iV(A) c i). Since ίr* e D, this means ί e D
and Ax = Ax* = 6. The characterization of ί when -W(A) 7̂  {0} follows
from the characterization (iv) of Theorem I. From the characterization
(ii) in Theorem I, it follows that xn is the nearest point in Xn to x
(we may now take x* = x), so, as \JnXn is dense in N(A)L, one must
have xn —> x.

5* Discussion* A variety of methods have been applied to the
computational solution of ill-posed problems. We mention, in par-
ticular, the papers of Krasnoselskii [5] and Kryanev [6], Tikhonov
'regularization' method [13], [3], the work of Nashed and Wahba [8],
and the methods of Carasso [1] and of Lattes and Lions [7] for
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backward evolution equations. In addition, even in the absence of
theoretical justification there has been extensive use, in computational
practice, of 'standard' approaches — e.g., choosing the approximant
xn to minimize \\Ax — 6|| over a subspace Xn or Galerkin's method —
applied to the solution of ill-posed problems.

We observe here, in comparison with Galerkin's method, that the
presently proposed algorithm has the inconvenience that the approxi-
mating subspaces Xn are not specified directly but are computed by
applying A* to specifiable subspaces Ynf One might, of course, attempt
to reverse this by specifying {z19 •••} and then solving: A*ys = zά

to obtain each ys\ unfortunately, if the original problem is singular
(A'1 unbounded) then each of these equations also involves solution
of a singular problem and, in any case, one would be restricted by
the necessity of taking z3- e R(A*).

Some additional freedom can be introduced by varying the inner
product. If the original <•,•> is replaced by a new inner product
( >•>' — <•> B ) , defined in terms of a given positive operator J5,
then the new adjoint A% is just Br1A* so, now, A*y5 — Bz5. Observe
that, if A itself is positive (a point of relevance of the typical imposition
of monotonicity conditions in connection with the use of Galerkin's
method), then one may take B — A*( = A) and so ys — zό for each j .
It is easily seen that in this case the present method and Galerkin's
method coincide. Needless to say, the xn computed using <•,•>' is
now the best approximant to x* in the sense of the new norm || | | '
and one obtains convergence in U from this only if || | | ' dominates
the original norm, i.e., if B has a bounded inverse. Note that even
if A is not positive one may replace (1) by

(8 ) (A*A)x = 6*

with δ* = A*6 (provided b e D*), which will be equivalent to (1) if
R(A) is dense so A* is injective. One could then work, instead, with
the positive operator A*A.

It will be noted that Theorem II proves convergence but gives
no direct information as to the rate of convergence. All that can be
said about this is given by the characterization of x* as the best
approximant in Xn to the solution x*. If one considers an example
with {z19 z2, •} an orthonormal basis of U and x* = ξxzx + ξfo +
selected appropriately (defining δ), it is clear that convergence can
be arbitrarily slow. To do better, one must know that, for the
particular {ylf y2, •••} considered and under whatever 'regularity'
properties and a priori bounds as may apply to the specific situation
considered, the solution x will be approximable in Xn with satis-
factory accuracy.
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An approach which may be used, on occasion, to provide estimates
of convergence rates is to observe that one often has regularity
conditions in the form of a stronger existence assertion: not only is
b e R(A) but b e R(AC), for some operator C, so x* has the form:
Cu* and (1) is replaced by

( 9 ) (AC)u = b .

Applying the same algorithm to solving this gives zs = (AC)*y5 =
C*Zj and (4) gives

<yi9 &> = <zj, u> = <C*zif u)

= (zJf Cu)

so xn = Cun for each n. If C is compact (it is typically the embedding
operator of one Sobolev space in another), then the convergence of the
sequence guaranteed by Theorem II may provide convergence at a
usefully estimable (e.g., in terms of ||ί6||) rate of the sequence {xn}.
A related approach is used in [3]. Estimation of the convergence
rates for some specific applications will appear elsewhere.

6* An application* Let W be the space of functions w = w(t, ω)
for 0 <*ί 5g T and ωeΩ which satisfy the diffusion equation:

(10) wt =

(p = p(ί, ω) > 0) and for which

(11) z = w(0, ) e L2(Ω), x = w\Σe L2(Σ)

(here, Ω is assumed bounded in Rn with Σ = (0, T) x dΩ smooth). Letting
v = w(T, )eL2(Ω), one has v = Ax + Sz with A: 17= L2(Σ)-+V =
L2(Ω) and S:F—>F both bounded linear transformations; S = Sτ is
the solution operator for the pure initial value problem (i.e., for
homogeneous Dirichlet conditions) and A gives the effect of the boun-
dary data for homogeneous initial conditions.

Given z, v one can view the situation as a control problem and,
in particular, for any ye V one might seek a null-control: a set of
Dirichlet data x e U for which the solution of (10), (11) vanishes at
T(v = 0). This amounts to solving the equation: Ax = b(b = —Sz).
It is known (cf, e.g., [10] or [11]) that R(S)c:R(A) so a solution
exists. Indeed, the map: [y f-> nullcontrol x of minimum norm] is a
bounded linear map: V—»U9 although not directly computationally
accessible while A, S are easily available in standard computational
practice.

Given ye V*(V)9 let u be the solution of the well-posed problem
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(12) -ut = P-pPu , u\Σ = 0, ( )

Then

\ (Ax)y = Γ ί (wu)t
JΩ JO JΩ

= 1 \Ω[V-PVW)U — w(P-pPu)]

— I p[ — wvu + wuv] = I pxuu

J Σ J Σ

Thus A*y = jm^ where %„ e L2(Σ) is the normal derivative of the
solution of (12).

To compute the approximant xn to the desired boundary null-
control x, one would start with {ylf — ,yn}t solve (12) numerically-
using each y3 as data, and compute each z3 = A*y3 — pdu3 /dv. The
Gramian G = (((zjf zk))) can now be obtained by numerical integration
over Σ. To improve the conditioning of the eventual numerical
solution of (5), it may be worthwhile to orthonormalize (approximately)
{zlf •••, zn), reflect the relations of the new basis of Xn to the old in
re-selecting new {yu — ,yn} and then, rather than simply accepting
the orthonormalized {z3), re-computing an (almost) orthonormal basis
{Zι> %n} from {ylf , yn}. The term B = — Sz is similarly obtained
by numerical solution of (10) and (11) with homogeneous boundary
data and then the {β3} computed by numerical integration over Ω.
The resulting system (5) can now be solved to obtain the coefficients
{ξd} and so xn. Note that the computed xn approximates the true xn

as closely as desired provided the numerical solution of (10), (11) and
of (12), the numerical integrations and the solution of (5) are each
with sufficient accuracy and, in turn, this will be a good approximant
to the solution £ if % is large enough. An actual computational
experiment is described in [2].
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