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SEMI-SIMPLE RADICAL CLASSES OF ALGEBRAS
AND ATTAINABILITY OF IDENTITIES

B. J. GARDNER

This paper is concerned with the investigation of some
interplay between the theories of (Kurosh-Amitsur) radicals
and varieties of (not necessarily associative) algebras. Speci-
fically, it is shown that a variety is a radical class if and
only if it is closed under extensions, while a radical class
which is also a semi-simple class is the same thing as a variety
with attainable identities in the sense of T. Tamura (J. Algebra
3 (1966), 261-276). In certain instances it is shown that the
two properties of varieties are equivalent.

The semi-simple radical classes of associative rings have been
described by P. N. Stewart and have subsequently been investigated
by several authors. The necessary modifications of Stewart's work
are carried out in § 2 of the present paper to provide a classification
of the semi-simple radical classes of associative algebras over an
arbitrary field. It turns out that if the field is infinite there are
only the trivial classes, while for finite fields the classes are the
appropriate portions of the semi-simple radical classes of rings. In
§ 3 some examples of the presence and absence of nontrivial semi-
simple radical classes in non-associative situations are given.

Tamura introduced the notion of attainability while dealing with
semigroups (and thus his formulation differs somewhat from the
special case relevant to our considerations, which we introduce in
§ 1) and posed the problem of finding all attainable sets of identities
for rings and other structures. The matter was taken up by MaΓtsev
[18], who showed that, (in situations where the concept is defined) if
a variety has attainable identities, it is closed under extensions.
Whether the converse is true or not appears to be an open question.
In this paper we show that the converse is true in a number of cases,
including associative, alternative and Jordan (if the operator domain
contains 1/2) algebras over a principal ideal domain—in these cases
giving at least some examples of varieties with the properties. In
some other cases, including arbitrary and Lie algebras over fields
and the ring of integers, we show that there are no nontrivial
varieties with attainable identities, so the problem here is to determine
whether or not there are nontrivial varieties closed under extensions.
In the case of Lie algebras over fields of characteristic 0, Parfenov
[22] has shown that there aren't any.

Our references for variety theory are the long article of Osborn
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[21] and the book by Procesi [23]. The latter treats only associative
algebras. For radical theory see Divinsky [5], or the notes of
Leavitt [14] or Wiegandt [35]. Leavitt deals with non-associative
rings, the others with associative rings only.

It is customary to state that radical theory can be developed
in any "universal class" of rings or algebras—a class closed under
ideals and homomorphic images. All the universal classes in which
we shall work will be varieties, which we designate universal varieties.
Two other conventions used throughout the paper are worth men-
tioning: any class of algebras is assumed to contain, along with each
member, all isomorphic copies thereof; <|means "is an ideal of".

1* General results. Throughout this section we shall work in
a fixed "universal" variety *W of algebras over a commutative
associative ring 42, with an identity element. All varieties treated
will be "within" "W.

Let F denote a free algebra (in <W) on a countably infinite set
of generators. A T-ideal of F is an ideal which is invariant under
every endomorphism of F. Let J be a T-ideal of F. For each algebra
A, we denote by A(I) the subalgebra of A generated by

Then A(I) is the set of evaluations in A of polynomials in I. There
is a bisection between the set of T-ideals of F and the set of varieties,
given by associating with each T-ideal I the class T of algebras in
which the polynomials from / vanish identically. Moreover, for every
algebra A, we have

A/A(I) e T and A{I) = Γi {K < A \ A/K e T) .

In addition, T= {B/B(I) | B e <Sfr}.
Being hereditary, a variety T defines an upper radical class

U(T). Our first result relates this class to the concepts discussed
above.

THEOREM 1.1. Let °Γ be a variety, I the associated T-ideal.
Then

{A\A(I) = A}= U{T).

Proof. The upper radical class consists of those algebras with
no nonzero homomorphic images in Tl By our remarks above, these
are precisely the algebras A with A(I) = A.

Shchukin [24] has shown that in the class of all groups, for any
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fixed variety, the class of groups coinciding with their verbal sub-
groups (relative to this variety) form a radical class. The group
theory analogue of Theorem 1.1 (and its proof) provide another way
of getting Shchukin's result.

In the sequel we shall denote the radical class of Theorem 1.1
by ̂ T7.

In some cases we can get a "local" characterization of ^?z, using
a transfinite chain of subalgebras defined as follows (1 is a T-ideal):
A(I,1) = A(I); A{I, α + 1) = A(I, a){I) for all ordinals a; A(I, β) =
Π«</9 A(I, a) if β is a limit ordinal. For each algebra A, the chain

must terminate. If A(I, μ) = A(J, μ + 1), we can write A(I, μ) =
Π« A(J, a). Note that fϊ« -4(1, a) e &fΣ.

Recall that a radical class is strict if every radical subalgebra
of every algebra is contained in the radical or, equivalently, if
subalgebras of semi-simple algebras are semi-simple.

THEOREM 1.2. The following conditions are equivalent for a
T-ideal I:

( i ) &! is strict;
(ii) &χ{A) — Γia A(I, a) for all algebras A.

Proof, (i) => (ii): As we have observed, f}a A(I, a) is in ̂  for
each algebra A, so, &x being strict, f\a A{I, a) £ ^{A). On the
other hand, it is clear that &X(A) = ^j(A)(I) £ A(I) = A(1,1). If

Q A(I, a) then

Q - A(I, a

while if &Σ{A) Q A(I, a) for all a < a limit ordinal β, then
A(I, β) = Πa<β A(I, a). Hence ^ ( A ) Q f|α A{I, a).

(ii)=>(i): If B is a subalgebra of an algebra C, then clearly
B(I) Q C(I) so a simple induction argument shows that B(I, a) Q
C(I, a) for each a. In particular, if B is in &I9 then J5 =

I, α) -

COROLLARY 1.3. // ^^* is the variety of all associative rings,
then for every T-ideal /, .^(A) = Π« A(I, a) for every ring A.

Proof. By Theorem 2.5 of [8], for any variety 3^ of associative
rings we have
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Ϊ7(3 )̂ = {A I A has no nonzero homomorphisms with accessible

images to rings in T*} = {A \ A has no nonzero homo-

morphisms to rings in 5̂ } .

(The latter equality follows from the fact that 3^ is strongly heredi-
tary, i.e., closed under formation of subrings.) By Proposition 3.6
of [8] (taking for Σ the property of being a subring) U(T*) is strict.

Corollary 1.3 cannot be generalized without restriction. When
*W is the variety of all rings and I the T-ideal generated by xy,

then ^? z is the class of idempotent rings and its semi-simple class
is not even hereditary [16].

The product <%f° ^/ of two varieties <%f and f is the class of
algebras W for which there exists a short exact sequence

0 >X > W > Y >0

with Xe <%f and 7 e l ^ . Naturally, we call a variety gf idempotent
if

THEOREM 1.4. The following conditions are equivalent for a class
Y* of algebras:

( i ) °F is a radical class which is closed under formation of
direct products and subalgebras;

(ii) ψ* is an idempotent variety.

Proof. Clearly (i) ==> (ii).
(ii) ==*• (i): If T* is an idempotent variety, it is closed under

homomorphic images and extensions. It is also closed under subdirect
products and hence is local, i.e. unions of directed systems of sub-
algebras from T are in T. (See [4], p. 101; also [35], p. 161.) In
particular, unions of chains of 5^-ideals are 5^-ideals. It follows that
3^ is a radical class. Being a variety, 3 r has the other required
closure properties.

The identities of a variety T with Γ-ideal I are said to be
attainable if A(I, 2) = A(I, 1) for all algebras A. The concept of
attainability was introduced by Tamura [33] for semigroups and
discussed also by MaΓtsev [18].

THEOREM 1.5. The following conditions are equivalent for a
class T* of algebras:

( i ) 3 r is a variety with attainable identities;
(ii) T'is a homomorphically closed semi-simple class;
(iii) JΓ is a semi-simple radical class.

Proof (i) => (ii): Let I be the Γ-ideal associated with T, 6^ the
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semi-simple class associated with ^?7. Then for each algebra A, we
have A(I) - A(J, 1) = A(I, 2) = A(I)(I), so A(I) e &eJ9 while A/A(I) e
T ΩS< It follows that A(I) = &i(A) for all algebras A. Hence

A e

so T is a semi-simple class, clearly homomorphically closed.
(ii) ==> (iii): 3^ is closed under homomorphic images and subdirect

products and hence is strongly hereditary, by an argument identical
to that used in [31], Lemma 4.1 and [35], p. 163. T is therefore
an idempotent variety and so, by Theorem 1.4, a radical class.

(iii) => (i): Since ψ* is closed under subdirect products and homo-
morphic images, it is strongly hereditary, and hence a variety as
well as a semi-simple class. Let I be the T-ideal associated with ψ*
and let ^ = U{T). Then for every algebra A, we have

A(I) = Π {K < A I A/Ke T) =

so A(I, 2) = A(I)(I) = %S(^)(A) = <&{A) = A(I) - A(I, 1), i.e. 3^ has
attainable identities.

COROLLARY 1.6 (MaΓtsev [18]). If a variety T has attainable
identities, then Ψ* is idempotent.

We do not know of an idempotent variety which has nonattainable
identities. Wiegandt [35] has shown that for associative rings, a
semi-simple radical class is the same thing as an idempotent variety.
We shall consider some further instances of this phenomenon. For
this we place some restrictions on our universal variety CW.

We first assume that W^ contains all the zeroalgebras over Ω,
i.e. the algebras with trivial multiplication.

We shall call an algebra A e *W~ nilpotent of index n if every
product of n elements of A, with arbitrary bracketing, is zero, but
there exists a nonzero product of n — 1 elements. A product b of
the latter kind satisfies the conditions

bA = 0; Ab = 0 .

Thus the ideal generated by b is a zeroalgebra. Since the class of
nilpotent algebras is homomorphically closed, we have, as usual, the
following result.

PROPOSITION 1.7. Let *W be a universal variety of Ω-algebras,
containing all zeroalgebras. Then in <W the lower radical class
defined by the class of zeroalgebras contains all nilpotent algebras.
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For the free algebra F we shall denote by Fn the subalgebra
( = T-ideal) generated by all words of length ^ n.

PROPOSITION 1.8. Let W~ be a universal variety of Ω-algebras
such that

( i ) all zeroalgebras are in <W
and,

(ϋ) ΓlnFn = 0.
Then any idempotent variety in <W which contains all zeroalgebras
must contain all of

Proof. By Theorem 1.4 and Proposition 1.7, an idempotent variety
T* which contains the zeroalgebras must contain all nilpotent algebras
and so, in particular, the algebras F/Fn for each free algebra F.
But F is a subdirect product the FjFn, so 3^ contains all free algebras
and hence all algebras.

COROLLARY 1.9. If, in addition to the conditions in Proposition
1.8, Ω is a principal ideal domain, then any idempotent variety
which contains a zeroalgebra (φO) contains all of

Proof. We need only show that Ω°, the zeroalgebra on the
additive module of Ω, is in each idempotent variety T containing a
zeroalgebra A Φ 0, since then °Γ contains all cyclic zeroalgebras and
all homomorphic images of direct sums of these, i.e., all zeroalgebras.
5^ must certainly contain a cyclic zeroalgebra C. If C £ Ω°, then C
has as a homomorphic image the zeroalgebra on a cyclic module Ω/(π),
where π is prime. The latter module is in T, and arguing inductively
from the exact sequences of modules

0 > (πn)/(πn+1) > Ω/(πn+1) > Ω/(πn) > 0 ,

observing that (πn)/(πn+1) ~ Ω/(π) for all n, we see that 3^ contains
the zeroalgebra on Ω\(π%) for all n. But β° is a subdirect product of
these.

The conditions of Proposition 1.8 are satisfied, for example, by
the varieties of associative, alternative, Jordan, power-associative and
arbitrary algebras. There are varieties 'W which contain all zero-
algebras but do not satisfy the requirement for free algebras: consider
the variety of associative rings which are extensions of zerorings by
boolean rings. In this case we have Fn = F2 Φ 0 for all n ^ 2, since
for any two generators x9 y of F we have (xn~ι + x)(yn~ι + y) = 0,
whence xy e Fn and thus F2 £ Fn for all n^2.

The next result will enable us to specify some further universal
varieties in which every idempotent variety has attainable identities.
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THEOREM 1.10. Let 3Γ be an idempotent variety, I the corre-
sponding T-ideal. For every algebra A, A(I, 1) is the ideal of A
generated by A(I, 2).

Proof. Let K be the ideal of A generated by A(I, 2). Then
K <\ A(1,1) and A(I, 1)1 K is a homomorphic image of A(J, 1)1 A(I, 2)
and the latter is in 3*7 so A(I, 1)1 K is in ψl From the exact sequence

0 • A(It 1)1 K > A/K > A/A(I, 1) > 0

we see that A/K is in Y) whence (A, 1) Q K.

COROLLARY 1.11. If accessible ( = subnormal) subalgebras are
ideals in 'W, then all idempotent varieties in *W have attainable
identities.

COROLLARY 1.12. If Ω is a principal ideal domain and
satisfies the hypotheses of Proposition 1.8, then all idempotent varieties
in ^ * have attainable identities in the following situations:

( i ) ^ ~ is the variety of associative algebras;
(ii) <W is the variety of alternative algebras;
(iii) *W~ is the variety of Jordan algebras and 1/2 6 Ω.

Proof. We will show that in every case, we have:

If C < B < A, B is the ideal of A generated by C and C Φ B,
( )

then B/C contains a nonzero nilpotent element.
Then, when 3^ is an idempotent variety with Γ-ideal J, it will follow
from Theorem 1.10 that A(I, 1)/A(I, 2) has nilpotent elements if it is
nonzero. Since A(I, l)/A(If 2) is in T, either A(I9 1) = A(I, 2) or T
contains a zeroalgebra. In the latter case, T •= W, by Corollary
1.9, and certainly has attainable identities. If TΦ ^ 7 then A{I, 1) =
A(I, 2) for all A, i.e. Ψ* has attainable identities.

The following observations establish (*):
( i ) Andrunkievich's well-known result ([1], Lemma 4; see also

[51, p. 107) says that (B/Cf = 0.
(ii) Hentzel and Slater [10] showed that B/C is locally nilpotent

for alternative rings. This is still true with a ring of operators.
(iii) Slin'ko [29] has shown that either B/C contains a nilpotent

ring-ideal or C <\ A, i.e. C = B.
Under the conditions of Corollary 1.9, if A belongs to an idem-

potent variety 3^ Φ *W\ then no algebra in 3^ can contain in nonzero
nilpotent element and hence for every aeA we have [a] = [α]2, where
[a] is the subalgebra generated by a. If in addition all algebras in
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are power-associative, this means that a = ΣJL, aia<ζ f° r some
#2, ' --, akeΩ. Under the additional restriction that Ω is the ring
of integers or a finite prime field, this in turn means that a = an{a)

for some n(a) > 1 (Osborn [21], p. 321).
For associative rings much of the material of this section has

been covered. Armendariz [3] proved the relevant special case of
Corollary 1.9 by using, inter alia, a result of Amitsur on free
associative rings. Shevrin and Martynov [25] showed that the non-
trivial varieties of associative rings with attainable identities are
precisely the varieties generated by finite sets of finite fields, while
Martynov [19] proved that these are precisely the nontrivial idempotent
varieties. For a purely radical-theoretic account of semi-simple
radical classes in this context see [31] and [9]. In particular, it is
shown in [9] that the classes

Tn = {A I an = aVa e A} , n = 2, 3, 4,

are semi-simple radical classes, though there are others. It has been
widely accepted ([17], [30], [35], [36]) that the Tn are the only (non-
trivial) semi-simple radical classes. By Theorem 1.5, the identities
xn — x are all attainable for associative rings. It was asserted in
[34] that x2 — x is not attainable, and in [11] that only x = x and
x — y are attainable.

We conclude this section with a couple of remarks about varieties
in an arbitrary *W.

Following Leavitt [15], we say that for a class ^£ of algebras
which defines an upper radical class U(^), the latter has the inter-
section property if

I A/Je ^ }

for all algebras A. If Ψ* is a variety with T-ideal /, then

so ψ* has the intersection property if and only if U{Tt){A) = A(I)
for all A. Then (cf. the proof of Theorem 1.5) we have

PROPOSITION 1.13. For a variety Ύ] U(T*) has the intersection
property if and only if Ψ* has attainable identities or, equivalently,
is a semi-simple class.

It follows from a result of Enerson and Leavitt ([6], Theorem 2)
that varieties J%ζ & determine the same upper radical class if and
only if every nonzero algebra in J ^ (resp. ^ ) has a nonzero homo-
morphic image in έ% (resp.



SEMI-SIMPLE CLASSES OF ALGEBRAS 409

As we have seen, the radical class &τ defined by a Γ-ideal I
need not be strict. On the other hand, for every strict radical class
^ , &{F) is a Γ-ideal and so & determines a variety. It would be
interesting to know the precise connection between & and this variety.

2 Associative results* In this section we shall work with
associative algebras over a field K and obtain results analogous to
those obtained by Stewart [31] for associative rings. By Corollaries
1.9 and 1.12, the nontrivial semi-simple radical classes (=idempotent
varieties) contain no zeroalgebras and thus are subclasses of

&?* = {A I [a] = [a]2Va e A} .

Then as for rings ([2], Theorem 2; [31], Theorem 2.1), every algebra
in £%* is a subdirect product of algebras from &t

K without zero-
divisors.

PROPOSITION 2.1 (cf. [31], Lemma 3.2). A nonzero algebra
Ae£S[κ without zerodivisors is an algebraic division algebra.

Proof. If O ^ α e i , then a e [a]2, so a = Σ?= 2 &&* for suitable
nonzero ai9 > ,akeK. Thus A is algebraic over K. The rest of
the proof follows as in [31].

Using Proposition 2.1 and arguing as in [31], Theorem 4.3 we
obtain

PROPOSITION 2.2. If & is a nontrivial semi-simple radical
class, then & consists of all subdirect products of division algebras
in &}.

THEOREM 2.3. If K is infinite, there are no nontrivial radical
semi-simple classes of associative K-algebras.

Proof. Suppose & is such a class. Let J^ be the set of division
algebras in &. Since & is strongly hereditary, K is in ά?~. Since
<% is a variety, it contains ΠK{n), n — 1, 2, , where each K{n) = K.
Thus ΠK{n) 6 ̂ * . If u = (uu u2, •) 6 ΠK{n), then u = Σ£=2 «***' for
some <x2, , akeK, so each un is a root of Σ*U ̂ x1 — x. But then
un can have only finitely many values. Hence there is no such &.

Now consider finite fields K. By Theorem 2, p. 183 of [12], the
division algebras of Proposition 2.1 are now commutative, and so are
extension fields of K. We shall call them K-fields in the sequel.
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THEOREM 2.4 (cf. [31], Theorem 3.4 and Corollary 3.5). The
following conditions are equivalent for a K-algebra A.

( i ) Ae ^ κ .
(ii) Every finitely generated subalgebra of A is a finite direct

sum of finite K-fields.
(iii) For every aeA there exists an integer n{a) > 1 such that

an{a) = a.

Proof, (i) ==> (ii): Since ^[κ is strongly hereditary, we need only
look at finitely generated algebras A e &[*. Being a subdirect product
of iΓ-fields (see Proposition 2.1 and the remark preceding it) A is
commutative. Since any generator u of A satisfies an equation

k

u = Σoctu'; a2, , akeK,

it follows that A is finite dimensional and hence finite. Also A has
no nilpotent elements, so A is a finite direct sum of jK-fields. Since
A is finite, so are the fields.

(ii) => (iii): Each a e A is contained in a finite direct sum of finite
fields, so a suitable n(a) exists.

(iii) ==> (i): This is clear.

PROPOSITION 2.5 (cf. [31], Proposition 3.7). Let ̂  be a finite,
strongly hereditary set of finite K-fields. A K-algebra A is a subdirect
product of K-fields in J?~ if and only if every finitely generated
subalgebra of A is a finite direct sum of K-fields from

THEOREM 2.6. Let Kbe a finite field. There is a bijection from
the set of nonempty, finite, strongly hereditary sets of finite K-fields
to the set of nontrivial semi-simple radical classes of associative
K-algebras, given by

&~ i • {A I A is a subdirect product of X-fields in ^} .

Proof. Let & be a nontrivial semi-simple radical class, ^~(&)
the class of iΓ-fields in &. As in the proof of Theorem 4.3 of [31],
it follows that ^~(&) is finite and strongly hereditary, all Z-fields
in ^{&) are finite and & consists precisely of the subdirect products
of jK-fields from ^{^). Conversely, if &~ is a finite, strongly
hereditary set of finite l£-fields, the class c^>{^r) of subdirect products
of ϋΓ-fields from JF is the semi-simple class defined by Jf ([32],
Theorem 1; see also [5], p. 121) and hence is closed under extensions.
But an algebra A belongs to ^C^"") if and only if every finitely
generated subalgebra of A is a finite direct sum of jK-fields from
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(Proposition 2.5). From this it follows that ^(J^) is strongly
hereditary and homomorphically closed. Thus <&{&*) is an idempotent
variety, i.e. a semi-simple radical class. The correspondence is a
bijection since it associates with each set of iΓ-fields the semi-simple
class which it generates.

3* Miscellaneous results* We conclude with a few examples,
some of a rather negative character, involving idempotent varieties
and semi-simple radical classes.

THEOREM 3.1. In every power-associative universal variety
the variety

T2 = {A I a2 = αVα e A}

is idempotent.

Proof. All rings in Ψl are commutative and have characteristic
2, by the standard argument. If I <\ A and I, A/1 are in %y then
for a € A we have a2 — ael and thus a2 — a = (a2 — a)2 = a* — 2α3 + a2,
i.e. α4 + a - 2a? = 0. Also 2(α2 — α) = 0, i.e. 2α2 = 2α, while 2α is
also in I, so that 2α = (2a)2 = 4α2 = 2.2α2 = 2.2α and thus 2a = 0.
Hence α4 -f a — a* — a = 0. But since I <\A, a3 — a2 is also in /, so
α3 — a2 = α6 — α4 = α V — α4 = αα2 — a — a? — a, whence a = α2. Thus
Ψl is closed under extensions.

When W~ is the class of associative rings, Ψl is well known to
be a semi-simple radical class (see [31]). Using Corollary 1.12, we
get

COROLLARY 3.2. The identity x2 = x is attainable for alternative
rings.

THEOREM 3.3. Let <%f be a finite set of finite fields and simple
Jordan rings of the kind described in Proposition 15.4 of [21], all
having the same prime characteristic p Φ 2. Then the variety T of
Jordan rings generated by <%f has attainable identities.

Proof. For every aeAe <£?, we have an{a) = a, for some n(a) > 1
(see [21], Proposition 15.4). Since all the rings in <%f are finite we
can find an m > r such that am = a for all a e A e <%f. Hence all rings
in 5^ satisfy xm = x.

Let & be the class of Jordan rings R such that for all reR
there exists n{r) > 1 such that rnir) — r. If I is an ideal of a Jordan
ring B such that I and B/I are in &*, then for 6 e B, we have
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bk — b 6 / for some k > 1 and bk — b = (bk — δ)5' for some j > 1. By-
Theorem 13.2 of [21], 5 belongs to ^ .

Now 5^ £ &. Let J be an ideal of a Jordan ring A such that
J and A/J are in 3*7 Then A is in ^ , so by Theorem 15.11 of [21],
A is a subdirect product of simple rings. Let L be an ideal of A
such that A/L is one of these rings. Then A/(J + L) is a homo-
morphic image of A/L, so either (i) A/(J+L) = Q or (ii) A/(J+L) = A/L.
In case (i), we have A = J+ L so A/L = (J + L)/L = J/Jf]Le T,
while in case (ii), we have A/L = A/(J + L) = [A/L]/[(J + L)/L] so
J + L = L, i.e. / S L and thus A/L, as a homomorphic image of
A/J, is in 3*? Since A is a subdirect product of rings in T\ A itself
is in T.

Thus 3 r is an idempotent variety consisting of rings of charac-
teristic p, so 3^ is an idempotent variety of Jordan algebras over
the field Z(p) of p elements. By Corollary 1.12 (iii), T is a semi-
simple class of ^(p)-algebras. Let S be a Jordan ring of which every
nonzero ideal has a nonzero homomorphic image in Ψ* and suppose
pS Φ 0. Then pS <\ S, so (pS)/T e 3^ for some T < pS. But then
(pS)/?7 has characteristic p, so that p2S £ T, which means that (pS)/Γ
is a zeroring, whereas 3^ contains no ring with a nonzero nilpotent
element. Thus pS = 0 and every ideal of S is a Z(p)-ideal. Since
3^ is a semi-simple class of Z(p)-algebras, it follows that S is in Ti
Hence ψ* is a semi-simple class of rings and so, by Theorem 1.5, has
attainable identities.

We proceed now to some universal varieties in which there are
no nontrivial varieties with attainable identities.

Firstly an example somewhat removed from what we have been
looking at: Theorems 1.4 and 1.5 have exact analogues for groups
(see also [24] in this connection); on the other hand, the Neumanns
[20] and ShmeΓkin [28] have shown that the set of nontrivial group
varieties is the free semigroup (relative to o) generated by the
indecomposable varieties, and as such has no idempotents. Thus
there are no nontrivial attainable sets of identities for groups. This
was also pointed out by MaΓtsev [18] and was established in another
way by Tamura [33].

Recall that a Schreier variety of algebras over a field is one in
which nonzero subalgebras of free algebras are free.

PROPOSITION 3.4. If a universal variety ^ ~ of algebras over a
field is a Schreier variety, it has no nontrivial varieties with
attainable identities.
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Proof. Let F be a free algebra in W~ on !^0 generators, I a
nonzero Γ-ideal Φ F. Then I = F(I) is free. Let {eλ\ λ 6 Λ} be a set
of free generators of I. We shall prove that 1(1) contains no eλf

whence IΦ 1(1) — F(I, 2). Since IΦ F, there is a nonzero algebra
A in the variety defined by /. Suppose eμ is in I(/), for some μeΛ,
say eμ — g(eλχ1 * ',eλn) for some # 6 / and λt, •• ,λΛe-4 Choose a
(φO) in A and define φ: I—+ A by ^(β^) = a and ^(β;) = 0 for λ Φ μ.
Then we have the contradiction 0 Φ a = ^(β^) = ^(^(β;i), , ̂ fe J ) = 0.

For any variety y of rings we shall denote by Ψ^ the variety
of algebras over a field K whose underlying rings are in Tl

THEOREM 3.5. Let Ύ/^ be a universal variety of rings which
contains all zerorings. If W^κ has no nontrivial varieties with
attainable identities for each field K, then CW~ has none.

Proof. Suppose *WK has no nontrivial attainable identities for
every field K> and let y be a variety in W~ with attainable identities.
In what follows, Q denotes the field of rational numbers. Let A be
a ^^-algebra, every nonzero ideal of which has a nonzero homomorphic
image in yq. Then as a ring, A has the property that every nonzero
divisible ideal is a Q-algebra ideal and so has as a homomorphic
image a nonzero algebra in 3̂ 3, i.e., A has a nonzero torsion-free
homomorphic image in ψ) If / is an arbitrary nonzero ideal of A
(qua ring) then I* = {a e A \ In Φ 0 such that na e /} is a nonzero
divisible ideal, so, since A is a Q-algebra, I*/Key for some iΓ<]/*
such that I*/K is nonzero and torsion-free. Under these conditions,
I£K, so /// Π K = (I + K)/K is a nonzero homomorphic image of /
which belongs to ψl Since y is a semi-simple class, it follows that
A belongs to y and hence to 2^. But then ?^ is a semi-simple class
in ^ ρ , i.e., it has attainable identities there.

By assumption, yq = {0} or <Wq (Note that ^ Φ {0}.) In the
latter case, y contains all free ^ρ-algebras. Let F be a free
2^-ring of rank Ko. Then by Theorem 4.4, p. 195 of [21], Q%ZF
or, equivalently, the minimal divisible extension Ώ(F/t(F)) of F/t(F)
([7] Theorem 119.1) where t(F) is the torsion ideal of F, satisfies the
identities of W and so is free of rank fc$0 in W^. Then y contains
D(F/t(F)) and hence F/t(F). But then y contains all torsion-free
^*-rings. In particular, y contains the zeroring Z° on Z and hence
the zeroring Z(p)° on the cyclic group of order p, for all primes p.

For convenience, we shall denote by °FV the variety of algebras
over the field Z(p) of p elements, which belong to % and so on.
The above argument shows that yv Φ {0} for all primes p. Let B
be a ^^-algebra of which every nonzero algebra ideal has a nonzero
homomorphic image in yp. Since every ring ideal of B is an algebra
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ideal and ^ is a semi-simple class in W~, it follows that B is in 3^,
whence 71 is a semi-simple class in ^%. Consequently (since 5^ has
attainable identities and Tv Φ {0}) Tv = ^ Π ̂  = 2 ^ . Thus 3^
contains all W-rings R for which pi2 = 0.

Let S be a ^^-ring whose additive group is a p-group, and for
each n let S[pn] = {aeS\pna = 0}. Then S[p%+1]/S[p*] e T for all w,
so by induction on n, each S[pn] is in 7Γ But then S - \Jn S[pn] e Ti
It follows that T contains all torsion "W-rings, in particular t{F),
for the free W~-ring F. Since, as we've seen, F/t(F) is in 7] so is
F, and thus T = ^ ~ if 3^ ^ {0}.

Thus we may assume that $*ρ = {0}. As shown above, 7]> is
always a semi-simple radical class in <WV and so 3^ = ^ % or {0}. If
^ς = ^ ^ for some ί9, then 3^ contains the zeroring on Z{p) and hence
(cf. the proof of Corollary 1.9) all zerorings, including the torsion-
free divisible ones, contradicting our assumption that T^ — {0}. Thus
Tv = {0} for all primes p. If now R is any ring in T, then R/pR = 0
and R[p] = 0 for all primes p. This means that R is torsion-free
and divisible, so R = 0. This completes the proof.

Combining Proposition 3.4 with Theorem 3.5, we get

COROLLARY 3.6. Let W~ be a universal variety of rings, con-
taining the zerorings, such that W^κ is a Schreier variety for all
fields K. Then W^ has no nontrivial varieties with attainable
identities.

The Schreier varieties over an arbitrary field include the varieties
of all algebras (Kurosh [13]), Lie algebras (Shirshov [26], Witt [37]),
commutative and anticommutative algebras (Shirshov [27]). In the
case of characteristic 0, Parfenov [22] obtained, for Lie algebras,
the exact analogue of the group-theoretic result of the Neumanns
and ShmePkin quoted above, so there are no nontrivial idempotent
varieties there. As we have remarked, we do not know of an
example (anywhere) of an idempotent variety which does not have
attainable identities, but it seems worth recording that an argument
similar to that used for Theorem 3.5 establishes the following result.

THEOREM 3.7. Let Ύ^ be a universal variety of rings, containing
all zerorings. If Ύ/^K has no idempotent varieties for each field K,
then Ύ/^ has none.

REFERENCES

1. V. A. Andrunakievich, Radikaly assotsiativnykh kolets I, Mat. Sb., 44 (1958), 179-
212. (Translation: V. A. Andrunakievic Radicals of associative rings I, Amer. Math.
Soc. Transl., (2) 52 (95-128)).



SEMI-SIMPLE CLASSES OF ALGEBRAS 415

2. V. A. Andrunakievich and Yu. M. Ryabukhin, KoΓtsa bez niΓpotentykh elementov
i vpolne prosty, idealy, Dokl. Akad. Nauk. SSSR, 180 (1968), 9-11. (Translation: V. A.
Andrunakievic and Ju. M. Rjabuhin, Rings without nilpotent elements and completely
simple ideals, Soviet Math. Dokl., 9 (1968), 565-568).
3. E. P. Armendariz, Closure properties in radical theory, Pacific J. Math., 26 (1968),
1-7.
4. P. M. Cohn, Universal Algebra, Harper and Row, New York, 1965.
5. N. J. Divinsky, Rings and Radicals, Allen and Unwin, London, 1965.
6. P. 0. Enerson and W. G. Leavitt, The upper radical construction, Publ. Math.
Debrecen, 20 (1973), 219-222.
7. L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York and London,
1973.
8. B. J. Gardner, Some radical constructions for associative rings, J. Austral. Math.
Soc, 18 (1974), 442-446.
9. B. J. Gardner and P. N. Stewart, On semi-simple radical classes, Bull. Austral.
Math. Soc, 13 (1975), 349-353.
10. I. R. Hentzel and M. Slater, On the Andrunakievich lemma for alternative rings,
J. Algebra, 2 7 (1973), 243-256.
11. A. A. Iskander, Product of ring varieties and attainability, Trans. Amer. Math.
Soc, 193 (1974), 231-238.
12. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publ. XXXVII,
Providence, 1968.
13. A. G. Kurosh, Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr,
Mat. Sb. (Recueil Mathematique), 2 0 (1947), 239-262.
14. W. G. Leavitt, The general theory of radicals, Mimeographed notes, University of
Nebraska, Lincoln (n.d.).
15. f The intersection property of an upper radical, Arch. Math., (Basel), 24
(1973), 486-492.
16. W. G. Leavitt and E. P. Armendariz, Nonhereditary semisimple classes, Proc
Amer. Math. Soc, 18 (1967), 1114-1117.
17. L. C. A. van Leeuwen and T. L. Jenkins, A note on radical semisimple classes,
Publ. Math. Debrecen, 2 1 (1974), 179-184.
18. A. I. MaΓtsev, 06 umnozhenii klassov algebraicheskikh sistem, Sibirskii Mat. Zhurnal,
8 (1967), 346-365.
19. L. M. Martynov, 0 razreshimykh koVtsakh, Ural. Gos. Univ. Mat. Zap. 8, Tetrad'
3 (1972), 82-93.
20. B. H. Neumann, H. Neumann and P. M. Neumann, Wreath products and varieties
of groups, Math. Z., 80 (1962), 44-62.
21. J. M. Osborn, Varieties of algebras, Advances in Math., 8 (1972), 163-369.
22. V. A. Parfenov, 0 mnogoobraziyakh algebr Li, Algebra i Logika 6, No. 4 (1967),
61-73.
23. C. Procesi, Rings with polynomial identities, Marcel Dekker, New York, 1973.
24. K. K. Shchukin, 0 verbantnykh radikalakh grupp, Kishinevskii Gos. Univ. Uchenye
Zapiski, 82 (1965), 97-99.
25. L. N. Shevrin and L. M. Martynov, 0 dostizhimykh klassakh algebr, Sibirskii Mat.
Zhurnal, 12 (1971), 1363-1381.
26. A. I. Shirshov, Podalgebry svobodnykh Lievykh algebr, Mat. Sb., 33 (1953), 441-
452.
27. A. I. Shirshov, Podalgebry svobodnykh kommutativnykh i svobodnykh antikommuta-
tivnykh algebr, Mat. Sb., 34 (1954), 81-88.
28. A. L. ShmeΓkin, Polugruppa mnogoobrazii grupp, Dokl. Akad. Nauk. SSSR, 149
(1963), 543-545. (Translation: A. L. SmeΓkin, The semigroup of group manifolds, Soviet
Math. Dokl., 4 (1963), 449-451.
29. A. M. Slin'ko, 0 radikalakh Iordanovkh kolets, Algebra i Logika 11, No. 2 (1972),



416 B. J. GARDNER

206-215.
30. R. L. Snider, Complemented hereditary radicals, Bull. Austral. Math. Soc, 4 (1971),
307-320.
31. P. N. Stewart, Semi-simple radical classes, Pacific J. Math., 32 (1970), 249-254.
32. A Suliήski, Nekotorye voprosy obshchei teorii radikalov, Mat. Sb., 44 (1958), 273-
286.
33. T. Tamura, Attainability of systems of identities on semigroups, J. Algebra, 3
(1966), 261-276.
34. T. Tamura and F. M. Yaqub, Examples related to attainability of identities on
lattices and rings, Math. Japon., 10 (1965), 35-39.
35. R. Wiegandt, Radical and semisimple classes of rings, Queen's Papers in Pure and
Applied Mathematics, No. 37, Kingston, 1974.
36. R. Wiegandt, Homomorphically closed semisimple classes, Studia Univ. Babes-Bolyai
Ser. Math. Mech., 2 (1972), 17-20.
37. E. Witt, Die Unterringe der freien Lieschen Ringe, Math. Z., 64 (1956), 195-216.

Received June 24, 1975 and in revised form October 21, 1975. The author thanks
the referee for detecting an omission in an earlier version of the proof of Theorem 3.5
and for other useful comments. Some of the results presented here were obtained during
a visit by the author to the Department of Mathematics, Institute of Advanced Studies,
Australian National University, Canberra. The assistance and facilities provided by
that department are gratefully acknowledged.

UNIVERSITY OF TASMANIA, HOBART, AUSTRALIA




