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ON THE GEOMETRY OF NUMERICAL RANGES

MEHDI RADJABALIPOUR AND HEYDAR RADJAVI

A bounded convex set G in the plane is the numerical
range of an operator on a separable Hubert space if G\G°
is a countable union of arcs of conic sections and singletons.
This result answers, in particular, a question raised by Joel
Anderson.

0 Introduction* Throughout this paper T denotes a (bounded
linear) operator on a separable complex Hilber space H. The numeri-
cal range of T, denoted by W{T), is defined as the set of all complex
numbers (Tx\x) with ||α?|| = l. The problem of determining all
(bounded and convex) subsets of the plane which are attainable as
numerical ranges seems to be hard. In fact, the question of attaina-
bility is still unsettled for some very simple sets.

Joel Anderson has made several (still unpublished) contributions
to the subject; they include the following elegant result in the case
where H has finite dimension n: If W{T) is contained in the closed
unit disk and if it intersects the unit circle in more than n points,
then it coincides with the unit disk. Anderson asked whether the
assertion would be true if n were replaced by ^ 0 He asked, in
particular, whether the closed half-disk is attainable as the numerical
range of an operator T; he proved that it is not if T is compact.
See [4]. We shall show, as a corollary of a more general result,
that the closed half-disk is attainable by a rank-one perturbation of
a hermitian operator.

It should be noted, parhaps, that if the space has dimension ^2*°
then every bounded convex subset of the plane is the numerical range
of a normal operator [5]. The fact that this is not true in the
separable case is well known and easily demonstrated by a cardinality
argument. In fact, if G is any convex open set whose closure con-
tains uncountably many extreme points, then there exist convex sets
with interior G which are not attainable. No concrete examples of
non-attainable bounded convex sets are known to us. It is proved
in this paper that a convex set G is the numerical range of an oper-
ator T if G\G° = Eo U Elf where Eo is countable and E1 is a union of
quadratic arcs.

We are grateful to J. Bastian and P. Fillmore for stimulating
conversations.

1* Preliminaries* Let G be a convex set in the plane and let
λ be in the boundary of G. A line L is called a support of G at λ

507



508 M. RADJABALIPOUR AND H. RADJAVI

if λ G L and G lies in one of the closed half-planes determined by L.
A point λ 6 G is called an extreme point of G if λ does not belong
to any open line segment lying in W(T). An extreme point λ of G
is called a sharp point oί G iί G has more than one support at λ.
(We use the notations G~ and G° for the closure and the interior of
a set G, respectively.)

We will make use of the following Theorems A — E. Most of
them are known; we have included the references wherever possible
and have provided proofs otherwise.

THEOREM A. The numerical range W(T) of T is convex and
W(aT + b) = aW(T) + b for all complex numbers a and b. Moreover
if P is an arbitrary nonzero projection, then W(PT\ PH) QW(T).
(See [3, Problem 166] and the references cited there.)

THEOREM B. Let Xbea sharp point of W(T). Then Γ = S φ λ J ,
where λg W(S)s. (See [1, Theorem 1].)

THEOREM G. Let T be the direct sum of any family {Γα}αeJ of
operators. Then W(T) = Co(\Ja,j W(Ta)). (Here Co(G) denotes the
convex hull of a set G.)

The proof follows from the fact that if G is a convex set and
if {λj is a sequence in G, then Σ ai\ £ G for all sequences {a%) of
nonnegative numbers satisfying X at = 1.

The following theorem is a combination of the results of [2] and
[6]. We leave the proof to the reader.

THEOREM D. Let T be hyponormal and let L be a support of
W(T). Then the set

M= {xeH:(Tx\x) = λ | | # | | 2 for some XeL}

is a reducing (trivial or nontrivial) invariant subspace of T and
W(T\M)QL. In particular W(T)\W(T)° = Eo U Elf where Eo is a
countable set and Ex is a conntable union of (not necessarily closed)
line segments. Moreover if W(T)\W(T)° Φ 0 , then T has a non-
trivial normal part.

The following theorem can be regarded as a converse to Theorem
D.

THEOREM E. Let G be a convex set with countably many extreme
points. Then there exists a normal operator T such that W(T) = G.
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Proof. It follows from the assumption on G that

G\G° = U Ea ,
aeJ

where J is a (possibly empty) countable index set and where Ea is
either a singleton or a line segment (aeJ). Let Ta be a normal
operator with numerical range Ea and let Mz be the multiplication
by z in L2(G, dαά^). In view of Theorems C and D, W(MZ0Σ^Θ
Ta) = <?. (Note that the numerical range of Mz is G°.)

2* Main results* In what follows a quadratic arc means a (not
necessarily closed) smooth subarc of a conic section.

THEOREM 1. Let G be any closed region whose boundary con-
sists of a closed line segment L and a closed quadratic arc C. Then
there exists an operator T with the following properties:

( i ) T is irreducible,
(ii) T = A + B where W(A) C L and B is a normal operator

of rank 1,
(iii) W(T) = G\(LnC).

Proof. In view of Theorem A we can assume, without loss of
generality, that L is the closed real interval [ — 2,2] and C lies in
the upper half plane. Let (a, β) be the point on C at which the
tangent to C is parallel to the #-axis. It is easy to verify that the
equation of an arbitrary conic section having the above properties is
given by the formula

(1) βx2 + bβy2 - 2axy + (4 + α2 - bβ2)y - 4/9 = 0 ,

where

b > {a2 -

(The latter inequality follows from the fact that β is the maximum
ordinate on the arc C.)

Let 7 = (l/2)(6/32 - a2 + 4)1/2. Let H be a Hubert space with an
orthonormal basis {βw}1̂ Λ<0O. Define an operator T as follows:

Teι = {a + βϊ)e^ + Ύe2 , Te2 = Ύe, + e3,

and

Ten = en_, + en+ι for n = 3, 4, .

We claim that T has the required properties (i)-(iii). The first two
properties are easy; we prove only the last one. For te[0,1], let
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Mt be the set of all unit vectors u in H such that | (u \ ej |2 = t. Let
S be the weighted shift defined by Se, = Ύe2 and Sen = en+1 for n =
2, 3, . Let Δt = {2Re(Su \u):ue Mt). Computation shows that the
points of W{T)~~ are determined by the following relations.

[at + inf Δ% ^ x ^ at + sup Δt ,

(V = βt , 0 ^ ί ^ 1 .

Since | (Sw \u) |2 rg (1 - ί)(7aί - ί + 1), it follows that W(T)~ is
a subset of all points {x, y) such that

(βx2 + 6/Ŝ /2 - 2axy + (4 + α2 - 6/S2)̂ / - 4 / 9 ^ 0 ,

(and 0 <^y ^ β .

For ί ^ 0, let λ = ±[(1 - ί)/(l - ί + ^ 20] 1 / 2 and w = ί1/2(βx + λ7e2 + +
Xn'1Ύen +•••)• It is easy to see that || u \\ = 1 and (Su \ u) =
±[(1 - t){ΊH - t + 1)]1/2. Thus the arc

(βx2 + bβy2 - 2axy + (4 + a2 - δ/92)?/ -4/3 = 0 ,

(and 0 < 7/ ^ /3

lies in
Let P be the projection onto the closed span of {e3, e4, •}. Since

(1/2)PT\PH is the real part of a simple shift, W(T) 2 W(PT\PH) =
(-2, 2). Therefore W(T) = G\{-2, 2} because TΓ(Γ) cannot have any
sharp point (see Theorem B).

COROLLARY 1. Let G be a convex set such that G\G° = Eo U Eι

where Eo is a countable set and Ex is a union of quadratic arcs.
Then G is the numerical range of an operator.

The proof is an easy consequence of Theorems C and 1 and the
proof of Theorem E.

3. Remarks on the topology of W(T). ( a ) Although W(T)
may not be closed, there always exists an operator S similar to T
with W(S) closed. The proof follows from the existence [7, Theorem 3]
of an operator F of rank 2 such that 1 + F is invertible and

W((l + Fy^Til + F)) 2 We(T) ,

where We(T) = f| {W(T + K)~: K compact}. Now let S = (1 +
Fy'Til + F). Since W(S) 2 TΓ.(S), it follows from [4, Theorem 1]
that W(S) is closed.

( b ) Let U= {xeH:\\x\\ = 1} and let f(x) = (Tx\x) for xeU.
Obviously / is continuous in norm and W(T)\W(T)° is the image of
the closed set f\dW(T)) under /. This shows that W(T)\W(TY is
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an analytic set. The following question seems to be open: is
W(T)\W(T)° a Borel set? In view of [4, Theorem 1] the answer is
in the affirmative if We(T) has a countable number of extreme points.

(c) Corallary 1 suggests another (probably open) question: is
every compact convex set the numerical range of some operator on
HI The corresponding question on open convex sets is easily answered
in Theorem E.
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