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CONTINUITY OF LINEAR MAPS FROM C*-ALGEBRAS

K. B. LAURSEN

The celebrated problem of automatic continuity in
Banach algebras—whether or not an arbitrary homomorphism
from the algebra C(X) of all complex continuous functions
on a compact Hausdorff space X is continuous—remains
unsolved.

The lack of success o» this point has generated quite a
bit of effort to determine ‘the extent’ to which a homomor-
phism is continuous. In the basic work of W. G. Bade and
P. C. Curtis around 1960 it was shown that a homomorphism
is necessarily continuous on some dense subalgebra of the
algebra C(X).

Many of these results have later been shown to carry
over to a much larger class of mappings, namely the separable
maps (cf. Definition 1.1 below).

Recently, A. M. Sinclair has taken a new look at the
homomorphism problems and succeeded in extending much
of Bade’s and Curtis’s work to general C*-algebras. In this
paper we employ some of Sinclair’s methods and obtain ex-
tensions of his main results, notably we prove (Theorem 3.7)
that a separable linear map defined on a C*-algebra A is
necessarily continuous on a dense subalgebra of A.

The class of mappings considered here was introduced in [4];
we employ the generalized notion from [6].

DErFINITION 1.1. Let A, B, X, Y be normed linear spaces, ¢: 4 X
B— X a continuous bilinear form. Let T: X— Y be linear; T is
said to be separable (with respect to ¢q) if there are functions
fr A— R* and ¢g: B— R* (where R* is the positive reals) such that
Il T(q(a, b)) || < f(a)g(d) for all ac A, be B.

As mentioned in [4] this class of mappings contains all algebra-
homomorphisms, derivations, multipliers (centralizers); in fact, as
an easy norm-estimate shows, if T is a continuous linear mapping,
then T is separable with respect to any continuous bilinear ¢: A X
B— X.

Since discontinuous derivations are known (cf. e.g. [2]), not
every separable linear map is continuous. Nevertheless, as the
following will show, certain results concerning the degree to which
separable linear maps are continuous can be obtained.

The techniques employed here owe much to the work of Sinclair
[5]; it is only appropriate to add to the list of examples of separable
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maps the module homomorphisms considered in [5]: with the nota-
tion of Definition 1.1, let A be a Banach algebra, B = X a Banach
left A-module, Y a Banach space with continuous module operations
(i.e. Y is an A-module and for each ac€ 4, y—ay is a continuous
operator) and T: X— Y a module homomorphism. If ¢(a, ) = ax is
the module multiplication on X we have || T(q(a, z))|| = || T(ax)|| =
laT(x)|| < C,|| T(x)|| where C, is the norm-bound of the operator
y—ay: Y — Y. '

We list now the basic technical facts

LEmmA 1.2 ([6 Lemma 1.1]). If A, B are Banach spaces, X, Y
normed spaces, q: A X B— X 1is a continuous bilinear form and
T:X— Y is a linear map separable with respect to q, then, with

{a,} c 4, {b,} = B such that (q(a,, b)) = 0 whenever n + k, we have
that

sup || T(q(a, b)) 1/l anll[Dall < oo

Proof. Similar to the proof of [4, Lemma 1.1]

COROLLARY 1.3 (cf. [5, Lemma 2.1 (b)]). Suppose A is a Bamach
algebra, X a Banach left A-module and Y a mormed linear space.
If T: X— Y s a linear map separable with respect to module
multiplication, if {a,}, {b,} T A are sequences for which a,b, =0
whenever n # k then Toa,b,: X — Y is continuous for all but finitely
many n and the set {|| Toa,d,||/||a,||||b.]]| Toa,db, is continuous} is
bounded.

Proof. If the conclusion fails then we may assume all the
maps Toa,b, to be discontinuous and hence we can find {x,}Cc X
such that ([, || < ([ a. [l 10" [[)™ but || T(a.b.2,) || Z nforn =1,2, ---.
Letting b,%, play the role of b, in Lemma 1.2 we have a contradic-
tion. Then rest of the corollary is then immediate.

2. Commutative regular algebras. Throughout this section A
is assumed to be a regular semi-simple commutative unital Banach
algebra, X is a Banach left A-module, Y a normed linear space and
T:X—Y a linear map, separable with respect to the module
multiplication.

We now introduce the first version of the continuity ideal of T'
and study its size in A. The following results are analogues and
generalizations of those of [6, §3]; the methods of proof that Stein
employs are due to Bade and Curtis [1] and could be used here, too.
Instead we have chosen the not dissimilar approach of [5, §2].
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DEFINITION 2.1. With the assumptions of the first paragraph
of this section let the continuity ideal of T, I,, be

I, ={aeA|x—> T(ax): X — Y continuous} .

It is clear that I, is indeed an ideal.

As usual, if I is an ideal in a commutative Banach algebra B
with maximal ideal space Mj, the hull of I is the set {p e My |p(I) =
{0}}. It F is a closed subset of M, we let J(F') denote the set

J(F) = {xe B|®(x) = 0 for every ® in a neighborhood of F7}.

We assume known the fact that if B is regular and semisimple
then J(F') is minimal among all ideals in B with hull F.
The following generalizes [5, Theorem 2.2]

THEOREM 2.2. Let A bea regular semisimple commutative unital
Banach algebra, let X be a left Banach A-module and Y be a normed
linear space. Suppose T: X — Y is separable with respect to module
multiplication. Then I, ={a € A|x— T(ax) is continuous} is an ideal
in A with finite hull F; moreover 3 constant C such that

[|Toab|| = Cllall|lb]l
for all a, be J(F).

Proof. Let F be the hull of I, and suppose F is infinite; then
we can extract from F a sequence {®,} which does not converge to
any of the points #,. We can therefore choose open sets U, U, -
in M, such that ¢,€eU,, n=1,2, --- and such that U;NnU,= @
for all j<n and n=1,2, --.. Now employ the regularity of 4 to
find functions {a,} such that &, vanishes off U, and d,(p,) =1. By
choice of @, we have al¢l,, n=12, +-+; also a,a, =0 if n*m.
Since a?¢I,, Toa? is discontinuous for each ». This contradicts
Corollary 1.3.

To prove the boundedness of f(a,b) = | T-abll/||al|]|b]] on
J(F') x J(F') we proceed as in [5, proof of Theorem 2.2] and suppose
f unbounded on J(F') x J(F).

First we show that if Uc M, is an open neighborhood of F
then

Ky = {f(a, b) | a, be J(F) N J(M\U)}

is unbounded. Suppose K, is bounded by C. Since A is normal on
M, we can find he A for which h is zero in a neighborhood of F'
and 1 in a neighborhood of M,\U. Since & is in J(F') and thus in
Iy, Toh is continuous. Let a, b€ J(F'); then
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| Toab|| = || To(a — ha)b — hb) + Toh(@ — h)ab||
< || To(a — ha)b — hb) || + || Toh(@ — h)ab]| ;

since @ — hb, b — ha e J(F') N J(M,\U) we have || To(a — ha)(b—hbd) || <
Clla — hal|||b— hb]||; also

| Ton(2 — h)ad|l = [lab|[ || Tom2 — h)|,
since k(2 — h) € I,. Collecting these estimates we get
[Toabl| =Cl|1 = h|Fllalll|b]l + || Tor@2—R)|[lallllbll

which contradicts the assumption that f be unbounded.

Thus K is an unbounded set for any open U2 F. We use this
to construct sequences that will contradict Corollary 1.3.

First choose a,, b, in J(F') such that f(a, b)=1 and let U, be an
open proper neighborhood of {peM,|®(a,) = ®(b,) =0}. Assume
next that a, ---, a,, b, -+, b, have been found in J(F) such that
fla;, b)) =7 and a; b;eJ(M,\U;_,) where U,_, is a proper open
neighborhood of

{QGMA[¢(ak)=¢(bk)=0’k:17 ”',j_l}

for j =2, .-+, n. Since K, is unbounded we can find @, b.i\ €
JIE)NJMN\U,) for which f(a,., b,i) =7 + 1. Since a, vanishes
where b, is supported (if 7 = m) the semi-simplicity of A implies
that a,b, = 0 whenever n = m. We have obtained a contradiction
of Corollary 1.3.

The following is a bilinear variant of Theorem 2.2 which will
be the basis of the work in the next section.

THEOREM 2.3. Let A be a commutative regular semi-simple
unital Banach algebra, X a Banach algebra and II: A— X a homo-
morphism. Let Y be a normed linear space, T:X—Y a linear
map, separable with respect to the algebra multiplication in X.
Let

I,={acA|(®, ¢c)— T(bl(a)): X X X—Y is continuous}

be the continuity ideal. Then I, has finite hull F and 3 constant
C such that the bilinear map

Opp: X X X— Y:(x,, @) — T(xll(ab)x,)
satisfies || 0.1l = Cl| (@) || || I(B) ]| for all a, beJ(F).

Proof. Except for the changes necessitated by the linearity
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being replaced by bilinearity the proof proceeds exactly as that of
the preceding Theorem, so we omit it.

THEOREM 2.4. In addition to the assumptions of Theoren 2.2
suppose J(F) has o bounded approximate identity. Then T 1is
continuous on the subspace J(F)X of X.

Proof. Since J(F)X = span {ax|acJ(F), x€ X} we see that if
z2eJ(F)X then there is a be J(F) such that z = bz. Suppose {e,} is
an approximate identity for J(F) with bound M and let C be the
bound of Theorem 2.2. Since {¢%} is also an approximate identity
we may choose ¢ € {e,} such that ||b — ¢b|| < 1/||b||. Then

| Tz || = [| To%2 || = || T(b — €b)bz || + || Te'z ||
=Cllo—ebllllbllllzll + Cllel*[lz]| = CA + M*) || 2] .

REMARK. Recall that a commutative unital Banach algebra A4
is said to satisfy Ditkin’s condition if J({®}) contains a bounded
approximate identity for each @e M,. Then any ideal J(F) for
which F is finite will contain a bounded approximate identity.
Thus, the above result is a generalization of [6, Proposition 3.2]
and is also an analogue of part of [5, Theorem 2.3].

The technique of the proof of Theorem 2.4 yields an analogous
bilinear result, based on Theorem 2.3.

THEOREM 2.5. With the assumptions of Theorem 2.3 and the
additional assumptions that II: A— X be continuous and J(F)C A
have a bounded approximate identity the bilinear map

X X J(F)X —> Y: (x, t) —> T(xt)

18 continuous.

Proof. As in the proof of Theorem 2.4, if t € J(F)X, ¢t = 21l(a,)x;,
then 3beJ(F') such that ¢ = II(b)t; also we can find ecJ(F) with
[ I(e)|| < || IT|| M such that |[II(b — ¢*b)|| < 1[|| II(b)||. If z€ X then
| T(xt) || < || T(II(b — ) (b)) || + || T(xlI(e)’t) || = C || II(b — €'b)[| x
NZ®I 2|l | t]l + CII|PM ||| t]] = CQA + || M) || «][lt]-

3. C(C*-algebras. In this section we restrict attention to C*-
algebras; we let A be a unital C*-algebra, B a normed linear space
and T: A— B a linear map, separable with respect to the algebra
multiplication on A. The main result is Theorem 3.7 which states
that T is continuous on a dense subalgebra of A thus establishing
the general version of [4, Theorem 5.6]. As in the previous sections
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the techniques are mainly those of [5].

ProrosiTION 8.1. Let C be a unital commutative C*-subalgebra
of A. Then there is a closed cofinite ideal ker F' in C such that

6:Aker Fx I,— B
and
0y, Ip X ker FA— B

defined by 6,(a, b) = T(adb), 0.b, a) = T(ba), are continuous bilinear
maps. Here

I, ={be A|(a, c) — T(abc): A X A—— B is continuous} .

Proof. Let F, be the singularity set of T as in Theorem 2.3,
let acA ker F, and let bel,. Let ¢ denote the unit of A and
choose ¢ > 0. By the Cohen factorization theorem applied to A
ker F, there is ¢,€ A ker F, and c,€ker F, such that a = ¢c, with
el £2|lall, |le.]] =1. Choose ¢; ¢, and ¢, in J(F) such that
¢, = ¢,c;, such that ||e, — ¢s|| <¢&, (¢, to be specified) and such that
lledl lles)l =2]es]l. This is yet another application of Cohen’s
factorization theorem. By the analogous version of Theorem 2.5
the bilinear map (z, 2) — T'(xz): AJ(F,) X A— B is continuous and
has a norm bound which does not exceed 2C,, where C, is the
constant of Theorem 2.3. Let C, denote the norm bound of the
continuous bilinear operator (x,, x,) — T'(x,bx,); and note that ||¢, —
el <&, 80 ||es]l <1+ 6. We then have

| T(ab) [| = || T(c.c:b) ||
= || T(ec: — ea)be) || + || T(eesd) |l
=llelllle. — allGllell + 2C. el ll el 1] b]]
sellellC+2C-2 el +e&)lb]l
= &(2C, + 4C DD llall + 4C.llall[[D] .

If

&
“< GG T oNTal

then
[| T(ad) || < 4C, [lall[|B]] + €

which proves that 6, is continuous on A ker F, X I,. Similarly we
get a finite set F, such that 6, is continuous on I, X ker F,A. If
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we take F = F, U F, the proposition follows.

COROLLARY 3.2. The trilinear maps

T.:Axker FxI,— B
Upl,xkerFx A— B

defined by ¥(a, b, ¢) = T(abe), ¥Tlec, b, a) = T(cba) are continuous.

On the basis of the above corollary we make the following
definition.

DEFINITION 3.3.

K, ={acd|(c,d) — T(cad): A X I,— B and
(d, ¢) — T(dac): I, x A— B are continuous}.

About this set we have the following

ProPOSITION 8.4. K, is a closed cofinite two-sided ideal that
contains I.

Proof. It is immediate that K, is a two-sided ideal that
contains I,. By [5, Lemma 3.2], to show that K, is closed and
cofinite, it is sufficient to show that K,N C is closed and cofinite
for any commutative unital C*-subalgebra of C. Corollary 3.2 shows
that the hull of K, N C is finite. If ker FE K, NC let ¢, ¢, +++, ¢,
be chosen in K, N C such that ¢,c; = 0 if 7+ 7 and such that ¢; =1
in a neighborhood of @, where

{q)ly Tty g)n} = F\hull (KT n C)

and such that ¢,(®;) =0 if 7 = .

If ae K, N C then a — Ta(®,) ¢, cker F and since ker F' is closed
it follows from the definition of K, that K, N C is closed: suppose
{e.} c K; N C converges to a; then a, — Xa,.(®;)c; — a — Xa(p;)c;, S0
if ce X and del, then

T(c(a — Ja(p,)e)d) = T(cad) — Ja(p,)T(ce.d)
which shows that (¢, d) — T'(cad) is continuous, i.e. that ac K, N C.

COROLLARY 3.5. The bilinear maps

(a, b)) — T(ab): Ky X I, — B
and
b, ) — T(ba): I, x K,—— B
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are continuous.

The next result corresponds to [5, Theorem 3.8] and is a
generalization of [4, Theorem 5.1].

THEOREM 3.6. In addition to the above assumptions suppose B
to be a Banach space. Then T is continuous on the two sided ideal
K, I, which is dense in I,.

Proof. Let ¥ be the extension by continuity to K, X I, of
the mapping (a, b) — T(ab) mentioned in Corollary 3.5. We may
also consider ¥ a continuous linear operator from the projective
tensor product K, ®, I; into B. Let 6: K, ®, I; — I; be defined by
0>x, ® y;) = Zx;y;- By Cohen’s factorization theorem 6 is surjec-
tive so by the open mapping theorem 67 I, — K, R, I; [ker (f) is
continuous.

As we shall see below, ker & & ker ¥ so the composition @ =
¥of': I, — B is well defined and continuous. On K,I, S I; we have
?(ab) = ¥(a, b) = T(ab) and consequently T is continuous on K,I,.

It remains to see that ker 8 S ker 7.

To that end we can refer to Sinclair’s proof in [5, Theorem 3.8]
in which a similar claim is established.

The density of K,I, in I, is clear from the fact that K, 2 I,.
That completes the proof.

We are now in a position to state and prove the main result of
this section (cf. the introduction to this section).

THEOREM 3.7. Let A be a C*-algebra, B a Banach space, T a
linear map of A into B, separable with respect to algebra multi-
plication. Then T is continuous on a dense subalgebra of A.

Proof. By Theorem 3.6 T is continuous on the two-sided ideal
K,I, which has cofinite closure [4, p. 501]. By [3, Theorem 6]
there is a finite dimensional subspace F of A such that K,I, + F is
a dense subalgebra on which 7T is clearly continuous. That proves
the theorem.
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