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PERMUTATION POLYNOMIALS OVER THE
RATIONAL NUMBERS

CLIFTON E. CORZATT

Nonlinear polynomials, over the rational numbers, which
permute the integers 0, 1, N are investigated. The func-
tion v(N) represents the minimum degree of all such polyno-
mials. It is shown that

Γ^T-^1 ^ y W £N-1 for all N> 13 .
L 4 J -

It is also shown that v{N) ^N-2foτN odd and N ^ 7, that
v(N)^ JSΓ— 3 for N = 2 mod 6, and that if e > 0 then v(ΛΓ) ^
((N- 1)/2)(1 - ε) for N sufficiently large.

l Introduction* We wish to study polynomials with rational
coefficients which permute the integers 0,1, • ••, JV. Specifically, if
we fix N, then are we able to find nonlinear polynomials of this type
which have degree less than JV? If so, how small can the degree
of such a polynomial be? If N > 4 we will show that there are
polynomials whose degree is less than N. For certain infinite classes
of integers we can show that there are polynomials whose degree is
less than N — 1 and N — 2. Moreover, we show that if ε > 0 then
for N sufficiently large the degree of such a polynomial is bounded
below by (N - 1)(1 - e)/2.

This problem was suggested by Professor L. A. Rubel and arose
in the following context. Polya showed that if an entire analytic
function of exponential type less than log 2 has integer values at
each nonnegative integer, then it is a polynomial. A proof of this
theorem is given on page 175 of Entire Functions by R. P. Boas.
Rubel conjectures that if an entire analytic function of exponential
type less than π permutes the nonnegative integers then it is the
function f(z) = z. He gives the function f(z) = z + cos(π ̂ ) as an
example of an entire analytic function of exponential type π which
permutes the nonnegative integers.

The problem which we study here is an analogue in which we
assume f(z) is a polynomial and that it permutes only the integers
0,1, •••, JV. We show that the degree of the polynomial is fairly
large with respect to JV or it is of degree 1. RubeΓs conjecture
says that an entire analytic function which permutes the nonnegative
integers is of relatively large exponential type (compared to log 2)
or it is a polynomial of degree 1. As far as we know this work
bears no relationship to the extensive collection of papers which
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consider permutation polynomials over finite fields. We note that
Professor Charles Wells has compiled a bibliography of these papers.

We begin by defining a somewhat more general class of polyno-
mials. Let f(k) be a function whose domain consists of the integers
0,1, , N and whose range is contained in the integers. We denote
the class of all such functions as ^~(N). Given f{k) in ^~(N) we
define the polynomial

fix) = /(0) + *(-/(0) + /(I)) +

(1) + *(* - 1) •- ;(* - i + 1)
l

This polynomial is the Newton Interpolation Polynomial associated
with the points (k, f(x)) for k = 0, 1, - , N [3, 44]. Thus, f(x) has
the property that f(k) = f(k) for k = 0, 1, , N.

We are interested in functions in J^~{N) which are permutations.
In other words, functions which map the integers 0,1, « ,iV onto
themselves. Let π(k) denote a permutation on 0,1, * 9N and let
S^(N) denote the class of all such permutations. There are (N + 1)!
such permutations in S^(N). The polynomial π(x) which is associated
with π(k) in S^{N) by (1) is called the permutation polynomial asso-
ciated with π{k).

From (1) it follows that if π(k) is in S^{N) then the degree of
π(x) is at most N. The permutations π(k) — k and π(k) = N — k
yield the linear permutation polynomials π(x) = x and π(x) = JV — x,
respectively. In order to study the questions posed above we define

( 2 ) v(N) = min {degree of π(x) \ π(x) Φ x and π(x) Φ N — x) .

In other words, if we consider all permutations on 0,1, •••, N then
v(N) will be the minimal degree of all the associated permutation
polynomials, except for x and N — x. In §2 we discuss the problem
of finding upper bounds for v(N), and in §3 we obtain a lower bound
for v(N).

2. Upper bounds for v(N). When N is 2, 3, or 4 the value of
v(N) can easily be computed by hand. For N equal to 5, 6, 7, or 8
we have evaluated v(N) on a computer by considering all permutations
on 0,1, , N. For N equal to 9, 10, 11 or 12 we have considered a
large number of permutations and can establish non-trivial upper
bounds for v(iV). The following table summarizes what we can
conclude about v(N) by direct computation.
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42)
43)
44)

= 2

= 3

= 3

45)

47)

= 4

= 4

= 5

TABLE 1

48)
49)
410)

= 5

^ 7
^ 8

411) rg 9
412) ^ 9

The above table has inspired the following unanswered questions.
Does N — v(N) become arbitrarily large for large values of JV? Does
there exist an increasing sequence of positive integers {an} such that
the sequence {an — v{an)} get arbitrarily large for large nΊ

We can prove the following comparitively weak results. In
Theorem 1 we show that if N is even and N ^ 4 then v(N) ^ N — 1.
In Theorems 2 and 3 we show that if N is odd and N^t7 then
v(N) ^ N - 2. Theorems 1, 2, and 3 together with the fact that
v(5) = 4 give (̂iV) <> N — 1 for JV ^ 4. In Theorem 4 we show that
if N ΞΞ 2 mod 6 and ΛΓ ̂  8 then v(N) ^ JV - 3. We conjecture that
if N ^ 7 then ^(JV) <i N — 2 and in a certain sense Theorems 2, 3,
and 4 give two-thirds of this conjecture. We now proceed with the
proofs of Theorems 1, 2, 3, and 4.

THEOREM 1. If N is an even integer and N ^ 4 then v(N) ^
N-l.

Proof. We define πo(k) in S^(N) to be the permutation which
maps 0 to N, N to 0, and leaves everything else fixed. To show
v(N) ^ N — 1 it suffices to show that the degree of πo(x) is at most
N — 1. From (1) it is clear that the coefficient of xN in πo(x) is zero
if and only if

We have

(by the definition of πo(k))

* IN\
= Σ (-lΓ~fc& (since ΛΓ is even)

= 0 .
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In Theorem 2 we show that if N Ξ> 9 and N = 1 mod 4 then
there is a certain permutation πx{k) in S^(N) such that the degree
of π(x) is at most N — 2, and thus v(A0 ̂  N — 2. Before we prove
Theorem 2 we will prove some easy technical lemmas and define πjjc).

LEMMA 1. Let N be a positive integer and suppose f(k) is in
jβ~{N). If r is a nonnegative integer and r < N then

±(-lff(k)lN~ Λ = 0 for j = O,l,. ,r
*=o \ k )

if and only if

Σ(-l)*/(*)Pf ~ r ) = 0 for s = 0, 1, , r .

Proof. First we assume that

τ - 3

k I

For 0 ̂  s ^ r we have

Σ(-iW .

— r

(by a well-known combinatorial identity [4, 252]). Thus

Σ (-l)*/(*)f^ " r ) - 0 for 8 - 0, 1, , r .

fc=o y k — sj

Now assume that

N {N-r\

Σ ( - W W 7 = 0 for 8 = 0 f l , . . - , r .
fc=o \ k — sj

For 0 ̂  i ^ r we have

Σ Ί Σ ( - W ) , =Σ(-W(*)Σ
s=o \ s / k=o \k — S/ k=o s=o \

) — S

-3
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(by another well-known combinatorial identity [4, 12]). Thus

Σ (-Dkf(k)lN ~ Λ = 0 for j = 0, 1, , r .
&=o \ k ]

L E M M A 2 . // n a n d k a r e n o n n e g a t i v e i n t e g e r s w i t h n ^ l a n d

k + l?ίn, then (n - fc)(jj) = (k + )

Proof. Using the fact that (ΐ) = (n\/(n - k)\k\) we get

1);
n\

LEMMA 3. // N is an even positive integer and f{k) is in

then

& /N\ iv/2-i ιN

Σ (-i)W) . = Σ (-i)W) + f(N-k))[

Proof. This follows from the facts that (-1) ' = (-I)""* when

is even and

LEMMA 4. J/ JV is an even positive integer then

Proof. We use the fact that Σ£=o(~l) f c(^) = (1 - I f = 0, and

apply Lemma 3 with f(k) = 1 for & = 0, 1, , N.

LEMMA 5. // N is an integer which is greater than 2, then
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Proof. We have that

We now define the permutation π^k).

DEFINITION 1. If N = 1 mod 4 and r is the positive integer such
that N = 4r + 1, then π^k) is defined by:

( i ) 7^(0)-0.
(ii) If & is odd and 1 ̂  k ^ 2r - 1, then πx{k) = (ft + l)/2.
(iii) If ft is even and 2 ̂  ft ^ 2r, then π f̂t) = (N + 1 - ft)/2.
(iv) If k is odd and 2r + l ^ f t ^ i \ Γ - 4 , then

(v) If ft is even and 2r + 2 ^ f t ^ J V — 3, then

(vi) n,(N - 2) - 2r + 1, ̂ (iNΓ - 1) = 2r + 2, and ̂ (iSΓ) = JSΓ.
For example, if N = 17, then r = 4 and ̂ (Λ) is given in Table 2.

k 0

0

1

1

2

8

3

2

4

7

5

3

6

6

7

4

TABLE 2

8

5

9

13

10

14

11

12

12

15

13

11

14

16

15

9

16

10

17

17

It must be shown that n^k) is in fact a permutation.

LEMMA 6. If N = 1 mod 4 then the function πjjc) of Definition
1 is a permutation.

Proof. It suffices to show that π^k) is a function which maps
the integers 0,1, —, N onto themselves. It is clear from Definition
1 that 0, 2r + 1, 2r + 2 and N are in the image of π^k). The following
four statements also follow from Definition 1.

( i ) If 1 ̂  k ^ r, then 1 ̂  2k - 1 ̂  2r - 1 and TΓ̂ ft - 1) = k.
(ii) If r + 1 ̂  k ̂  24, then 2 ̂  iV + 1 - 2k ̂  2r and (̂JSΓ +

1 - 2k) = k.
(iii) If 2r + 3 ̂  & ^ 3r + 1, then 2r + 1 ̂  2JV + 1 - 2k ̂  4r - 3

and π,(2N + 1 - 2k) = k.
(iv) If 3r + 2 ̂  k ^ 4r, then 2r + 2 ̂  2A; - (1 + n) ̂  4r - 2

and ^(2fc - (1 + N)) = k.
So πx(A:) is an onto function and thus a permutation.
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THEOREM 2. If N ^ 9 and N=l mod 4, then v(N) ^ N - 2.

Proof. It suffices to show that Σ£"o (~ l)*π1(fc)ίlv

 k ) = 0 and

Σ?=i(""l)*^i(^)( fe Z i ) = 0 since this together with Lemma 1 and (1)

imply that the degree of π^x) is at most N — 2 and thus v(N) <ί

We begin by showing that the first sum is zero. If we let N =
4r + 1, apply Lemma 3, break the sum into even and odd terms,
and evaluate πx(k) by Definition 1 we get that

Λr\

AT

We now add {r + l)ΣX=oι 2(-l)k(4:Λ to the sum and subtract

) ( ) f 4 / ) f h f h i h k 1

get

(2r + 2)(-l) f ef 4/) from each term for which k = 0, 1, - - , 2r - 1 to

N-l\ Vzr-i /4r\ /4r

The first expression is zero by Lemma 4 and the second expression
is zero by Lemma 2.

Now we must show that Σ S ί - l M ^ Γ 1 ) = 0. Again we
let N = 4r + 1, apply Lemma 3, break the sum into even and odd
terms, and evaluate πx(k) to get that

This time we add -(3r + l)fetr="i l(2K-l)*(^')) to the sum, sub-

tract -(6r + 2)(-l)k(4:ζ} from each term for which Jc = 0, 1, •••,
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2r — 1, and split the term involving ( I\ to get;

k=0
ι(k) = - (

+

Zr -f

Γ /
2r
. I
Σ[(

1)

Mr

o

~2r—1

Σ2(-l)&

fc=O

\ /4r\\
-/ U//

1
+ \

4

\

) -

4r\"

2 / .

f4r\"
2̂rj_

The first part of the right side is zero by Lemma 4, the second by
Lemma 5, and the third by Lemma 2. Thus the proof of Theorem
2 is complete,

We now wish to get a similar result for N = 3 mod 4. We begin
by defining a function πz(k) in ^~(N) where 2V = 3 mod 4.

DEFINITION 2. If iV is a positive integer and N = 3 mod 4 and
r is a nonnegative integer such that N = 4r + 3, then π3(&) is defined
by the following conditions.

( i ) If & is even and 0 ^ k ^ 2r then 7r8(fc) = ft/2.
(i i) If Λ is odd and 1 ^ Λ ^ 2r + 1 then πz(k) = (N - k)/2.
(iii) If k is even and 2r + 2 ^ fc ^ N - 1 then ττ3(A:) = N - (fe/2).
(iv) If'-.& is odd and 2r + 3 ^ A; ̂  N then τr3(/b) = (ΛΓ + k)/2.

For example, if N = 15 then π3(/c) is given in Table 3.

A;

π,(ft)

0

0

1

7

2

1

3

6

4

2

5

5

6

3

TABLE 8

7

4

8

11

9

12

10

10

11

13

12

9

13

14

14

8

15

15

We must show that ττ3(ft) is a permutation.

LEMMA 7. // 2V = 4r + 3 where r in nonnegative, then the
function 7Γ3(k) of Definition 2 is a permutation.

Proof. It suffices to show that π3(k) maps 0, 1, , 2Vonto itself.
The following four statements, which follow from Definition 2 show
that πs(k) is onto.

( i ) If 0 ^ ft ^ r then 0 ^ 2fc ^ 2r + 1 and ττ3(2ft) = ft.
( i i) If r + 1 ^ ft ^ 2r + 1 then 1 ^ 2V - 2ft ^ 2r + 1 and

7Γ3(2V — 2ft) = ft.
(iii) If 2r + 2 ^ ft ^ 3r + 2 then 2r + 2 ^ 22V - 2ft ^ 4r + 2 and

τr3(22V — 2ft) = ft.
(iv) If 3r + 3 ^ ft ^ 4r + 3 then 2r + 3 ^ 2ft - 2V ^ 4r + 3 and
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7Γ3(2& - N) = k.

Thus πjjc) is a permutation.

THEOREM 3. If N^7 and i V = 3 mod 4 ίΛβn v(iV) ^ N - 2.

Proof. It will suffice to show that Σ S ( - l ) f e W j . ) = °

and tl\at Σf=1 (-l)*ττ3(Λ;)( ^ ~ j) .= 0 by Lemma 1 and (1). We begin
by showing that the first sum is zero. We let N = 4r + 3, apply
Lemma 3, evaluate π3(k) by Definition 2, and separate the even and
odd terms to get

If we add (r + l)(ΣΓ=o2(-l)*( 4 r ^ 2 ) to the right side of the

equation and subtract (2r + 2)( —l)fc( τ 7~ ) from each term for k =

0,1, •••, 2r, we get

^ ι = (' 2r 4r + 2\ /4r + 2

fci \ & / \2r + 1
4r + 2

- ((4r + 2)

4r + 2\

The first term is zero by Lemma 4 and the second is zero by Lemma

2. Thus Σ S ( - l ) ^ ^ ~ X ) = 0.

We still have N = 4r + 3 and now show that

We make a change of index, letting & run from 0 to N — 1, apply
Lemma 3, separate the even and odd terms, and evaluate π5(k) by
Definition 2 to get



370 CLIFTON E. CORZATT

We now add -(3r + 2)(ΣΓ=o2(-l)*(4 r ̂  2 ) ) to the right side and

subtract -(6r + 4)( - l )*( 4 r £ 2\ from each term for k = 0, 1, •• , 2r,

= - (8r + 2)

to get

'4r + 2\ /4r + 2

.fel"* -' \ k ) ~\2r + l_

Άr + 2

2k

The first expression is zero by Lemma 4 and the second is zero by

Lemma 2. Hence ΣE=i (-l)kπ3(k)(ΨZι) = ° a n d t h e P r o o f o f Theorem

3 is complete.

COROLLARY 1. If N^ 4 then v(N) <̂  N — 1.

Proof. This follows immediately from Theorems 1, 2, and 3
together with the fact that v(5) = 4 from Table 1.

COROLLARY 2. If N^7 and N is odd then v(N) ^ N - 2.

Proof. This follows from Theorems 2 and 3.

We now turn our attention to the set of positive integers which
are congruent to 2 modulo 8. We will show that v(N) ^ N — 3 for
these numbers, and we note that 3 is the largest value of N — v(i\Γ)
which we have found. Again, we begin by defining a function on
0, 1, , N where N = 2 mod 6 and N ^ 8.

DEFINITION 3. If N ;> 8 and N = 2 mod 6 we define ττ2(fc) in
by the following 4 statements.

( i ) If & = 0 then π2(k) = 0 and if & = i\Γ then ττ2(&) = iSΓ.
(i i) If k = 1 mod 6 or fc Ξ 4 mod 6, then π2(k) = &.
(iii) If A; = 2 mod 6 and & Φ N or & = 3 mod 6, then 7Γ2(&) = k + 3.
(iv) If & = 5 mod 6 or k = 6 mod 6 and fc ̂  0, then π2(k) = k — Z.
For example, if N = 14 then 7Γ2(&) is given in Table 4.
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TABLE 4

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

π2(k) 0 1 5 6 4 2 3 7 11 12 10 8 9 13 14

As with π^k) and π3(k) we must show π2(k) is a permutation.

LEMMA 8. The function π2(k) of Definition 3 is permutation.

Proof. It suffices to show that π2(k) maps 0,1, , iVonto them-
selves. It is clear from Definition 3 that 0 and N are in the range
of π2(k). The following statements also follow from Definition 3 and
give that π2{k) is onto.

( i ) If k = 1 or 4 mod 6 and 1 < k < N, then πjjc) = k.
(ii) If k = 2 or 3 mod 6 and 1 < k < N, then 1 < k + 3 < N and

7Γ f/b -I- 3 ^ == k

(iii) If k = 5 or 6 mod 6 and 1 < k < N, then 1 < & - 3 < iV
and π 2(& — 3) .= &.
Thus π2(k) is a permutation.

Before we prove Theorem 4 we give two more lemmas.

LEMMA 9. IfN=0 mod 6 then the following three identities hold:

2 ) = (1/3X2-1).

Proof. These follow immediately from a well-known combinatorial
identity. See, for example, Netto [4, 248].

LEMMA 10. If N and i are non-negative integers then

N
, . = o .
k — τ I

Proof. By a change of index we have that

(N\

\k)— ι

= ί(-D'Σ
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- if + (-

THEOREM 4. If N = 2 mod 6 αmZ iSΓ ̂  8 tfcβw v(iSΓ) ̂  N - 3.

Proo/. It suffices to show that Σ£*o2 ( - l)fc ̂ 2(&)(^ 'ζ 2 ) ,

Σ£ί (~1)^2(^)(^ I 1), and Σ t . ^( f c)(ΐ I g) a r e a11 zero» t h e r e s u l t

then follows from Lemma 1 and (1) which give us that the degree
of π2(x) is at most N — 3.

We proceed to show that the first sum is zero. We let N— 6r + 2
and apply Lemma 10 so

N-2\ βr /6r

Now we break the sum into three parts according to congruence
classes mod 3 of k, and apply Definition 3 which yields

AΓ-2 /N-2\ 2r / f W Λ 2r~l / &T \

Σ(-i)^2(&) . = - 3 Σ S + 0 + 3 Σ L ^ 9 •

It follows by Lemma 9 that the expression on the right is zero. Now
we turn to the second sum. Since N = 6r + 2, it follows from Lemma
10 that

Λ--i IN - 2\ βr+i / 6r

Σ (-!)%(&)( fc _ χj = g(-l)*(π t(fc) -fc)^fc _
Again, breaking the sum up according to residue classes mod 3 and
applying Definition 3 we get

N - 2\ 2r-i / 6r \ 2r / 6r

k -I) ~~ έo \3& + 1/ *=i \3fc —

This expression is equal to zero by Lemma 9.
Finally, we again apply Lemma 10 to get

Using the above decomposition of the sum and by applying Definition
3 we have that
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This expression is equal to zero by Lemma 9, and the proof of Theorem
4 is complete.

We now state a corollary which says that
thirds of the time".

^N — 29 "two-

COROLLARY 3. If N ^ 7 and N = 1, 2, 3, or 6 mod 6 then v(N) ^
N-2.

Proof. This is an immediate consequence of Theorems 2, 3 and 4.

3* Lower Bounds for v(N).
We proved in Section 2 that if π(k) is a permutation on 0,1, , N,

then v(N) < N f or JV ^ 4. In this section we will show that v(iV)
cannot become too small if N is suίBciently large. In fact, we show
that for large values of N that the value of v(N) cannot be appreciably
smaller than JV/2. Again we concern ourselves with functions in
^(N); i.e. the integer valued functions whose domain consists of
0,1, •••, JV. If f(k) is in ^(N) we are able to associate it with a
polynomial, f(x), by (1).

If i is a positive integer and i < N, then it follows from (1)
that the degree of f(x) is at most N — ί if and only if

( 3 ) (-lYf(k)[N

 η

 3) = 0 for i = 0,l, -, i - 1 .

DEFINITION 4. We define M to be a (N + 1) by (i) matrix, whose

entry in row r and column s is (—l)r~1( ~~ s 7" ). (In Definition 4

and throughout this chapter we adopt usual convention that ί , j = 0

whenever & > JV or &<0.)
For example, if JV = 4 and i = 3 the matrix If is

- 4 - 3 - 2

- 4 - 1

0 0
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We wish to consider M as a linear transformation which sends
(N + l)-dimensional row vectors with integer coordinates into i-dimen-
sional row vectors with integer coordinates. The linear transformation
is determined by multiplying the (N + l)-dimensional vectors on the
right by M. We denote by Ker M the set of all (N + l)-dimensional
vectors with integer coordinates whose image is the i-dimensional zero
vector under this linear transformation. We determine a relationship
between Ker M and the functions in

LEMMA 11. The vector v = (v0, vlf •••, vN) is in Ker M if and
only if the polynomial associated with f(k) = vk for k = 0, 1, , N
has degree at most N — i.

Proof. Suppose v = (v0, vί9 , vN) is in Ker M; i.e. v-M — 0; then
by the definition of matrix multiplication we get

=0 for i = 0,l, • - . , < - 1 .

Thus the function f(k) = vk is associated with a polynomial whose
degree is at most N — i by (3).

Conversely, if f(k) is associated with a polynomial, f(x), of degree
at most N — i, then the vector (/(0), / (I) , , f(N)) is in ker M by
(3).

Thus if we wish to find functions in ^~(N) associated with poly-
nomials of degree at most JV — i it would be useful to characterize
Ker M. Specifically we shall find a basis for Ker M.

DEFINITION 5. If j is an integer and 0 ^ j ^ N — i, then v5 is
defined to be the (N + l)-dimensional row vector

For example, vt = (θ, 0, ( \ ) , ( | ), . . . ,

LEMMA 12. The vectors v09 v19 •••, vN_if taken over the integers,
are a basis for Ker M.

Proof. We must show that v0, vίf •• ,vN-i are in Kerikf, that
each vector in Ker M can be written in the form Σf̂ Ό* UjVj where
the a,j are integers, and that the vectors v3- are linearly independent.
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First we show that vά is in Ker M for i = 0 , 1, , N—i. i.e. v3M=0.
For a fixed j this amounts to showing

- 0 for 8 = 0,1, • • • , < - ! .

This follows from a well-known combinatorial identity since JV — s > j .
For example, see Netto [4, 255].

Next we show that each vector in Ker M can be written in the
form ΣJ=o UjVj where a5 is an integer. Suppose w = (w09 wlf , wN)
is in Ker M. Since v3- has zeros in the first j coordinates and a 1 in
the (j + l ) s t coordinate it is possible to find integers α0, aί9 •••, aN^
such that u = Σί^o* c&^ agrees with ϋ? on the first JV — i + 1 co-
ordinates. The function /0') = w,- for j = 0, 1, • ••, JV is associated
with a polynomial /(#) whose degree is at most N—i. Thus /(#)
is completely determined by JV — i + 1 of its values. In particular
f(x) is determined by f(j) = w5 for j = 0, 1, , JV — i. In other
words, if a vector is in Ker M it is completely determined by its
first JV — i + 1 coordinates. Since u is in Ker M and agrees with
tb on the first JV — i + 1 coordinates, we can conclude that u = w and

Finally we must show that the vectors v3- are linearly independent.
If Σi^o1 ̂ ^ i = 0 then we must show that a0 — αx = = aN_t — 0.
This is clearly true since v3- has zeros in the first j coordinates and
a one in the (j + l ) s t coordinate. Thus the proof of Lemma 12 is
complete.

LEMMA 13. Let p be an odd prime number. If f(k) is in
and N^p and f(x) has degree at most p — 1, then p divides f(p + r) —
f(r) for 0 rg r ^ JV — p.

Proof. Since the polynomial fix + r) has degree at most p — 1
and passes through the points (0, /(r)), (1, f(r + 1)), •••,(#, f(p + r))
we can conclude from (3) that

= 0 for O r g r ^ J V - p .

Thus j) divides ΣΛ=o(-l)kf{r + k)(j£\ and since p divided (jf) for

fc = 1, 2, - , j> - 1 we have that p divides Σ U (~l)&/(^ + *)(? s o

p divides /W( Q ) + (" l ) P /(^ + ί>)(^) I n other words, p divides

fiv + r) - /(r).

We now come to the main lemma of this section. Lemma 14
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together with some well-known results on primes in an interval will
allow us to get lower bounds for v(N).

LEMMA 14. Suppose p is a prime number which is at least 7 and
N is an integer such that 2p — 1 <S N ^ 4p — 5. If π(k) is in S^(N)
and the degree of π(x) is at most p — 1, then π(x) = x or π{x) =
N-x.

Proof. If π(x) is of degree at most p — 1, then by Lemma 12
there are integers a3- such that Σj=ϊ O>JVJ = (π(0), π(l), •> π(iV)) where
the ϊ j are the vectors of Definition 5. In other words,

0

N

If r is an integer such that 0 ^ r ^ N — p then ττ(p + r) — 7r(r) =
Omodp by Lemma 13, and since π(k) is a permutation, π{p + r) —
τr(r) — 5rί> where 1 ^ 15r | ^ 3 because iV ^ 4p — 5. This gives a
collection of N — p + 1 equations of the form

ί(p + r\ I r \

\p - 1/ Vp + 1/

We focus our attention on certain subsets of p — 1 of these equations.
For example, if O ^ r ^ J V — 2p + 2 then π(p + r + j) — π(r + j) =
5 r + i p where 0 ^ j ^ ί) — 2 gives a subset of p — 1 equations. If
0 <^ r <ί N — 2p + 2 then we have the system shown on the following
page (equation (5)). If we consider αx, α2, •• ,α ;p_1 as variables and
<$n $r+i> *- ,δr+P-2 as arbitrary constants then (5) consists of p — 1
linear equations in p — 1 variables. For the sake of brevity we
write the equations in (5) as
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E(r) = δτp

E{r + 1) = δr+1p

• •

E(r + p - 2) = δr+p+2p

We now consider the following equivalent system:

E(r) = δrp

E(r 4- 2) - 2E(r + 1) + E(r) = (dr+2 - 2δr+1 + δr)p

p~2 Jp - 2\ p-2 Jp - 2

y=o \ 3 I ^° \ i

In other words, we replace the equation ^ r + i) — δr+ip with the
ith finite difference of the first i + 1. equations.

We now wish to compute the new coefficients of the ak for
1 <* ft ̂  p -- 1. liO^i^p — 2 then the coefficient of ak in the
equation

) ) * +\ Jl\t\\
Hi))* +lί 2 )(2)h

Λ 2

( 5 )

f(2p+r-2\ (p+r-2\\ f(2p+r-2\ (p+r-2\\

{{ I )-( , )h+[{ 2 H 2 ))*
2p+r-2

^

i

is

+ r + i — j\ (r + i — j
' j—O k \ k
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and this sum is equal to

p + r\ I r

k — i) \k — i

by a well-known combinatorial identity [4, 252]. We note that

\hZ-r )~'\h'ϊL •) = 0 when i^k so an explicit representation of

the new system is at the bottom of the page. This system's matrix

of coefficients is an upper triangular matrix whose diagonal entries

are \ ι ) — (i) = P The determinant of the matrix is pp~ι so

the system is non-singular and therefore with fixed δ's there is an

unique solution. We now wish to show that either all the δ's equal

1 or else they all equal — 1 .
If we assume that 0 <; r ^ N — 2p + 1, the last equation in the

system (6) is

and since r <; N — 2p + 1 we can replace r with r + 1 and get the
equation

— 2

Thus

— 2\ ?>-2 /p — 2

J

\p-ί) \p-l

(ΓMD)
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It is easy to see that (—l)j(^ ~ j = 1 mod p so we get ΣjrJ K+P-I-J =

0 mod p and in particular if r = 0 we get

(8) Σ
3=0

If we assume that 0 ̂  r <; N — 2p we can replace r with r + 1
in (7) so

and

Σ(-lW .
i \ 3

Thus Σ ^ o ί - l j Y j V r + p - i ΞΞ Omodp and since ( j ) Ξ 0 mod p for 1 £

j <; p — 1 we get <ϊr = dr+p mod ί? for 0 ̂  r ^ iV — 2p. Because we

have assumed that N^ Ap — 5 and p ^ 7 we have that 1 ̂  |

and since δr — dr+p mod p we conclude that

9) dr = dr+p for
r+p

We now consider two cases. First we suppose that 2p — 1 ^
ΛΓ < 3p - 1 which implies that \dλ\ ̂  2 for 0 <> r <: N - p. If there
exists an r such that 8r = 2 and 0 ̂  r <; p — 1 then

(10) π(r + p) = 2p + π(r) .

Let £ be the integer between 0 and N with the property π(t) =
π(r) + p. We claim that t Φ r + 2p. It r + 2p > N this is clear,
and if r + 2p ^ N then ττ(r + 2p) — π(r + p) = <5r+2)p = δrp — 2p by
(9) and (10). We add this equation to (10) and get,

π(r + 2p) — π{r) — 4p

which is impossible so tφr + 2p, and since π(t) Φ π(r) and π(t) Φ
π(r + p) we have that t Φ r and t Φ r + p. We conclude that
t^r mod p. If £ + p <: iV let u = έ + p, and otherwise let w = t — p.
From Lemma 13 and the fact that π(t) — π(r) + p we get

ττ(r) = 7r(r + p) = 7r(ί) = ττ(^) mod p

and r, r + p, t, and u are distinct. This is not possible for N< Sp — 1.
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Similarly, if 2p - 1 ^ N < Zp - 1 and 0 <: r ^ p - 1 then <5r ^ - 2.
S o i f O ^ r ^ p - l then \δr\ = ± 1 . Prom (8) we get

or

d0 = dt — = δp_t = — 1 ,

and from (9) we conclude that

δQ = δi = . . = δN_p = 1

or

δ0 = ^ = . . . = δ ^ p = - 1 .

In the second case we assume that 3p — 1 ^ N < 4p — 4 and
that I δ r I > 1 for some r such that 0 ^ r ^ p — 1. So

π(r + p) — ττ(r) = drp ,

and by (9)

π(r + 2p) — ττ(r + p) = δ r + ί ?p = δ rp

By adding the equations we get

ττ(r + 2p) - τr(r) = 2δrp .

Since we are assuming | δr \ > 1 we get | π(r + 2p) — ττ(r) | ^ 4p. This
is impossible because N < 4p — 4. We conclude that | δ r | = 1 for
0 <g r ^ p —"I.

By applying (8) and (9) as we did above, we obtain

d0 = δ, = . . . = δ^_p = 1

or

§0 = 3 ! = . - . = δN_p = - 1 .

Now we are able to complete the proof of Lemma 14. First we
assume that δ0 = δ1 = . . . = δ^.^ = 1. We have shown that the
system (5) has a unique solution for fixed δ's. If αt = 1 and α2 =
α3 = . . . — αp_! = 0 we have a solution, and consequently the only
solution. We conclude that

and since 7r(fc) is in ^(iSΓ) it follows that α0 = 0. Therefore (τr(O),
τr(l), , π(N)) = (0, 1, . , 2V) and π(α) = α.

Next we assume that d0 = δ1 = . . . = δN_p = — 1. In this case
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we get the unique solution if at = — 1 and a2 = α3 — = ap^ — 0.
Thus

(π(0), π(l), - ., π(N)) = aoϊ;o - v

and π(k) is in &*(N) if and only if a0 = JNΓ. Therefore (7τ(0), ττ(l), ,
T̂ iNί)) = (JV, N - 1, , 0) and τr(#) = N - x. The proof of Lemma
14 is now complete.

We now apply Lemma 14 and the theorem commonly known
as Bertrand's postulate to get an absolute lower bound for v(N)
when N ^ 13. Bertrand's postulate states that if N is an integer
greater than 3, then there is a prime number p such that N<p<
2N - 2 [2, 373].

THEOREM 5. We have the inequality

N+ 1 /or ΛΓ ̂  13 .

Proof. We claim that if JV ̂  13 then there is a prime number
p such that 2p — 1 <; iV ^ 4̂> — 5. This is shown by way of con-
tradiction. If N is the smallest integer without this property then
N = ip — 4 for some prime p. By Bertrand's Postulate we conclude
there is a prime q such that p < g < 2p — 2, so 2g — 1 < 4p — 5 < N
and 4g — 5 > 4p — 5. Since N — Ap — 4 we get the 4g — 5 ^ JV and
thus 2q — 1 ^ N ^ 4^ — 5. This contradicts the condition placed on
N.

If π (&) is in S^(N) with JV ̂  13, p is a prime such that 2p — 1 <:
iV ^ 4p — 5, and the degree of τr(#) is at most p — 1, then by Lemma
14 it follows that π(x) = # or ir(a?) — N — x. We therefore conclude
that y(iV) ^ ί> — 1 and p — 1 ^ ( ^ — l)/4, so Theorem 5 is proved.

Next we apply Lemma 14 along with the following consequence
of The Prime Number Theorem.

LEMMA 15. If 0 < ε < 1, then there is a number K(ε) such that
for every N > K(ε) there is a prime number between N and (1 + e)N.

Proof. A proof is given in Hardy and Wright [2, 371].

We now show that if N is sufficiently large then v(N) is bounded
below by a number which is just a bit smaller than (N — l)/2.

THEOREM 6. Given ε, such that 0 < ε < 1, if N is sufficiently
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large then v(N) ̂  ((N - 1)/2)(1 - ε).

Proof. We choose K(e) as in Lemma 15. We claim that for
N > 4ZΓ(ε) there exists a prime number p such that 2p — 1 <̂  N ^
(2(1 + ε)p) — 1. We prove the claim by way of contradiction. Let
Nt > 4if(ε) be the smallest integer which does not satisfy the claim.
It follows that there is a prime p1 such that Nt = [2(1 + e)pί] for
this is the first integer greater than (2(1 + ε)^) — 1. Since 4pL > N
we have px > NJ4 > K{ε), so by Lemma 15 there is a prime q such
that ft < ff < (1 + ε)2V This implies that 2q - 1 < 2(1 + ε)^ - 1
and since Nt = [2(1 + ε)pj we have 2(1 + ε)^ - 1 < N, so 2q - 1 < Nt.
Moreover, since 2(1 + ε)(q — pj > 1 we have 2#(1 + ε) —1 ̂  2p1(l + ε)
and 2^(1 + e)^Nt so 2q(l + ε)-l'^N1. We now have 2q-l^N1^
2q(l + ε) —1 where q is prime and this contradicts our assumption
for N,.

If N > 4iΓ(ε) and π(k) is in S^(N) there is a prime p such that
2p — 1 ̂  N ̂  2(1 + e)p — 1. Thus if the degree of π(x) is at most
p — 1 then by Lemma 14 we have that π(x) = x or π(x) = N — x.
But,

2(1 + e)

so

^ ^ — ί ( l - s) .
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