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REMOVABLE DISCONTINUITIES OF A -HOLOMORPHIC
FUNCTIONS

I. GLICKSBERG

Under certain conditions a function continuous and
A-holomorphic off a peak set extends continuously to the
peak set if its restriction to the Silov boundary does.

1* Let A be a uniform algebra with spectrum M = MΛ and Silov
boundary dA. A function / is called A-holomorphic on an open subset
U of M iί it is locally uniformly approximable there by elements
of A.

For K a zero set of A lying in the Choquet boundary, it was
shown in [2, Th. 3] that any feC(M\K), A-holomorphic on M\dA,
has a countinuous extension to M if / | (dA\K) has an extension in
C(dA). Only at a late stage in the proof did it come into play that
K was in the Choquet boundary, in the guise of the uniqueness of
representing measures for its points1, and in some special situations
this use of uniqueness in the proof is unnecessary. Here we want
to note a variant of this kind which exploits the setting in which the
abstract Radό theorem [1] holds, but features only a peak set K in
M rather than a zero set. As was actually the case in [1, 2], M need
only be a closed boundary for A for which local maximum modulus
holds relative to another boundary 9 (i.e., for any open U in M\d
and aeA, |α(ϊ/) | <£ sup|α(9£7), where dU is the boundary of U in
M). Our main assumption about A is that

(1) A is an intersection of closed subalgebras Aa of C{M), each
satisfying local maximum modulus relative to 9 and maximal with
respect to this property.

In particular 9 is a boundary for Aaf and A itself then satisfies local
maximum modulus relative to 9; moreover any A with this last
property lies in maximal algebras of the above kind by the proof of
[1, 3, 4], while [1, 3.3] (applied to each Aa) shows that Radό's theorem
holds for an algebra A satisfying (1): / e C(M), A-holomorphic on
M\{f~ι{ϋ) U 9) is necessarily in A. (We should also note that an Aa

which satisfies local maximum modulus and is relatively maximal in
C{M) (i.e., for which properly larger subalgebras of C(M) have
properly large Silov boundaries) is maximal in the required sense when
9 = dAa for all a.)

1 K could have been any nowhere dense zero set in M for which all elements have
unique Jensen measure on d, as is easily seen (cf. [2, p. 405, midpage]).
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418 I. GLICKSBERG

Now suppose Ka M is a nowhere dense peak set and / e C(M\K)
is A-holomorphic on M\K (or just on M\(d U K U f~ι(0))), while
/ I (3\iίΓ) extends continuously to an element of C(d). As we shall
see later by an example, (1) is not sufficient to imply / extends to
an element of C(M), but there are simple conditions insuring this:
for example, suppose there is a w* continuous "section" t from M
into the representing measures on 3 for which t(φ) represents φ on
A. Then if g e A peaks on K and we set

ί9Λ (/ exp(-e/(l - gy>) on M\K
( 2 ) Λ (0 oni f

(where | arg (1 — g)1/2 | ^ ττ/4) then /£ e C(ikf) and is also A-holomorphic
on (M\(d {JKΌ /-L(0)) = M\(3 U /Γι(0)), so /. e A by Radons theorem,
whence t(φ){fε) = fε(φ). Now for any λ ;> 0 representing φ e M\K,
X(K) - lim X(gn) = lim g(φ)n = 0, so the restriction λ* = 0, and X is
carried by M/K; in particular this is true for t(φ), and since /ε—•/
on ikί\£Γ as ε—^0, while | / e | ^ | / | , by dominated convergence
t(Φ)(fd = fti) implies t(φ)(f) = /(^), ^ e M\K. But by hypothesis
/ I (d\K) has a continuous extension h in C(3) while φ —> ί(^) is w*
continuous into the space of measures on 3, so that Φ—>t(φ)(h) is
continuous on M, and coincides with / on M/K since

t(*)(λ) = t(φ)M,κ(h) = t(φ)(f) = f(φ) for ^ e l \ i ί ,

It is precisely the fact that fεe A which allows us to improve
on [2, Th. 3] in our special setting.

Call a representing measure λ on 9 for φ e K accessible from
M\K if it is the w* limit of a net {Xδ} of representing measures on
3 for points in M\K. (We can in fact allow the Xδ to be complex
representing measures if we insist they be carried by d\K, which is
automatic for Xδ ^ 0 as we just saw.) Finally, let Mφ denote the
set of representing measures on 3 for φ.

THEOREM 1. Suppose A satisfies (1), KaM is a nowhere dense
peak set, and

( 3 ) / e C(M\K) is A-holomorphic on M\(d U K U /"'(O)) while
f I (d\K) has an extension in C(d).

Then f extends continuously at each φe K for which the subset
of Mφ accessible from M\K is convex2. In particular, if the latter
holds for all φe K, f has a continuous extension to all of Mwhich (by

2 We could equally well only assume that for any pair λ, )! of Jensen measures in
M% we have elements )Λ — λ, λ2f , λn = λ' in Mφ

a for which the open segment joining
λi nd λi+ι contains an element of Mφ

a (so in particular if λ, V can be joined by a finite
chain of convex subsets of Mf), as is easily seen from the final step in the proof.
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Radό's theorem) is in A.

Alternatively, we could replace representing measures by Jensen
measures everywhere, including the definition of accessibility. More-
over, when 3 = dA, accessibility for all φ in K is a priori a weaker
condition than one which is fully equivalent to the existence of a
continuous extension to M for each / satisfying (3). Indeed let A1

denote the measures on 3 orthogonal to A, and Aκ> the set of re-
striction of such measures to the complement K' of K. (Ajt> c A1

of course since μeA1 implies μκeAλ.)

THEOREM 2. If A satisfies (1) for 3 = dA the following are equiva-
lent:

(a) Every f satisfying (3) has a continuous extension to M.
(b) Ag, is w* dense in A1.
(c) The real elements of A1 lie in the w* closure of A}

K"

COROLLARY 3. If A satisfies (1) for 3 = dA then the set of
accessible elements of Mφ is convex for each φe K only if Ak> is w*
dense in A1; moreover this w* density implies each element of Mφ

is accessible from M\K using complex representing measures.

We shall first prove Theorem 2 and Corollary 3, and then return
to Theorem 1.

Proof of Theorem 2. Evidently (b) implies (c). To see (c) im-
plies (a), suppose / satisfies (3) and in fact is extended to 3 U (M/K)
so / I 3 is in (7(3), while the real elements of AL lie in the w* closure
of Ai>. As earlier, fε defined in (2) lies in A by Radό's theorem,
while fe — / on M\K and \fε\^\f\ there. So since fε 1 Ai> c A1,
by dominated convergence f ± A^>\ but / | 3 e C(d) and the w* closure
of A£/ contains the real elements of A1, while all our measures are
carried by 3, so / (as extended) is orthogonal to those real measures.

Now for any φeM, if λx, λ2 e Mφ then / 1 (\ - λ2) so that / is
constant on Mφ: thus λ—>λ(/) is a continuous function on the w*
compact space S of all multiplicative probability measures on 3 which
is constant on each set of constancy of the natural (continuous) map
of S onto ikf, so setting f(φ) — λ(/) for any λeM^ defines an
feC(M). On the other hand the fact that λ(/ε) = fε(φ) for XeMφ

and φ 6 Λf\jδΓ implies λ(/) = f(φ) by dominated convergence again, so
/ = / on M\Kj and / is the desired extension of /.

It remains to prove (a) implies (b), and we argue by contra-
diction. Suppose that A^> is not w* dense in A1, so we have an
h e C(d)\(A I 3), hi A&r Since Ak> is an A-module, h l AAk> c Ak>,
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or A 1 hAk>, so {hAk>) c AL and thus hAκ, c Aκ

So h 1 ΛAi> or A,21 A*/, whence Afc21 Aκ>\ continuing we see that
Ah is orthogonal to the closed subalgebra B of C(d) generated by
A and h. Moreover for φ e M\K, the elements of Mφ all coincide
on any δe B exactly as before: Xu X2eMφ implies \ — λ2e Aκ,. So
we can view B as a subspace of the space of continuous functions
on M\K as in the preceding paragraph (although here our space of
measures and M\K are only locally compact): we set b(φ) — X(b),
X e Mφ. Finally if we now define hε on 3 as in (2) to be 0 on Kπ 3
and Λ exp(— ε/(l — g)1/2) on d\K then hεeh(A\d) (since the expo-
nential, defined to be zero on K, lies in A by Radό's theorem); thus
hε 1 Ax

κ, and since it vanishes on K, hε 1 A1. Consequently hεe A | 3
and for ψ e M\K and X e Mφ, X(h?a) = X(hε)

nX(a), a e A. So by domi-
nated convergence X(hna) = X(h)nX(a), which shows λ is multiplicative
on B, and thus that our injection b —* b of JB into C(M\K) is an
algebra homomorphism. Now for # e 3\iΓ, b(φ) = δ(̂ ) since we may
use the point mass for λ; in particular then h e C(M\K) has

K\(d\K) = h\(d\K)eC(d)\(d\K) .

In fact h is A-holomorphic on M\K9 for Λe = hz e A, since λ, e A | 3;
thus dominated convergence and Mazur^s theorem guarantee that h
is uniformly approximable by elements of A on any compact subset
of M\K. Now our function h satisfies (3), and if it had a continuous
extension k to all of M then by [2, 3.5] (a variant of the Radό
theorem) ke A since it is A-holomorphic except on a nowhere dense
zero set K. But k = h on 9\J5Γ, hence on (d\K)~9 and that set is
precisely d (otherwise K f) d contains a nonvoid subset open in 3 = dA,
so contains a peak point, whence the zero set K has nonvoid interior
in M by the basic lemma 2.1 of [1]). So we conclude h — k on 3
and h e A | 3 despite that fact that & g A | 3. Our assumption that (b)
failed has implied (a) fails, so (a) implies (b), completing our proof
of Theorem 2.

At this point we should note that Corollary 3 follows directly
from Theorems 1 and 2. First if the accessible elements of ikP are
convex for each φ e K then Theorem 1 guarantees (a) of Theorem 2
holds, so (b) follows. On the other hand if Ak> is w* dense in A1

and φ e K then φ — \\mά φδ for some net {φδ} in M\K; if X e MΦδ then
{λa} has a w* cluster point λ0 in Mφ. For any other λe Mφ, X — λ0 =
limΓ vr, vr € Aκ>, so since we can assume λ0 = lim Xδ, passing to a
confinal subnet, we have λ = limjxΓ (Xδ + vr) (where Δ x Γ is the
product directed system). Consequently each element of Mφ is
accessible from M\K using complex representing measures, as asserted.

Note that in contrast to the relatively trivial proof of the second
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half of Corollary 3, the first half uses the more complicated part of
Theorem 2 as well as Theorem 1.

Our proof of Theorem 1 uses most of the proof of [2, Th. 3],
which we reproduce here because of the notational changes required,
along with some of the argument already used. To begin let / be
extended to Mo = (d\K)~ U (M\K) = M\(K\(d\K)~) so f[(d\K)~ e C(d\K)~]
and let B be the uniformly closed algebra of bounded functions on
Mo generated by A and /. Let X be the closure in MB of MQ) X is
of course a boundary for J5, and we shall identify B and B~ \ X.
Since / and the elements of A are continuous when restricted to
(d\K)~ or M\K, the natural injection of each of these spaces into X
is continuous, and 1 — 1 of course. In particular, {d\K)~ is imbedded
homeomorphically in X. But the same is true of M\K since the map
p: X—• M dual to A —> B clearly provides inverses for our injections.
(A priori, p maps X into MA; but of course it takes X into the closure
of 3 U (M\K) in MA and that closure lies in our boundary M. Note
that d(x) = a(ρ(x)) for a e A, x e X.)

Now M\K is in fact imbedded as an open subset of X. For
each φ0 e M\K has a compact neighborhood U in M disjoint from K
of the form

U = {φ e Mi I at(φ) - at(ψ0) \ ̂  ε, i ^ n) ,

and since X - M» = ΣΓ (J (ΛΓ\Z7)- = C7 U (Λf\!7)-, xeX\U implies
sce(M\ϊ7)~ so lα^cc) — at(φ0)\ ^ ε for some i, whence

WΦo = {φeM:\ at(φ) - at(φ0) \ < e/2, i ^ ^}

= {a ;6 l : | dt(x) - α,(^0) | < e/2, i ^ ?t}

is a neighborhood of ^0 in X lying in Λf\JSΓ, so M\K is open in X
as asserted. Moreover, this also shows p is 1 — 1 over M\K since
dt(x) — ai(ρ{x)) so p(x) e M\K implies x e Wp{x) c M\K, and so x = p(x).

The fact that M\K is open in X, so that (M\UL )\d = M\(K U 3)
is also, along with local maximum modulus, shows dB does not meet
M\(JSL U 9): for each element of B is A-holomorphic on this set (i.e.,
locally uniformly approximable), and precisely the trivial argument
of [1, 3.2] applies. Now since p is 1 — 1 over M\K,

p{dB) n (M\(K U 9)) = 0

so ρ(dB) c K U 3. Thus for x e dB, if p(x) $ K we have |θ(α;) = a?, again
since p is 1 — 1 over M\K, and |θ(χ) 6 K U 3, so x = ^(x) e 9\JSΓ. So
p(dB\(d\K))c:K.

We can now conclude that dBcz(d\K)~. For dB\(d\K)~ lies in the
zero set p~\K) of the element 1 - - £ = 1 — 0 ° ^ of B (where again
ge A peaks on K), and so in the topological boundary of that set
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since it is also in the closure in X of M\K (where 1 — g never
vanishes): indeed this follows from the fact that 9\jfiΓ is dense in the
subspace (d\K)~ of M, hence in the subspace (d\K)~ of X, so that
the dense subset {d\K)~~ U (M\K) of X lies in the closure in X of
M\K. But now by [1, 2.2], dB\(d\K)~ must be void and we have
dB c (d\K)~, as asserted, and also the fact that M\K is dense in X.

Now if ρ~\Φ) is a singleton {ψ} for ψ e K then any net {ψδ} in
Λf\ϋΓ converging to φ in If can only have f as a cluster point in
the compact space X, so converges to ψ in X as well. Since / is
continuous on XaMB, f(ψ) = \imf(ψδ) for any such net, and thus /
extends continuously at such a φ. Moreover if p~\Φ) is a singleton
for each φ e K then p is 1 — 1, so X and M are homeomorphic, and
/ provides a continuous extension of / to M.

So it only remains to see that if the subset of Mφ accessible
from M\K is convex for φ e K then p~ι{φ) is a singleton. First, each
accessible λ in Mφ is also multiplicative on B because our function
fε defined in (2) lies in A: for we have Xδ —>λ w*, with Xδ repre-
senting a point in M\K and supported by d\K, so that X is supported
by (d\K)~ and

Mf» = λ,(/β) λ,(α) , a e A , n ^ 0 ,

and since fε—*f on M\K and | / e | ^ | / | , by dominated convergence

But λ,->λ w* as measures on (3\ίΓ)- while f \ (d\K~) e C((d\K)~) so
X(fna) = λ(/)wλ(α), and λ is multiplicative on 2?, as asserted.

Since we know M\K itself is dense in X, if ^ e p~\φ) then we
have φδ in M\K, φδ~+ψ in X, and if λδ is a probability measure on
ds representing φδ on 5 then {Xδ} has a cluster point λ carried by
(d\K)~ and representing τ/r on 5. Trivially λ represents φ on A and
is accessible from M\K, so each element of p~ι(Φ) is represented by
one of our convex set of accessible elements of Mφ, all of which are
multiplicative on B. But a convex set of multiplicative measures on
an algebra B must all represent the same point of the spectrum3, so
p~\Φ) is a singleton, completing our proof of Theorem 1.

(Note that if we take our λ/s to be Jensen measures then λ is
also Jensen, hence accessible in the sense of the remark following
Theorem 1, which now follows immediately. In particular, if the
elements of K all have unique Jensen measures (necessarily accessible)

3 If λi represents ψi, i = 1, 2, ψxφ ψ2, (Λ + 22)/2 is multiplicative and b(φi) = 0,
b(ψ2) = 1 then 1/2 = (λ, + λ2)!2(b2) = ((λ, + Λ2)/2(6))2 = 1/4. Note that we could use any
interior point of the segment joining λx and λ2 to obtain this contradiction; thus for
the modification indicated in footnote 2, we need only take our measures λs to be
Jensen, so λ is, and all such λ agree on B by an obvious argument.
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then the conclusion of Theorem 1 applies.

2 Some remarks are in order. First, (1) is not the most general
hypothesis we could use (cf. [2, 3.2, and correction]), but seems nearly
so. And K could equally well be a "generalized" peak set-an inter-
section of peak sets. To see this note that we have used the fact
that our K was a true peak set mainly to construct /,; in all our
arguments we then proceed to the fact that v(f) —•> v(f) for some
measure v supported by M\K. In the more general case one has to
select, given v and η > 0, a true peak set Kx =) K so \v\ {K\K) < η
and then construct /, using the peaking function for Klf so that
/. —•/ o n M\Kλ (and |/£ | ^ | / | of course) whence lim | v(fε — /) | ^
|| / || I v I (Kλ\K) ^ II / II η, which of course suffices.

Next, using accessibility from F c M\K in Theorem 1 yields an
analogous assertion about a limiting value as we approach φ along
F. Slightly greater generality can also be obtained by noting that
instead of assuming (1) for A we can assume it for any algebra
between C + {/e A:f(K) = 0} and A since /, then lies in that algebra,
and so in A.

Finally even when / | (d\K) has no continuous extension to 3 a
bit of our argument survives to give some information on cluster
values.

THEOREM 4. Suppose A satisfies (1) and KaM is a nowhere
dense peak set. If fe C(M\K) is A-holomorphic on M\(d U K U /"'(O))
then cl (/, K), the set of cluster values of f at points of K, is con-
tained in ^(cl (/ I (d\K), 3 Π K)), the closed convex hull of the set of
cluster values of f \ (d\K).

Indeed suppose cecl(/, K), so c = lim/(^δ), where φδeM\K and
φδ-+φQe K. If Xδ e M*δ then Xδ(K) = 0, and since /, e A, Xδ(fε) =
f(Φδ)> we again conclude by dominated convergence that Xδ(f) = f(φδ)
Trivially all but ε of the mass of Xδ is carried by a given neighbor-
hood V of 3 Π K in 3 for d ^ dε>v, hence by V\K, so

Mf)e (1 - e)ί?(f(V\K)) + εD ,

where D is the closed unit disc in C, and thus c e ^ ( / ( V\K)) for all
V, whence our assertion.

3* We conclude with some examples. For M compact in CN with
interior M° let

A = A(M) = {fe C(M):f is analytic on M0} ,

At = {fe C(M):f is analytic in z, on M0} .
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and 3 = dM, not necessarily the Silov boundary. Then A = Π Ai9 and
(1) holds. For A{ satisfies local maximum modulus relative to 3, and
suppose B is a larger subalgebra of C(M) with this property. Then,
since each slice

Mo = MΓι{ze CN: zό = z% j Φ i)

of M is a peak set for Ai9 B\ Mo is closed, and for the same reason
satisfies local maximum modulus relative to M0\(M° Π Λf0): if U is a
neighborhood in M° of peM° f] Mo then | b(p) | <; sup | b(dU) | for all
be B implies

I b(p) I = I ban(p) I ̂  sup I ba\dU)\ > sup | b(M0 ΓίdU)\

as n —• oo, where α e 4 f peaks on Mo; this of course yields our asser-
tion. But now taking U a ball in M° about p e Mo, so D = Λf0 Π Z7
is a disc, we see from Wermer's maximality theorem [3] that beB
is analytic in zt at p, whence B = At as desired. (It may be worth
noting that even for N = 1 those M for which A(M) is relatively
maximal have not been identified as yet, so that property (1) seems
more easily applicable. A simple condition insuring the convexity
of accessible measures frequently holds in this setting, but often
when the conclusion can be obtained rather trivially from analytic
structure. It is simply that we have a sequence σn: K—> M\K of
continuous maps tending pointwise to the indentity, with A ° σn c A \ K
and σn((d\K)~ Π K) c 3\JBΓ. For then any λ on (σ\K)~ representing
φeK has σ£X carried by d\K while σ*X(a) = λ(α°σj = a<>σn(φ) =
a(σn(φ)), ae Af so σ£λ represents σn(φ) 6 Λf\JSΓ and σ*λ —> X w* by
dominated convergence. Thus all representing measures for ψ on
(d\K)~ are accessible.)

As an application of Theorem 1, let E = {z e C: 1/2 <£ |« | <Ξ 1} and
{2?w} be a sequence of disjoint open discs in ϋ7° which accumulate only
o n dE. S e t J&t-» = E\\J^n Di9 n^0,E0 = E, a n d f o r 2~n~ι <x< 2~n

Ex = ^ U i ^ + i A U 2%+1(α; - 2~n~ι)Dn (so that we continuously and
successively fill the holes in E2o). Now let Mx = {̂ } x J?β and M =
Uo^^i Mx, the corresponding compact set in C2; we take A c C(M)
to consist of those / for which

z >f(x, z) is analytic on El , 0 <̂  x <J 1 .

Trivially 3 = (Jo^gi {̂ } x 3 ^ is compact and the Silov boundary for
A9 and A satisfies local maximum modulus relative to 3; moreover
A is maximal with respect to this property, again by Wermer's
maximality theorem.

Now K — Mo is our peak set, and we next want to observe that
for φ = (0, z) e {0} x E\ the measures in Mφ accessible from M\K
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form a convex set. Since A \ Mo can be identified with A(E), which
has a one-dimensional set of real orthogonal measures on dE, Mφ is
a segment, and its set F of accessible elements fails to be convex
only if F lies in two disjoint subsegments, both meeting F. Let
JVJL and N2 be disjoint w* compact neighborhoods of these subsegments
in the space of these subsegements of measures on d. Then for a
sufficiently small closed ball N in C2 about our φ each ψε(M\MQ) Π N=N0

is represented by a convex set M+ of measures on 9 lying wholly in
Nlf or in N2) thus since NQ is connected if N is sufficiently small
(because of the accumulation of the discs Όά only on dE) while

is closed in JV0 for i = 1, 2, we must have one empty, and F cannot
meet both N1 and Nt.

Note that both Theorem 2 and Corollary 3 now apply to the
example. (Indeed an alternative approach is to see that for 0 < x < ε
the functional on C(dEx) given by

Jι*ι=3/4 on

(where / * is the harmonic extension of / to Ex, and the integral
gives the period of the conjugate harmonic function) is represented
by a measure vx ^ 0 on the part El of dEx outside \z\ ~ 3/4 and ^ 0
on the part El within. The restrictions vx, v\ to these parts have
equal mass ^ c > 0 (consider / = 1 and / = log \z\), and thus for
some xδ —* 0, vlδ —• λ1 Φ 0, i4δ —̂  λ2 and λ1 — λ2 is a nonzero real measure
on {0} x dE orthogonal to A \ MOf hence spans the space of such
measures, and (c) of Theorem 2 follows. Note that this approach
would work if E had n > 2 complementary components.)

(That (a) implies (b) in Theorem 2 can fail if d Φ dA, as can Co-
rollary 3, can be seen by taking 3 = dA U {φ} for some φ in K\dA in
this example: for dφ — λ is not in the w*closure of Ak* for any λ on
dA representing φ since the ^*closure is carried by (9 Π {M\K))~ — dA.)

We have complicated the preceding example (by the insertion of
our shrinking holes) so as to avoid having our continuity obtainable
in a trivial and direct way: Without the holes,

n

uniformly for r = 1/2 and 1 says /(0, •) is the boundary value func-
tion of an element of A(E). Even with the conclusion non-obvious,
the example is not satisfying as an application of Theorem 1 since
it really follows from the simple part, (c) implies (a), of Theorem 2.
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However we can modify it by a hair and make Theorem 2 inapplicable.
Indeed for zoe E°, now let

M= U Af.U([-l ,0]x {*o})

so we have added a segment to our old M which meets that set in
{(0, 2o)} For A we take all continuous extensions of our old algebra,
so our Silov boundary is the old one plus our closed segment, and
we take K = MQ. Again A satisfies (1) as before (there is a removable
singularity at (0, z0) in {0} x E° of course to be mentioned after
applying Wermer), and it is trivial to give an / satisfying (3) which
does not extend: f{x, z) = z for x > 0, f(x, z0) = — z0 for x ^ 0. On
the other hand, every / satisfying (3) does extend to φ = (0, z) Φ (0, zQ)
since No is connected and our accessible measures, which must be
carried by our old boundary, again lie on a segment. Our argument
fails at φ = (0, z0) since Mφ is a triangle; this could be changed to a
segment simply by replacing E by the unit disc, but even then it
fails since No is not connected.)
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