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TRANSFER THEOREMS FOR TOPOLOGICAL
STRUCTURES

FRED HALPERN

Transfer theorems are obtained for the following mathe-
matical situations.

^ is a dense substructure of the compact structure X.
{^} is the set of all finitely generated substructures of
X. F is a structure of functions from Y to the structure X.

The sentences transferred in the above situations are
best described as "almost" positive, variables appearing in
a negative subfoπnula are quantified in a prescribed manner.

The main tools of this investigation are the manipula-
tion of classical transfer theorems in the context of com-
mutative diagrams, the ultraproduct construction, and the
^-limit operation of Chang and Keisler's "Continuous Model
Theory."

Introduction* Every subgroup of an abelian group is abelian,
any extension ring of a ring with zero divisors has zero divisors,
and each homomorphic image of a commutative ring is commutative
are instances of classical transfer theorems (Lemma 1). In this
paper transfer theorems are obtained for the following mathematical
situations:

X is a dense substructure of the compact topological structure

X,
{XJ is the set of all finitely generated substructures of X, and
F is a structure of functions from Y to the structure X
The sentences transferred in the above situations are best

described as "almost" positive, variables appearing in a negative sub-
formula of the sentence are quantified in a prescribed manner.

The main tools of this investigation are the manipulation of the
classical transfer theorems in the context of commutative diagrams,
the ultraproduct construction, and the ϋ^-limit operator popularized
by Chang and Keisler [3].

Consider a first order language Sf and its associated structures.
A formula σ is identifined with its prenex normal form, i.e., σ is
assumed to be of the form

QiV1Q2v27 . . - , QnvnM,

where each ζ^ is a quantifier (V or 3), each vt is a variable, and M
is a formula constructed from (positive) atomic formulae and their
negations, negative atomic formulae, using the connectives "and"
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and "or" (Λ and V). Qxv19 , Qnvn is the prefix, and M the
matrix, of σ. A variable or constant term is negative in σ if it
occurs in some negative atomic formula of σ. Formulae are classi-
fied on the basis of their prefix and matrix.

Assume a formula σ = Q1v1Q2va, -, QnvnM. σ is positive (nega-
tive) if its matrix M is constructed solely from positive (negative)
atomic formulae, σ is universal (existential) if each quantifier of
its prefix is a universal (existential) quantifier, o is universal-
positive if it is both universal and positive.

Vector notation will be used when convenient. σ(vlf ---,v%) is
w r i t t e n cr(v), σ(cίf « , O a s cr(c), a n d l v ί f , 3vnσ(vlf •••, v n ) a s

Let j y be a structure. Ssf \- σ(a) denotes that the w-tuple a
of elements of J ^ satisfies the formula σ(v). Let φ be a function
between the structures J ^ and ^ . φ preserves the w-ary operation
F(v) if F(φ(a)) = φ(F(a)) for all ^-tuples α of elements oi Jzf. φ
preserves the formula σ(v) if j y 1- ίτ(α) implies & V- σ(φ(a)). &
is a homomorphic image of J ^ if there exists a function φ from
J ^ ow£o & which preserves all operations and positive atomic
formulae. σ(v) is preserved under homomorphic image if σ(v) is
preserved by all onto homomorphisms. j y is a substructure of ^
(and & is an extension of J ^ ) if there exists a 1 — 1 function φ
from j y to & which preserves the operations, positive atomic
formulae, and negative atomic formulae of j^Γ σ(v) is preserved
under substructure if & \- σ(b) and 9?(α) = b imply J ^ I- σ(a) for
every substructure morphism φ: J^f —> ^ . σ(α) is preserved under
extension if σ(v) is preserved by every substructure morphism.

LEMMA 1 (Classical Theorems). Let σ be a formula.
(i) (Los, Tar ski) σ is preserved under substructures iff σ is

universal.
(ii) (Robinson) σ is preserved under extensions iff σ is

existential.
(iii) (Lyndon) σ is preserved under homomorphic images iff σ

is positive.

I* Main results* Jzf is a topological structure if its under-
lying set A is endowed with a Hausdorff topology wherein each
operation of S%f is continuous and wherein each w-ary relation of
J ^ is closed as a subset of An; Stf is a compact topological struc-
ture if its underlying topology if compact. Jϊf is a dense substruc-
ture of the topological structure ,S*f if J ^ is a substructure of Ssf
whose underlying set is topologically dense in Jzf. The collection of
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compact structures ^ compactίfies the collection of structures
if each structure of ^ is a dense substructure of a member of

The formula σ is ^-generalized positive if the prefix of σ
begins with an initial string of existential quantifiers (i.e., σ =
ivQiVu •> QnVnM) such that every negative variable of σ is free
or existentially quantified in the initial string 3#. The negation of
a 3-generalized positive formula is called a V'-generalized negative
formula; it begins with an initial string of universal quantifiers
such that each of it nonnegative variables is free or universally
quantified in the initial string.

THEOREM 1. Let Szf be a dense substructure of the compact
structure S^. Every ^-generalized positive sentence satisfied by <S>f
is satisfied by ,5/.

This generalizes a result of Robinson [7].

THEOREM 2. Let ^ compactify the collection of structures ^ .
( i ) Every ^-generalized positive sentence satisfied in ^f is

satisfied in ^£.
(ii) Every Ί-generalized negative sentence valid in Λ€ is

valid in

COROLLARIES TO THEOREM 2. Let σ be a ^-generalized negative

sentence (in an appropriate language).
2.1. σ is valid for all extensions of the group & if σ is valid

for all compact groups which are extensions of &.
2.2. a is valid for all total orderings if σ is valid for all

complete total orderings.
2.3. σ is [valid for all totally ordered lattices extending the

ordering Jf if σ is valid for all complete totally ordered lattices
extending J^\

2.4. σ is valid for all distributive lattices if σ is valid for
all complete distributive lattices.

2.5. σ is valid for all boolean algebras if σ is valid for all
complete boolean algebras.

The corollaries to Theorem 2 follow from:

Every group is a dense subgroup of a compact group (Kelly
[6], p. 247).

Every total order can be (densely) embedded in a complete total
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order, and every complete total order forms a compact topological
space wherein the lattice operations, Λ and V, are continuous
(Birkhoff [2] pgs. 240-253).

The lattice (boolean algebra) of all subsets of a fixed set X
endowed with the interval topology forms a compact topological
space wherein the lattice (boolean algebra) operations are continuous.
Every distributive lattice is isomorphic to a ring of sets, and every
boolean algebra is isomorphic to a field of sets.

Corollary 2.3 considered the total order as a lattice so as to
enlarge the class of sentences preserved. The analog of Corollary
2.3 for arbitrary lattices in false. It is difficult to go from complete
lattice to compact-Hausdorίf space. In fact,

Counterexample 1.1. (Birkhoff [2], pgs. 126-128.) The comple-
tion by cuts of the modular lattice of all subspaces of Hubert
space which have finite dimension or codimension is nonmodular (i.e.,
does not satisfy the modular equation).

Counterexample 1.2. If in Theorem 1 the hypothesis, the topology
of j y is compact, is replaced by the topology of J ^ is a complete
metric space, even positive sentences are not preserved.

Let σ = Vylx(y2 — 2)x — 1. Rationale 1- σ, but not Reals h- σ.

Counterexample 1.3. It does not seem that the class of sentences
preserved under the hypothesis of Theorem 1 can be enlarged. A
reasonable conjecture would be the class of all sentences whose
negative variables are existentially quantified.

Consider the sentence in the language of order which states no
first element exists,

σ = Vx3y3z(# <: x and z ^ y and z Φ y) .

The open interval (0, 1) is dense in [0, 1]; (0, 1) h- σ, but not [0, 1] h- σ.
The collection of substructures {Jϊζ} generates the structure Szf

if each finite subset of Ssf is a subset of some Ĵ f. The formula
σ i s V+l-generalized positive if σ = Q^v19 •••, QnvnlvM ( v a r i a b l e s of
3v are called terminal) such that each existentially quantified variable
is terminal, or is nonnegative and does not appear in any atomic
formula in which a terminal variable appears.

A formula σ is universal-existential if σ = VwΊvM.

THEOREM 4. Let {J^] generate the structure
( i ) (Los and Susco) Any universal-existential sentence valid in

is satisfied by
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(ii) //, in addition, Jzf is a compact structure, then every
V+3-generalized positive sentence valid in {.J }̂ is satisfied by

COROLLARIES TO THEOREM 4. Let σ be a V+l-generalized positive
sentence.

4.1. // σ is valid for all finitely generated groups, then σ is
valid for all compact groups.

4.2. // σ is valid for all finite total orderings (viewed as a
lattice), then σ is valid for all complete totally ordered lattices.

As an application of Corollary 4.2, every totally ordered complete
lattice must have a first element. The situation is radically different
if we inquire about second elements. We counterexample attempts
to weaken conditions on sentences preserved under the hypotheses of
Theorem 4 (ii). Examples are taken from the language of total
orderings with first element 0 and last element 1.

Counterexample 4.1. Consider the sentence which has a non-
terminal existentially quantified negative variable,

σ = 3xVy(x Φ 0, and x <S y or y = 0) .

σ asserts the existence of a second element, σ is not satisfied by
the complete total ordering [0, 1], but every finite subset of [0, 1]
satisfies σ.

Counterexample 4.2. Consider the sentence which has a non-
terminal (nonnegative) existentially quantified variable which appears
in an atomic formula with a terminal variable,

σ = 3xVylz(z = x and z Φ 0, and y = 0 or z ^ y) .

Again, σ asserts the existence of a second element. [0,1] doesn't
satisfy σ, but each finite subset does satisfy σ.

Let Sxf be a structure, Sf1 denotes the product structure whose
underlying set is the set of all functions from I to <S>f such that
operations on functions of J ^ 1 are performed coordinatewise and,
such that an atomic relation holds in Jzf1 iff it holds in each coordinate.
F is a functional structure of range Szf if F is a substructure
of S)/1 which contains all constant functions. The functional struc-
ture Fa Ssf1 has finite solution property if, for all unequal /, / ' e F,
{iel\f(i) =/'(i)} is finite.

The formula σ is V4-generalized positive if no negative variable
of σ is existentially quantified.
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THEOREM 5. Let F be a functional structure of range
( i ) Every V+-generalized positive sentence satisfied by F is

satisfied by *S%f.
(ii) //, in addition, F has the finite solution property then

every V+3-generalized positive sentence satisfied by F is satisfied by

The negation of a V+-generalized positive sentence is a 3+-
generalized negative sentence; it has the defining property that each
variable appearing in a positive atomic formula is existentially
quantified.

COROLLARY 5.1. Every 1+-generalized negative sentence is pre-
served under direct powers.

COROLLARY 5.2. ( i ) The ring of real polynomials in one
variable is functional over the ring of real numbers, with finite
solution property.

(ii) Theorem 5 (ii) may be applied to the ring of functions
analytic in the circle, \z\ < 1.

(iii) Let & be a ring and M and M' ^-modules. The module
of homomorphisms from M to M' is a functional structure of range
M'.

If, in addition, M is irreducible (has no nontrivial submodules),
the above module of homomorphisms has the finite solution property.

2* Proof of theorems* The function φ from Sxf to & is an
elementary embedding if, J ^ h- σ(a) implies έ% \- o{φ{a)) for all
formulae σ(v).

Throughout this section I denotes a fixed index set. ^ is a
filter on / if £& is a subset of the power set of I, such that

if I e ^ and XQYQl, then Ye 3f, and

if X, Ye ^r then Xf)Ye^r.

An ultrafilter on / is a maximal filter on I, i.e., a filter ^ on ί
such that, for all X Q I, Xe^r or I-Xe&r. UieiXi (ILe/J^)
denotes the cartesian product of the sets {XJΐ6i (of the structures
{•î ihei). When Vie/ Xi = X, Yli&IXi is written X1, and similarly
for structures. X1 can be identified with the set of all functions
from I to X; an embedding diag: X—>XJ is obtained by identifying
xeX with the function with constant value x. For feY[ieIXi9 f(i)
denotes the ith coordinate of /.
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Assume a set of structures {J^} ie7 and an ultrafilter 3? on /.
The ultraproduct of {J&ϊ}ieI by 3P, written Π ^ J / ^ i is the homo-
morphic image of the product structure JliζI*M induced by the
congruence relation

/ = / ' iff { ΐ | / ( ί )=/ '( i )}e^; (

In the case Vie I jy; = Szf, the ultraproduct is called the ultrapower
of j y by 3f and is written J^ 7 /^- Members of Π *S&il3ί are written

€ Π

LEMMA 2 (Los). The diagonal embedding diag: J^~> S/τ\&ί is
an elementary embedding.

DEFINITIONS. ( i ) J^f is the outside of a ^-sandwich if there
exist functions

such that ^ is a substructure morphism, τ/r is a substructure
morphism, and

φoψ = diag:

(ii) J ^ is a retract of ^ if there exist functions

ψ

such that 95 is a substructure morphism, ψ is an onto homomorphism,
and φ o ψ — identity of Ĵ Γ

(iii) Ssf is a strong retract of ^ if there exists functions

such that J ^ is the outside of a .^-sandwich by
and j ^ is a retract of ^ by

ψ

x

(iv) ^ is an ultrahomomorphic image of j ^ Is there exists
a commutative diagram
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Ψ ^

\ /
diag\ /ψ

such that φ is a substructure morphism and ψ an onto homomorphism.

THEOREM 6. Let σ(v) be a formula, j y α substructure of &

> ^P* and a an n-tuple of elements of Ĵ C a shall also
denote the n-tuple of elements of .&, φ(a). & I- σ{a) implies
St? H σ(d) if

( i ) (Keisler) j ^ is £fce outside of a .^-sandwich and σ is a
universal-existential formula.

(ii) (Keisler) Jx? is a retract of & and σ is a V+-generalized
positive formula.

(iii) J ^ is a strong retract of & and σ is a ^^-generalized
positive sentence.

(iv) // & is an ultrahomomorphic image of J%f and σ is a
^-generalized positive sentence, then S?/ \- σ(a) implies £@ h- σ(d).

Proof. Results follow by induction on the number of quantifiers
in σ(v). We assume our language, has constants for each element
of J ^ f {a}aeJs, and constants for each element of &, {b}be& The
interpretation of constants will be specified in each situation.

( i ) Let J ^ —̂ -> & > Sxfι\3ί be a ^-sandwich.
The constant symbol a is interpreted as φ(a) in & and as

aoβ(a) = diag(α) in J ^ 7 / ^ (it is here that we use <χo β = diag, to
obtain an unambiguous interpretation of a in J&Ί/&). b is inter-
preted as ψ(b) in J^7/^5* and is not assigned an interpretation in Ĵ C

Assume ££ satisfies a universal-existential formula,
& \-VwlvM(w, vf d). We show that J^f satisfies same formula. It
suffices to show that, for each w-tuple a! of elements of ^f,

Jx? μ ZvM(a', v,a) .

Clearly, & V- lvM(d', v, a). Thus, for some 6, & V- M(ά', b, a).
Since ^ is a substructure of J ^ 1 / ^ , JtfJ^ \- M(a', b9 a).

Thus J^1/^ \~ 3vM(a', vf a). Hence, Szf h- 3vM(ά', vf a).
(ii) Let

be a retraction.
a is interpreted as φ(a) in & (note that, since φof=z identity



TRANSFER THEOREMS FOR TOPOLOGICAL STRUCTURES 435

of jyζ the interpretation of a in <s*f is unambiguous), b is inter-
preted as α/r(6) in Sxf.

Consider a V+-generalized positive sentence σ (α, b) in which no
constant of b is negative. We show that

(1) & \- σ(a, b) implies Szf t- σ{a, b) .

(1) is trivial if σ(α, b) has no quantifiers.
Now consider σ(a, 6, v) where no constant of b is negative.
Assume that V 6 e ^ , (1) holds for σ(α, 6, 6).
If & h- Vvσ(a, b, v), then Vα e Ĵ T ^ f- σ(a, 6, α). By induction

hypothesis, Vα e Jxζ Sx? \- σ{a, δ, a). Thus j y h- Vvσ(a, 6, v). This
completes the first part of our induction.

Now assume that v is not a negative variable of <τ(α, &, ̂  ) and
assume ^ 1- 3vσ(α, 6, v). For some b e ^ , ^ h- tf(α, 6, 6). Since v
was not a negative variable, 6 does not appear negatively in σ(a, b, b)
and hence σ(a, 6, b) falls under the induction hypothesis. Thus
Stf h- σ(ά, b, b) which implies J ^ h- lvσ(a, b9 v). This completes the
induction.

We shall prove (iv) and then prove the difficult (iii).
We assume a language with special symbols for true and false,

t and /; we will also assume these symbols may be subscripted by
a formula σ, ta and fσ. pσ shall vary over {ta, fσ}. σ[φ/ψ] denotes
the formula resulting from replacing each occurrence of the formula
φ in σ by ψ; and similarly for finite sets of formulae Φ,

(iv) Assume the ultrahomomorphism

\
diag\

a is interpreted as φ(a) = (diagoq/r) (a) in .^. 6 is not inter-
preted.

Let lvσ(a, v) be a 3-generalized sentence, i.e., σ(a, v) has no
negative constants or variables other than those of a and v. Note
that σ(a, v) may contain- other quantified nonnegative variables.
Assume j y h- lvσ(a, v). We show & h- lvσ(ay v). ^/ \- lvσ(ά, v)
implies Szf h- σ(a, a') for some a'. Let Nσ denote the set of negative
atomic formulae appearing in σ(a, a'). By the form of σ(a,.v), each
formula a of Nσ has no variables and contains only the constants
of a and α'.

(2 ) Va e Nσ, Szf \- a iff & \- a .
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Write pa = ta if Sif \- a; pa = /„ otherwise (α e iVσ), and define
<7*(α, α') = (τ(α, α')[α/P«]αeΛv Since j y is a substructure of & and

( 3 ) & \- a < »• pα .

Now, j y H σ*(α, α') whence J ^ 7 / £ ^ h- σ*(α, ©'). Also σ*(α, α') is a
positive sentence. & h- ίτ*(α, a') by Lemma 1 (iii) since & is a
homomorphic image of J ^ 7 / ^ .

^ h- σ*(α, α') [p«/α]α6^ by (3). Thus, & V- σ(a, a') and

(iii) Let s*f Λ ^ -1' J ^ 7 ^ , ^ i j / be a strong retract.
α is interpreted as cp(α) in ^ and as φoψ = diag (α) in Sz
b is interpreted as ^(6) in J^1/^ and as χ(δ) in J^. To

emphasize interpretation in Jzf (and to avoid confusion), χ(b) is
written 6.

Let σ(af 6) = Q^i, , Qwvw3vM(α, 6, v) be such that

( 4) No existentially quantified variable of

(Vu 'm'>vn) and no constant of b is negative or appears in any
atomic formula with a variable of v.

(5 ) & h- σ(a, b) implies Sf \- σ(a, 6), notice b ,

is shown by induction on the length of Qxv19 •••, Qnvn.

If n = 0, σ(a, b) is of the form lvM(a, b, v). Assume

& \- 3vM(a, &, v). Set AM = the set of positive atomic formulae of

lvM(a, bt v) in which variables v do not appear. Va e AM write

pa = ta if & Y- a(a, b); pa = fa otherwise, and define

lvM*(a, v) = lvM(a, 6, v)[α/pj α e i l j f .

Now, & \- lvM*(a, v) and no constant of b occurs in 3vikf*(α, v) by

(4). j y 7 / ^ l- 3ϊikP(α, ί ) since J^1/^ is an extension of &. Thus,

J ^ l- 3ΪM*(α, v) as no variable of b occurs in M*(5, v). Consider

lvM*(a, v)[pa/a]aeAM. If & \- α(α, 6), then Jzf I- α(α, 6) since a(a, b)

is positive and Jϊf is a homomorphic image of &(a(ά, b) e AM).

Thus, if & \- a(a, b) (i.e., pa = ίβ), then J ^ h- 3^M*(δ, ί)[pα/α(α, $)].

Now, if not ^ f- a(a, 6), then ί9α = fa and it does no harm (by the

form of ilίf*) to replace fa by a(a, b). Thus J ^ h- 3vilί*(α, ^)[^ α /α] α 6 ^.

Thus, J ^ f- 3vM(a, 6, v).

We complete the induction.

Let Vvσ(a, 6, v) obey (4) and let & h- Vvσ(a, b, v). Va e

& h- σ(α, ί, α) and σ(a, 6, α) obeys (4). Thus by induction
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hypothesis, Vαe Jzf, Jzf \- σ(a, δ, a). Hence J ^ h- Vw(a, δ, v).
Let lvσ(a, δ, v) obey (4) and let & h- lvσ(a, δ, v). For some

be &, & h σ(a, δ, δ) where σ(a, δ, δ) obeys (4) since lvσ(a, δ, v)
obeys (4). _ By induction hypothesis, J ^ h- cr(α, 6, δ). Thus
Sxf h 3w(δ, δ, v).

We prove Theorems 1-5 by showing that each situation yields
a diagram to which Theorem 6 applies. Let I be a set. Sω(I)
denotes the set of all finite subsets of /. & is a regular ultrafilter
on Sω(I) if 3f is an ultrafilter on Sω(I) such that

Vioe J, {SeSω(I)\ίoeS)e&r.

It follows that {SeSω(I)\ TaS}e^r for each finite Tczl.
Assume a topological space X and ultrafilter £%r on I. For each

xeX and feX1, x = ^-limit / if {i |/(i)e Vx}e& for each open
set Vx containing x.

Essentially the i^-lim operator on sequences feX1 acts like the
limit operation on countable sequences, with the added property that,
if X is a compact space, ^ - l i m / always exists. The properties of
the ^-limit operator are listed below. A more complete teatment
is provided in Chang and Keisler [3], pgs. 6-15.

Let X be a topological space with basis δ (i.e., for each open
set V, V = UoeaO) and let £& be an ultrafilter on I. f will vary

OSF

over elements of X1.
&-L0 3ί-X\τcιf is unique.
Sί-ΊΛ If {i|/(i)= f'(ί)}e&, then ^-lim/= .^-lim/' (or both

don't exist).
^r-L2 Ξt-Yrm (flf , fn) = <&r-]imflf . , &Λimfn).
3r-L% 3ί-Y\mf belongs to the closure (in X) of the range of /,

(range / - {x e X \ 3t 6 /, f(ί) = x}).
3?-Lβ> The ^-limit of a constant sequence equals that constant

value.
^ - L 4 If F is a continuous function from X to Γ, then ^ r -

If 5 is a closed ^-ary relation and Vie I, Rif^ϊ), •• ,/»(i)),
then iJί^-lim/i, ••-, ^ - l i m / J .
If X is a compact space, then VfeX1 £2f-\\mf exists.
If ^ is a regular ultrafilter on / = SJδ), δ a basis for X,
then, for each set S £ X and limit point #0 of S, there
exists a sequence feS1 such that ^ - l i m / ^ a;0.
If X is dense in X, for each x0 e X, there exists an X-
sequence feX1 such that £^-lim/= #0 O β., the map

X 7 > X is onto).
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THEOREM 7. Let *Szf be a dense substructure, of the compact

structure J^, Jϊf —• Jzf. For some set I and ultrafilter ££f on 1
is a homomorphic image of Szf1!^ (via the map rj) such that

diag/ ^

commutes.

Proof. Let Jzf have basis δ. Let &f be any regular ultrafilter
on J - Sω(3).

Define the function η: J^1!^-^^ by η(fl^) = &-\imf.
Since Ssf is compact, by ^ - L 5 , η is defined V//^6 Stf^Ξϊ. rj is
well defined by 3$-1Λ, rj is a homomorphism of structures by u^-L4
and ^ - L 4 ' , and 57 is onto by ^ - L 6 ' . Finally, by ^-1/3', the
diagram of Theorem 7 commutes.

THEOREM 8.

( i ) If *_$%f is a dense substructure of the compact topological
structure Szf, then S%? is an ultrahomomorphism of S/l

(ii) If {J&j} generate Ssf, then J^ is the outside of a
Hiei <-&KI^-sandwich for some ultraproduct ΐ[ίei J#Z/&.

If, in addition, j y is a compact structure, then Ssf is a strong
retract of ϊltei*S#Z/&

(in) IfFQ S^1 is a functional structure of range J ^ then
j y is a retract of F.

If, in addition, F has the finite solution property, then S/ is
a strong retract of F.

Proof. (i ) follows from Theorem 7.
(ii) Let { J ^ W generate J ^ Let / = Sω(£/) and ^ be a

regular ultrafilter on /. Assign to each i e Sω(Jϊf) some structure
j^l from {Jtfj}jej such that i c J < . Consider JJ_ieiJ#ϊ/£?.

j y is a substructure of Πiei JK/& by the map φ, where
φ(a) — f/£gr such that f(i) — a if a e i and f(i) is arbitrary otherwise.
Also, since J^c^f, J[ieI J^/& c Jϊf1/^.

Finally, if j ^ is a compact structure, then i^-lim is a map
from jy 1/^" t° ^ Since J\iei *-&ζ/& contains all constant func-
tions, the restriction of i^-lim to ILei J ^ / i ^ is onto.

(iii) Since F contains all constant functions the map J^—>F

is obvious. Choose any a e Ssf; the projection map F —> Ĵ < defined
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by ψ(f) = f{a), is onto since F contains all constant functions.
If, in addition, FaJ&l has the finite solution property, then

{{̂  I/(Ό =£ /'(*)} !/=£ / ' e ̂ } has the finite intersection property and
can be expanded to an ultrafilter £& on L Clearly, the canonical
map F-+Jfτ\3f is 1-1 {Fas/1).

Theorems 1-5 readily follow from Theorems 6 and 8.

FINAL REMARKS. Theorems 1 and 2 apply to dense substruc-
tures of compact topological structures. We consider the non-
compact case. A sentence σ is (3-generalized V)-positive if σ =
3vVwM(v, w) where M is quantifier-free and every negative variable
of M is existentially quantified in Iv.

THEOREM 3. Let Jzf be a dense substructure of the (Hausdorff)
topological structure Ĵ Γ Every (3-generalized ^-positive sentence
satisfied by <Ssf is satisfied by

The proof of Theorem 3 is similar to the proof of Theorem 1.
Instead of a homomorphism from an ultrapower of Ssf onto Stf, one
obtains a homomorphism from a subset of an ultrapower of J ^ onto
s/ (the domain of the homomorphism is the set of all sequences
whose ^-limits do exist). Theorem 3 then follows from a result of
Keisler [5].

LEMMA 3 (Keisler). // Jx? is a substructure of & such that
&§ is a homomorphic image of a substructure of an ultrapower
of S^f such that Va e S& the image of a under the homomorphism
is a € &, then every (3-generalized ^-positive sentence satisfied by

is satisfied by &.

It is also shown in Keisler [5] that the sentences preserved
under inverse limits are precisely the negations of (3-generalized V)-
positive sentences.

Theorem 6 (iii) and (iv), as well as (i) and (ii), are characteriza-
tions, i.e., the classes of sentences described are the set of all
sentences preserved under the indicated algebraic operation. Other
preservation theorems and concepts may be found in Bell and
Slomson [1] and Chang and Keisler [4].

We have just recently been able to extend Theorems 1-4 applied
to groups to a weak second-order language where quantification
over subgroups and normal subgroups are permitted. One must
restrict the notion of subgroups to topologically closed subgroups.
These results will appear elsewhere.
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