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CONTINUITY OF LINEAR MAPS FROM C*-ALGEBRAS

K. B. LAURSEN

The celebrated problem of automatic continuity in
Banach algebras—whether or not an arbitrary homomorphism
from the algebra C(X) of all complex continuous functions
on a compact Hausdorff space X is continuous—remains
unsolved.

The lack of success on this point has generated quite a
bit of effort to determine 'the extent' to which a homomor-
phism is continuous. In the basic work of W. G. Bade and
P. C. Curtis around 1960 it was shown that a homomorphism
is necessarily continuous on some dense subalgebra of the
algebra C(X).

Many of these results have later been shown to carry
over to a much larger class of mappings, namely the separable
maps (cf. Definition 1.1 below).

Recently, A. M. Sinclair has taken a new look at the
homomorphism problems and succeeded in extending much
of Bade's and Curtis's work to general C*-algebras In this
paper we employ some of Sinclair's methods and obtain ex-
tensions of his main results, notably we prove (Theorem 3.7)
that a separable linear map defined on a C*-algebra A is
necessarily continuous on a dense subalgebra of A.

The class of mappings considered here was introduced in [4];
we employ the generalized notion from [6].

DEFINITION 1.1. Let A, B, X, Y be normed linear spaces, q: A x
B—+X a continuous bilinear form. Let T: X—> Y be linear; T is
said to be separable (with respect to q) if there are functions
/ : A —* R+ and g: B—» R+ (where R+ is the positive reals) such that
|| T(q(a, b)) || ^ f(a)g(b) for all a e A, b e B.

As mentioned in [4] this class of mappings contains all algebra-
homomorphisms, derivations, multipliers (centralizers); in fact, as
an easy norm-estimate shows, if T is a continuous linear mapping,
then T is separable with respect to any continuous bilinear q: Ax
B->X.

Since discontinuous derivations are known (cf. e.g. [2]), not
every separable linear map is continuous. Nevertheless, as the
following will show, certain results concerning the degree to which
separable linear maps are continuous can be obtained.

The techniques employed here owe much to the work of Sinclair
[5]; it is only appropriate to add to the list of examples of separable
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maps the module homomorphisms considered in [5]: with the nota-
tion of Definition 1.1, let A be a Banach algebra, B = X a Banach
left A-module, Y a Banach space with continuous module operations
(i.e. Y is an A-module and for each aeA, y—*ay is a continuous
operator) and T: X —>Y a module homomorphism. If q(a, x) = ax is
the module multiplication on X we have || T(q(a, x))\\ = || T(ax)\\ =
\\aT(x)\\<:Ca\\T(x)\\ where Ca is the norm-bound of the operator
»-> ay:Y-+ Y.

We list now the basic technical facts

LEMMA 1.2 ([6 Lemma 1.1]). If A, B are Banach spaces, X, Y
normed spaces, q: A x B —* X is a continuous bilinear form and
T: X—+ Y is a linear map separable with respect to q, then, with
{an} c A, {bk} c B such that (q(an, bk) = 0 whenever nφk, we have
that

s u p |1 Γ(βr(α« &.)) II/II α IIII 6 II < oo .
n

Proof. Similar to the proof of [4, Lemma 1.1]

COROLLARY 1.3 (cf. [5, Lemma 2.1 (b)]). Suppose A is a Banach
algebra, X a Banach left A-module and Y a normed linear space.
If T: X—> Y is a linear map separable with respect to module
multiplication, if {an}, {bk} c A are sequences for which anbk = 0
whenever n Φ k then Toanbn: X—>Y is continuous for all but finitely
many n and the set {|| Toanbn\\/\\an\\ \\bn\\ \ T°αA is continuous} is
bounded.

Proof. If the conclusion fails then we may assume all the
maps T°anbn to be discontinuous and hence we can find {xn}c:X
such that || xn || ^ (|| an \\ \\ bn | | Γ but || T(anbnxn) \\ ̂  n for n - 1, 2, . .
Letting bnxn play the role of bn in Lemma 1.2 we have a contradic-
tion. Then rest of the corollary is then immediate.

2* Commutative regular algebras* Throughout this section A
is assumed to be a regular semi-simple commutative unital Banach
algebra, X is a Banach left A-module, Y a normed linear space and
T: X—> Y a linear map, separable with respect to the module
multiplication.

We now introduce the first version of the continuity ideal of T
and study its size in A. The following results are analogues and
generalizations of those of [6, §3]; the methods of proof that Stein
employs are due to Bade and Curtis [1] and could be used here, too.
Instead we have chosen the not dissimilar approach of [5, § 2].
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DEFINITION 2.1. With the assumptions of the first paragraph
of this section let the continuity ideal of T, Iτ, be

Iτ = {a e A I x > T(ax): X • Y continuous} .

It is clear that Iτ is indeed an ideal.
As usual, if I is an ideal in a commutative Banach algebra B

with maximal ideal space MB, the hull of / is the set {φ e MB \ φ(I) =
{0}}. It F is a closed subset of MB we let J{F) denote the set

J(F) = {x e BI φ{x) = 0 for every φ in a neighborhood of F) .

We assume known the fact that if B is regular and semisimple
then J(F) is minimal among all ideals in B with hull F.

The following generalizes [5, Theorem 2.2]

THEOREM 2.2. Let A be a regular semisimple commutative unital
Banach algebra, let X be a left Banach A-module and Y be a normed
linear space. Suppose T: X-+Y is separable with respect to module
multiplication. Then Iτ = {a e A | x —* T(ax) is continuous} is an ideal
in A with finite hull F; moreover 3 constant C such that

\\Toab\\^C\\a\\\\b\\

for all a, be J(F).

Proof Let F be the hull of Iτ and suppose F is infinite; then
we can extract from F a sequence {φn} which does not converge to
any of the points φn. We can therefore choose open sets Uίf U2,
in MA such that φneUn, n = 1, 2, and such that Us Π Un= 0
for all j<n and n = 1, 2, •••. Now employ the regularity of A to
find functions {an} such that dn vanishes off Un and dn(φn) = 1. By
choice of an we have al&Iτ, n = l,2, •••; also anam = 0 if w^m.
Since α^g/Γ, Γoα^ is discontinuous for each w. This contradicts
Corollary 1.3.

To prove the boundedness of f(a, b) = \\ Toab\\/\\a\\\\b\\ on

J(F) x J(F) we proceed as in [5, proof of Theorem 2.2] and suppose
/ unbounded on J(F) x J(F).

First we show that if UdMA is an open neighborhood of F
then

Kv = {/K ft) I α, 6 € J(F) n WACO}

is unbounded. Suppose iί^ is bounded by C. Since A is normal on
Λk we can find he A for which h is zero in a neighborhood of -F
and 1 in a neighborhood of MA\U. Since h is in J(F) and thus in
Iτ, Toh is continuous. Let α, δe Jίί 7); then
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|| Γoα&|| = || To (a - ha)(b - hb) + T<>h(2 - h)ab\\

^ || To (a - hά)(b - hb) || + || Toh(2 - h)ab\\

since a-~hb,b-hae J(F) Π J(MA\U) we have || Γ° (a - ha)(b - hb) || ^
C || a — ha\\ \\ b — hb\\\ also

since h(2 — h) e Iτ. Collecting these estimates we get

which contradicts the assumption that / be unbounded.
Thus KXJ is an unbounded set for any open UHF. We use this

to construct sequences that will contradict Corollary 1.3.
First choose aίf bx in J(F) such that f(al9 δi)^l and let Uι be an

open proper neighborhood of {φ e MA \ φ(aλ) = φ(bλ) = 0}. Assume
next that al9 , an, bί9 , bn have been found in J(F) such that
f(ah bd) ^ j and aJ9 bj e J(MA\ U^) where U5^ is a proper open
neighborhood of

{φeMA\ φ(ak) = φ(bk) = 0, k = 1, .. , j - 1}

for j = 2, , w. Since KUn is unbounded we can find an+l9 bn+ί e
J(F)f]J(MA\Un) for which f(an+1, bn+1) ^ n + 1. Since αΛ vanishes
where &m is supported (if n Φ m) the semi-simplicity of A implies
that anbm = 0 whenever n Φ m. We have obtained a contradiction
of Corollary 1.3.

The following is a bilinear variant of Theorem 2.2 which will
be the basis of the work in the next section.

THEOREM 2.3. Let A be a commutative regular semi-simple
unital Banach algebra, X a Banach algebra and Π: A —* X a homo-
morphism. Let Y be a normed linear space, T: X-+ Y a linear
map, separable with respect to the algebra multiplication in X.
Let

Iτ = [a e A I (6, c) > T(bΠ(a)c): X x X > Y is continuous}

be the continuity ideal. Then Iτ has finite hull F and 3 constant
C such that the bilinear map

θay. X x X > Y: (xlf x2) > T(xJI

satisfies \\ θa,h || ^ C\\Π(a) \\ \\ Π(b) \\ for all a, be J(F).

Proof. Except for the changes necessitated by the linearity
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being replaced by bilinearity the proof proceeds exactly as that of
the preceding Theorem, so we omit it.

THEOREM 2.4. In addition to the assumptions of Theoren 2.2
suppose J(F) has a bounded approximate identity. Then T is
continuous on the subspace J{F)X of X.

Proof. Since J(F)X = span {ax \ a e J(F), xeX} we see that if
z e J(F)X then there is a b e J(F) such that z = bz. Suppose {ea} is
an approximate identity for J(F) with bound M and let C be the
bound of Theorem 2.2. Since {el} is also an approximate identity
we may choose ee{ea} such that || 6 — e2b || ^ 1/|| 6||. Then

|| Tz || = || TVz || £ || T(b - e2b)bz \\ + \\ Te2z ||

REMARK. Recall that a commutative unital Banach algebra A
is said to satisfy Ditkin's condition if J({φ}) contains a bounded
approximate identity for each φeMA. Then any ideal J(F) for
which F is finite will contain a bounded approximate identity.
Thus, the above result is a generalization of [6, Proposition 3.2]
and is also an analogue of part of [5, Theorem 2.3].

The technique of the proof of Theorem 2.4 yields an analogous
bilinear result, based on Theorem 2.3.

THEOREM 2.5. With the assumptions of Theorem 2.3 and the
additional assumptions that Π: A—* X be continuous and J(F) c A
have a bounded approximate identity the bilinear map

X x J(F)X > Y: (x, t) > T(xt)

is continuous.

Proof As in the proof of Theorem 2.4, if t e J(F)X, t = ΣΠ(at)xi9

then 36 e J(F) such that t — Π(b)t; also we can find e e J(F) with
\\Π(e)\\ ^ \\Π\\M s u c h t h a t \\Π(b- c2b)\\ ^ lj\\Π(b)\\. I f xeX t h e n
II T(xt) || ^ || T(xΠ(b - e2b)Π(b)t) \\ + \\ T(xΠ(e)2t) || £ C \\ Π(b - e2b) \\ x

3* C*-algebras* In this section we restrict attention to C*-
algebras; we let A be a unital C*-algebra, B a, normed linear space
and T: A —> B a linear map, separable with respect to the algebra
multiplication on A. The main result is Theorem 3.7 which states
that T is continuous on a dense subalgebra of A thus establishing
the general version of [4, Theorem 5.6]. As in the previous sections
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the techniques are mainly those of [5].

PROPOSITION 3.1. Let C be a unital commutative C*-subalgebra
of A. Then there is a closed cofinite ideal ker F in C such that

et: A ker F x Iτ > B

and

θ2: Iτ x ker FA > B

defined by θ^a, b) = T(ab), Θ2(b, a) = T(ba), are continuous bilinear
maps. Here

Iτ = {b 6 AI (a, c) > T(abc): Ax A • B is continuous} .

Proof. Let Fx be the singularity set of T as in Theorem 2.3,
let aeA ker Fx and let 6 e I τ . Let e denote the unit of A and
choose e > 0. By the Cohen factorization theorem applied to A
ker Fx there is cx e A ker F1 and c2 6 ker Ft such that a = cxc2 with
|| d || ^ 2 || α ||, | | c a | | = l . Choose c3, c4 and c6 in / ( F ) such that
c3 = c4cδ, such that | |c 2 — c 3 | | < ε1 (εx to be specified) and such that
11 c411 11 c611 ^ 2 11 c311. This is yet another application of Cohen's
factorization theorem. By the analogous version of Theorem 2.5
the bilinear map (x, z) —• T(xz): AJ(Fj) x A—+ B is continuous and
has a norm bound which does not exceed 2Cif where Cλ is the
constant of Theorem 2.3. Let Cb denote the norm bound of the
continuous bilinear operator (χlf x2) —> T{xJ}χ2)) and note that | |c 2 —
c 8 | | < fii, so || c 8 | | < 1 + £i We then have

If

L (206 + 40, II 6

then

|| Γ(α6)|| ^ 4 0 , | | α | | | | & | | + ε

which proves that θx is continuous on A ker Fι x Iτ. Similarly we
get a finite set F2 such that θ2 is continuous on Iτ x ker F2A. If
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we take F = F1 U F2 the proposition follows.

COROLLARY 3.2. The trilinear maps

{ x / r > B

Ψ2: Iτ x ker F x A > B

defined by Ψx{a9 6, c) = T(abc), Ψ2(c, 6, a) = T(cba) are continuous.

On the basis of the above corollary we make the following
definition.

DEFINITION 3.3.

Kτ = {a 6 A I (c, (Z) > T(cad): A x Iτ > B and

(d, c) • T(dac): Iτ x A > B are continuous}.

About this set we have the following

PROPOSITION 3.4. Kτ is a closed cofinite two-sided ideal that
contains Iτ.

Proof. It is immediate that Kτ is a two-sided ideal that
contains Iτ. By [5, Lemma 3.2], to show that Kτ is closed and
cofinite, it is sufficient to show that Kτf]C is closed and cofinite
for any commutative unital C*-subalgebra of C. Corollary 3.2 shows
that the hull of Kτ Π C is finite. If ker F £= Kτ Π C let cu c2, , cn

be chosen in Kτ Π C such that CiCj = 0 if i Φ j and such that Ci = 1
in a neighborhood of φt where

{Ψu •• , ^ } = iΓ\hull (Kτf]C)

and such that c4(9>y) = 0 if j Φ i.
If a e Kτ Π C then a — Σa{ψi) ct e ker F and since ker F is closed

it follows from the definition of Kτ that Kτf]C is closed: suppose
{am}<zKTC\C converges to a; then am — ΣaJ^φ^Ci —>α — Σa(φi)cu so
if c G X and c£ e Iτ then

Γ(c(α -

which shows that (c, ώ) —> T(cad) is continuous, i.e. that α 6 iΓΓ Π C

COROLLARY 3.5. The bilinear maps

(a, b) > T(ab): Kτ x Iτ • B

and

(6, a) > T(ba): Iτ x Kτ > B
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are continuous.

The next result corresponds to [5, Theorem 3.8] and is a
generalization of [4, Theorem 5.1].

THEOREM 3.6. In addition to the above assumptions suppose B
to be a Banach space. Then T is continuous on the two sided ideal
KTIT which is dense in Iτ.

Proof. Let Ψ be the extension by continuity to Kτ x I? of
the mapping (a, b) —> T(ab) mentioned in Corollary 3.5. We may
also consider Ψ a continuous linear operator from the protective
tensor product Kτ (g)r IT into B. Let θ: Kτ (x)r I? -* IT be defined by
θ(ΣXi (x) Vi) = ΣXiVi. By Cohen's factorization theorem θ is surjec-
tive so by the open mapping theorem θ~ι: IT —• Kτ (x)r 17/ker (θ) is
continuous.

As we shall see below, ker θ Q ker Ψ so the composition Φ =
ψoθ~u.Iτ —>B is well defined and continuous. On KτIτQlτ we have
φ(ab) = Ψ{a, b) = T(ab) and consequently T is continuous on KTIT.

It remains to see that ker θ Q ker Ψ.
To that end we can refer to Sinclair's proof in [5, Theorem 3.8]

in which a similar claim is established.
The density of KTIT in Iτ is clear from the fact that Kτ 2 JΓ.

That completes the proof.

We are now in a position to state and prove the main result of
this section (cf. the introduction to this section).

THEOREM 3.7. Let A be a C*-algebra, B a Banach space, T a
linear map of A into JS, separable with respect to algebra multi-
plication. Then T is continuous on a dense subalgebra of A.

Proof. By Theorem 3.6 T is continuous on the two-sided ideal
KTIT which has cofinite closure [4, p. 501]. By [3, Theorem 6]
there is a finite dimensional subspace F of A such that KTIT + F is
a dense subalgebra on which T is clearly continuous. That proves
the theorem.
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