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DOUBLING CHAINS, SINGULAR ELEMENTS AND
HYPER-%2 [-GROUPS

JORGE MARTINEZ

In a lattice-ordered group G a (descending) doubling chain
is a sequence a, > a, > --- > a, > --- of positive elements of
G such that a, =2a,,;. An element 0 < se G is singular if
0 =g =-s implies that g A (s—g)=0. The main theorems are
as follows: 1. The following two statements are equivalent:
(a) every doubling chain in G is finite; (b)) G = U.<. G*(r
ranging over all ordinals less than some a), where G° is an
l-ideal of G, ¢ < = implies that G° = G° and G**!/G* is gener-
ated by its singular elements, (i.e. a Specker group, a la
Conrad). 2. If G is hyper-archimedean as well then either
of the above conditions is equivalent to: (c) G is hyper-%,
i.e. every totally ordered I!-homomeorphic image of G is
cyclic.

The purpose of this investigation was to come up with an
“elementwise” definition of the abelian lattice-ordered groups (hence-
forth abbreviated: I-groups) having the property that each l-homo-
morphic image which is totally ordered is cyclic. These I-groups are
called hyper-%2, and were first introduced by the author in [5].
Thus, G is hyper-2~ if and only if G is abelian and G/P is cyclic,
for each prime subgroup P of G. These l-groups are therefore
hyper-archimedean, and they can in fact be characterized as those
l-groups for which all the prime subgroups are maximal and have
cyclic quotient; (see [3] and [5]). It should be stressed that in this
characterization no assumptions need to be made with respect to
commutativity. In [3] Conrad provided an example of an l-group
which is hyper-archimedean and also a subdirect product of Z, the
additive group of integers with the usual order, yet is not hyper-2~

An element s > 0 of the I-group G is singular provided 0 £ g < s
implies that g A (s — g) = 0. An S-group (or Specker group) is one
in which each positive element is a sum of singular elements. These
S-groups are well explored in [3]; the main characterization is that
each S-group can be embedded as an l-subring of bounded, integer-
valued functions on a set, or alternatively, as an [l-subgroup of
bounded, integer-valued functions generated by characteristic fune-
tions. It was observed in [7] that the S-groups form a torsion class
of l-groups; that is, they are closed under taking convex I-subgroups,
l-homomorphic images, and if G is any l-group, and {C,|re4} a
family of convex l-subgroups which are all S-groups then the convex
l-subgroup they generate is an S-group. There is thus an associated
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S-radical &“(G) of an l-group G, and a “Loewy”-like ascending se-
quence S(G) = (R E -+ & F(G) & --- for each ordinal 7, so that
(a) £2(Q) is the largest convex [l-subgroup of G which is an
S-group.
(b) For any convex l-subgroup 4 of G, 7(4) = AN &F(G).
(¢) If ais a limit ordinal .&7%(G) = U{&(G) |7 < a},
(d) and otherwise $#°(G) is defined by the equation:

F(@)]FHG) = L(G].F7(q) -

Then we are able to define *(G@) = .&°°(G), where 7 is chosen so
that &7 (G) = (@) = ---; such a 7 exists by a simple cardinality
argument. G is said to be an S*-group if &*(G) = G.

We should observe that if G is an S-group, it can be represented
as an l-group of bounded, integer-valued functions, and it is therefore
hyper-2; (see [3]). Examples of hyper-2~ [-groups which are not
S-groups are easy to construct.

In an l-group G, a (descending) doubling chain is a sequence
8, > 8, > ... of positive elements of G so that s, = 2s,,,, for each
n=1,2 -... Notice that the terms of a doubling chain may even-
tually be zero; in such a case it is a finite doubling chain.

We can now state our first result.

THEOREM 1. G is an S*-group if and only if every doubling
chain for G is finite.

Proof. Necessity. The proof proceeds by transfinite induction
on the length of the Loewy sequence of .&#°(G)’s. The first thing
to do is to show an S-group has this property. This is clear, because
if G is an S-group, it can be represented as an I-group of bounded,
integer-valued functions; and there are obviously no infinite doubling
chains of such functions. Next, suppose G = .°%G) and .&“°(G) has
no infinite doubing chains, for each = < a. Suppose by way of con-
tradiction that ¢, >a, > -++- > a, > --- is an infinite doubling chain
for G; if a is a limit ordinal, then a,c .¢7#(G) for some B8 < &, and
hence each a,c .7%(G), contradicting our assumption. If a has a
predecessor, then no a, <€ .5”*(G), and consequently a, + & (G) >
a, + .G > ... is an infinite doubling chain in the S-group
G/~*(G). This again is a contradiction, and we must conclude
that G = .%(@) has no infinite doubling chains; this completes the
proof of the necessity.

Sufficiency. Let us make a preliminary observation: for a given
ordinal 7, an element a > 0 of an [-group G has the property that
a = 2b = 0 implies that be .&#°(G) if and only if ae S (G) or else
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a + &°(G@) is a singular element of G/S°°(G). If a has this property
and a¢ (@) we call a (z + 1)-singular. (Note: for 7 =0 we set
&°(G) = 0; then 1-singular simply means: singular.)

Suppose now that every doubling chain of G is finite. If 0 <
ge G and 7 is an ordinal, then if g is not (z + 1)-singular we may
find an element 0 < a,€ G such that a,¢ .57°(G) and 2a, < ¢g. Induec-
tively proceed to construct a doubling chain g>a,>a, > - > a, >+,
where a, is the last entry outside .&°(G), and therefore (z + 1)-sin-
gular. Thus, every positive element of G exceeds a (z + 1)-singular
element, for each ordinal 7.

If G# %G, we pick 0 < ge G\¢“*(G), and an ordinal « such
that .&“*(G) = &#*(G). As we have indicated g = & for some (a + 1)-
singular element h; that is, k& is singular modulo .5#%(G), which is
absurd. We must conclude that G is an S*-group, and Theorem 1 is
proved.

A hyper-archimedean Il-group is characterized by the condition
that each prime subgroup be maximal [3]. Therefore, every totally
ordered l-homomorphic image of a hyper-archimedean I-group is a
subgroup of the additive reals, by Holder’s theorem. Now let us
prove:

THEOREM 2. Suppose G is hyper-archimedean; then it is hyper-
2 if and only if every doubling chain for G is finite.

Proof. Suppose G is hyper-%, yet @, > a,> +++ > a, > ++- I8
an infinite doubling chain. The a, are contained in an ultrafilter of
the positive cone of G, and thus a minimal prime subgroup P exists
8o that a,¢ P for each n =1, 2, -... (Recall that an ultrafilter is a
subset U of strictly positive elements of an l-group H, maximal with
respect to the property: a, be U imply that a A be U. For an ac-
count of the correspondence between ultrafilters and minimal prime
subgroups we refer the reader to [1] or [2].)

Continuing then, a, + P> a, + P> ... is an infinite descending
chain for the archimedean o-group G/P; G/P can therefore not be
cyelic, and we have a contradiction.

Conversely, suppose every doubling chain of G is finite; then G
is an S*-group by Theorem 1, and it is easy to verify from this that
each totally ordered quotient of G is cyclic, since the class of S*-
groups is closed under l-homomorphic images; (see [7]).

This is enough to establish Theorem 2.

COROLLARY. If G is hyper-archimedean, and A is an l-ideal of
G so that A and G/A are both hyper-%, then G is hyper-%.
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The following example illustrates the use of hyper-archime-
deaneity in Theorem 2 and the above corollary. Let G be the l-group
of sequences of integers by the eventually constant sequences and
a=(,238,--.). This example was discussed in [6], and it was
shown there that G is not hyper-archimedean. Yet G is an extension
of an S-group by Z, and all its doubling chains are finite.

Finally, we state a corollary which says something about the
underlying group of a hyper-2~ [-group.

COROLLARY. If G is a hyper-Z l-group, then G is free, qua
abelian group.

Proof. As an S-group is a subgroup of bounded, integer-valued
functions it is free abelian; this result goes back to Nobeling [8],
and it is further discussed by Hill in [4] and Conrad in [3]. If G
is a hyper-% l-group then it is an S*group, say G = .“%(G); we
assume that .&7°(G) is free abelian for each ordinal 7 < @, and that
a free basis X, for S°(G) can be picked so that X, = X, N &(G),
if o <z<a If ais a limit ordinal, we let X = U {X. |t < a}; it
is easy to verify that X is a free basis for .57%(G). Otherwise, we
have that .&7*Y(G) is free, and so is the S-group %(G)/S*Y(G);
therefore .&7%(G) is the direct sum of .&7*°Y(G) and (GR)/S7*(G).
Clearly then .&#%(G) is free and there is a free basis for it exten-
ding X,_..

This proves the corollary; it should be noted that it is valid for
any abelian S*-group.
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