DOUBLING CHAINS, SINGULAR ELEMENTS AND HYPER-% l-GROUPS

JORGE MARTINEZ

In a lattice-ordered group G a (descending) doubling chain is a sequence $a_1 > a_2 > \cdots > a_n > \cdots$ of positive elements of G such that $a_n \geq 2a_{n+1}$. An element $0 < s \in G$ is singular if $0 \leq g \leq s$ implies that $g \wedge (s-g) = 0$. The main theorems are as follows: 1. The following two statements are equivalent: (a) every doubling chain in G is finite; (b) $G = \bigcup_{\tau < \alpha} G^{\tau}(\tau)$ ranging over all ordinals less than some G, where G^{τ} is an G-ideal of G, G implies that G is G and G is generated by its singular elements, (i.e. a G is group, a la G contains G is hyper-archimedean as well then either of the above conditions is equivalent to: (c) G is hyper-G, i.e. every totally ordered G-homomorphic image of G is cyclic.

The purpose of this investigation was to come up with an "elementwise" definition of the abelian lattice-ordered groups (henceforth abbreviated: l-groups) having the property that each l-homomorphic image which is totally ordered is cyclic. These l-groups are called $hyper-\mathcal{K}$, and were first introduced by the author in [5]. Thus, G is hyper- \mathcal{K} if and only if G is abelian and G/P is cyclic, for each prime subgroup P of G. These l-groups are therefore hyper-archimedean, and they can in fact be characterized as those l-groups for which all the prime subgroups are maximal and have cyclic quotient; (see [3] and [5]). It should be stressed that in this characterization no assumptions need to be made with respect to commutativity. In [3] Conrad provided an example of an l-group which is hyper-archimedean and also a subdirect product of Z, the additive group of integers with the usual order, yet is not hyper- \mathcal{K} .

An element s>0 of the l-group G is singular provided $0 \le g \le s$ implies that $g \land (s-g)=0$. An S-group (or $Specker\ group$) is one in which each positive element is a sum of singular elements. These S-groups are well explored in [3]; the main characterization is that each S-group can be embedded as an l-subring of bounded, integer-valued functions on a set, or alternatively, as an l-subgroup of bounded, integer-valued functions generated by characteristic functions. It was observed in [7] that the S-groups form a torsion class of l-groups; that is, they are closed under taking convex l-subgroups, l-homomorphic images, and if l is any l-group, and l a family of convex l-subgroups which are all l-groups then the convex l-subgroup they generate is an l-group. There is thus an associated

S-radical $\mathscr{S}(G)$ of an l-group G, and a "Loewy"-like ascending sequence $S(G) = \mathscr{S}^{1}(G) \subseteq \cdots \subseteq \mathscr{S}^{\tau}(G) \subseteq \cdots$ for each ordinal τ , so that

- (a) $\mathcal{S}(G)$ is the largest convex *l*-subgroup of G which is an S-group.
 - (b) For any convex *l*-subgroup A of G, $\mathcal{S}(A) = A \cap \mathcal{S}(G)$.
 - (c) If α is a limit ordinal $\mathscr{S}^{\alpha}(G) = \bigcup \{ \mathscr{S}^{\tau}(G) \mid \tau < \alpha \}$,
 - (d) and otherwise $\mathcal{S}^{\tau}(G)$ is defined by the equation:

$$\mathscr{S}^{\tau}(G)/\mathscr{S}^{\tau-1}(G)=\mathscr{S}(G/\mathscr{S}^{\tau-1}(G))$$
.

Then we are able to define $\mathscr{S}^*(G) = \mathscr{S}^{\tau}(G)$, where τ is chosen so that $\mathscr{S}^{\tau}(G) = \mathscr{S}^{\tau+1}(G) = \cdots$; such a τ exists by a simple cardinality argument. G is said to be an S^* -group if $\mathscr{S}^*(G) = G$.

We should observe that if G is an S-group, it can be represented as an l-group of bounded, integer-valued functions, and it is therefore hyper- \mathcal{X} ; (see [3]). Examples of hyper- \mathcal{X} l-groups which are not S-groups are easy to construct.

In an *l*-group G, a (descending) doubling chain is a sequence $s_1 > s_2 > \cdots$ of positive elements of G so that $s_n \ge 2s_{n+1}$, for each $n = 1, 2, \cdots$. Notice that the terms of a doubling chain may eventually be zero; in such a case it is a finite doubling chain.

We can now state our first result.

THEOREM 1. G is an S^* -group if and only if every doubling chain for G is finite.

Proof. Necessity. The proof proceeds by transfinite induction on the length of the Loewy sequence of $\mathscr{S}^{\tau}(G)$'s. The first thing to do is to show an S-group has this property. This is clear, because if G is an S-group, it can be represented as an l-group of bounded, integer-valued functions; and there are obviously no infinite doubling chains of such functions. Next, suppose $G = \mathscr{S}^{\alpha}(G)$ and $\mathscr{S}^{\tau}(G)$ has no infinite doubling chains, for each $\tau < \alpha$. Suppose by way of contradiction that $a_1 > a_2 > \cdots > a_n > \cdots$ is an infinite doubling chain for G; if α is a limit ordinal, then $a_1 \in \mathscr{S}^{\beta}(G)$ for some $\beta < \alpha$, and hence each $a_n \in \mathscr{S}^{\beta}(G)$, contradicting our assumption. If α has a predecessor, then no $a_n \in \mathscr{S}^{\alpha-1}(G)$, and consequently $a_1 + \mathscr{S}^{\alpha-1}(G) > a_2 + \mathscr{S}^{\alpha-1}(G) > \cdots$ is an infinite doubling chain in the S-group $G/\mathscr{S}^{\alpha-1}(G)$. This again is a contradiction, and we must conclude that $G = \mathscr{S}^{\alpha}(G)$ has no infinite doubling chains; this completes the proof of the necessity.

Sufficiency. Let us make a preliminary observation: for a given ordinal τ , an element a > 0 of an l-group G has the property that $a \ge 2b \ge 0$ implies that $b \in \mathscr{S}^{\tau}(G)$ if and only if $a \in \mathscr{S}^{\tau}(G)$ or else

 $a + \mathscr{S}^{\tau}(G)$ is a singular element of $G/\mathscr{S}^{\tau}(G)$. If a has this property and $a \notin \mathscr{S}^{\tau}(G)$ we call a $(\tau + 1)$ -singular. (Note: for $\tau = 0$ we set $\mathscr{S}^{\tau}(G) = 0$; then 1-singular simply means: singular.)

Suppose now that every doubling chain of G is finite. If $0 < g \in G$ and τ is an ordinal, then if g is not $(\tau + 1)$ -singular we may find an element $0 < a_1 \in G$ such that $a_1 \notin \mathscr{S}^{\tau}(G)$ and $2a_1 \leq g$. Inductively proceed to construct a doubling chain $g > a_1 > a_2 > \cdots > a_k > \cdots$, where a_k is the last entry outside $\mathscr{S}^{\tau}(G)$, and therefore $(\tau + 1)$ -singular. Thus, every positive element of G exceeds a $(\tau + 1)$ -singular element, for each ordinal τ .

If $G \neq \mathscr{S}^*(G)$, we pick $0 < g \in G \backslash \mathscr{S}^*(G)$, and an ordinal α such that $\mathscr{S}^*(G) = \mathscr{S}^{\alpha}(G)$. As we have indicated $g \geq h$ for some $(\alpha + 1)$ -singular element h; that is, h is singular modulo $\mathscr{S}^{\alpha}(G)$, which is absurd. We must conclude that G is an S^* -group, and Theorem 1 is proved.

A hyper-archimedean *l*-group is characterized by the condition that each prime subgroup be maximal [3]. Therefore, every totally ordered *l*-homomorphic image of a hyper-archimedean *l*-group is a subgroup of the additive reals, by Hölder's theorem. Now let us prove:

Theorem 2. Suppose G is hyper-archimedean; then it is hyper- \mathcal{Z} if and only if every doubling chain for G is finite.

Proof. Suppose G is hyper- \mathcal{Z} , yet $a_1 > a_2 > \cdots > a_n > \cdots$ is an infinite doubling chain. The a_i are contained in an ultrafilter of the positive cone of G, and thus a minimal prime subgroup P exists so that $a_n \notin P$ for each $n = 1, 2, \cdots$. (Recall that an ultrafilter is a subset U of strictly positive elements of an l-group H, maximal with respect to the property: $a, b \in U$ imply that $a \land b \in U$. For an account of the correspondence between ultrafilters and minimal prime subgroups we refer the reader to [1] or [2].)

Continuing then, $a_1 + P > a_2 + P > \cdots$ is an infinite descending chain for the archimedean o-group G/P; G/P can therefore not be cyclic, and we have a contradiction.

Conversely, suppose every doubling chain of G is finite; then G is an S^* -group by Theorem 1, and it is easy to verify from this that each totally ordered quotient of G is cyclic, since the class of S^* -groups is closed under l-homomorphic images; (see [7]).

This is enough to establish Theorem 2.

COROLLARY. If G is hyper-archimedean, and A is an l-ideal of G so that A and G/A are both hyper- \mathcal{Z} , then G is hyper- \mathcal{Z} .

The following example illustrates the use of hyper-archimedeaneity in Theorem 2 and the above corollary. Let G be the l-group of sequences of integers by the eventually constant sequences and $a = (1, 2, 3, \cdots)$. This example was discussed in [6], and it was shown there that G is not hyper-archimedean. Yet G is an extension of an S-group by Z, and all its doubling chains are finite.

Finally, we state a corollary which says something about the underlying group of a hyper- \mathcal{Z} l-group.

COROLLARY. If G is a hyper- \mathcal{Z} l-group, then G is free, qua abelian group.

Proof. As an S-group is a subgroup of bounded, integer-valued functions it is free abelian; this result goes back to Nöbeling [8], and it is further discussed by Hill in [4] and Conrad in [3]. If G is a hyper- \mathcal{Z} l-group then it is an S*group, say $G = \mathcal{S}^{\alpha}(G)$; we assume that $\mathcal{S}^{\tau}(G)$ is free abelian for each ordinal $\tau < \alpha$, and that a free basis X_{τ} for $\mathcal{S}^{\tau}(G)$ can be picked so that $X_{\sigma} = X_{\tau} \cap \mathcal{S}^{\sigma}(G)$, if $\sigma < \tau < \alpha$. If α is a limit ordinal, we let $X = \bigcup \{X_{\tau} \mid \tau < \alpha\}$; it is easy to verify that X is a free basis for $\mathcal{S}^{\alpha}(G)$. Otherwise, we have that $\mathcal{S}^{\alpha-1}(G)$ is free, and so is the S-group $\mathcal{S}^{\alpha}(G)/\mathcal{S}^{\alpha-1}(G)$; therefore $\mathcal{S}^{\alpha}(G)$ is the direct sum of $\mathcal{S}^{\alpha-1}(G)$ and $\mathcal{S}^{\alpha}(G)/\mathcal{S}^{\alpha-1}(G)$. Clearly then $\mathcal{S}^{\alpha}(G)$ is free and there is a free basis for it extending $X_{\alpha-1}$.

This proves the corollary; it should be noted that it is valid for any abelian S^* -group.

REFERENCES

- 1. P. Conrad & D. McAlister, The completion of a lattice-ordered group; J. Austral. Math. Soc., 9 (1969), 182-208.
- 2. P. Conrad, Lattice-ordered groups; Lecture Notes, Tulane University, New Orleans, Louisiana (1970).
- 3. ———, Epi-archimedean groups; Czech. Math. J., 24 (99), (1974), 192-218.
- 4. P. Hill, Bounded sequences of integers; preprint.
- 5. J. Martinez, Archimedean-like classes of lattice-ordered groups; Trans. Amer. Math. Soc., 186 (Dec. 1673), 33-49.
- 6. ———, The hyper-archimedean kernel sequence of a lattice-ordered group; Bull. Austral. Math. Soc., 10 (1974), 337-349.
- 7. ———, Torsion theory for lattice-ordered groups; Czech. Math. J., 25 (100) (1975), 284-299.
- 8. C. Nöbeling, Verallgemeinerung einer Satzes von Hern E. Specker; Inventiones Math., 6 (1968), 41-55.

Received December 30, 1974.

University of Florida