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THE WORD PROBLEM AND POWER PROBLEM IN
1-RELATOR GROUPS ARE PRIMITIVE RECURSIVE

F. B. CANNONITO AND R. W. GATTERDAM

The purpose of this paper is to show the solution to the
word problem in a 1-relator group can be computed with
respect to an effective indexing of the group by an algorithm
at level at most 2+σ(R) of the Grzegorczyk hierarchy, where
σ(R) is the length of the relator, and by a primitive recur-
sive function, always. As a consequence, it is shown that
the power problem in a 1-relator group can be solved
similarly. An example is given in which the Magnus
algorithm for the extended word problem is at level 4 but
not 3 of the Grzegorczyk hierarchy even though the word
problem is solvable at level 3.

Our theorem provides a negative solution to problem 20 of [2],
p. 643, which reads "is there a one-relator group whose word
problem is not solvable by a primitive recursive function?" These
results do not depend on a particular presentation of the group,
rather they are algebraic invariants in the sense of [3]. (The
algebraic invariance of the order and power problem can be shown
in a manner similar to the proof of the invariance of the word
problem in [3].) Sinch each finitely generated subgroup of a group
with primitive recursive word problem has a primitive recursive
word problem ([4] Corollary 3.7, p. 380) and there are finitely
generated and finitely presented groups with recursive but not primi-
tive recursive word problem ([5], [6] and [1] we see that a finitely
generated group with solvable word problem cannot necessarily be
embedded in 1-relator group. (This result can be obtained in the
stronger form: a finitely presented group with primitive recursive
word problem is not necessarily embeddable in a 1-relator group,
from B. B. Newman's work [11] which shows a free abelian group
of rank 3 cannot be a subgroup of a 1-relator group and the easily
shown primitive recursive solution to the word problem in such
groups.)

The proof of the main theorem follows by analyzing the proof
of Magnus' theorem of the solvability of the word problem in
1-relator groups as given in [9], with respect to the Grzegorczyk
hierarchy of primitive recursive functions [8]. (See also [12].) We
assume a knowledge of [4], [5] and [9]. We prove that the Magnus
algorithm for solving the "extended word problem" and hence the
word problem in a one relator group is if2+<7(β) computable in the
Grzegorczyk hierarchy where σ{R) is the length of the relator. In
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section 4 we verify that the order and power problem in one-relator
groups are also ^2+σiR) computable.

Finally we note that the Magnus algorithm is not always the
"easiest" algorithm in the sense of the Grzegorczyk hierarchy, for
solving the word problem in a one relator group. In § 5 we give
an example of a one relator group in which the Magnus algorithm
is g74 but not g73 computable and yet for which the word problem
is g*3 computable.

2* Notation and definitions* We abbreviate finitely generated,
finitely presented, word problem, primitive recursive by "f.g.",
"f.p.", "w.p." and "p.r." respectively. The levels of the Grzegorczyk
hierarchy are denoted by g7", a ;> 0. If R is a word on α, 6, c,
then σ(R) denotes the length of R and σa(R) denotes the exponent
sum of a in R.

The following definition is basic to this paper. It is discussed
in detail in [4] and [5].

A countable group G is g7" computable, or briefly an g7" group
if the following three conditions are met:

(1) There is an injection i:G-+ω such that i(G) is an g7*-
decidable subset of ω. (If rei(G), i~ι(r) will be denoted by gr.)

(2) The function m: ί(G) x ί(G) -> i(G) defined by ra(r, s) =
i{9r-9s)j r, sei(G) is an g*a function. (More precisely the restriction
of an g7" function to i(G) x i(G).)

(3) The function In: i(G)-+ i(G) defined by

In (r) = i{g^), r e i{G)

is an g7* function. (This condition is redundant for g7" = the
recursive functions.)

The function i of (1) is called a n ^ f f index of G. Of particular
importance is the notion of a standard index which is obtained as
follows. Let G have a presentation G = gp(au a2, α3, •-•*> R, S, T, •)
where R, S, T, are words on alf α2, α3, . We fix a Godel
numbering of the free group F on a19 a2, a3, and assign to each
g e G the index i(g) equal to the smallest index in p~ι{g) where p is
the canonical epimorphism F-*>G. If G is £?α computable with
respect to a f.g. standard index we say G is ? " standard. It is
known, in this case, that G is then g*" standard with respect to all
f.g. standard indices for this is another way of expressing the
algebraic invariance of the w.p. for f.g. groups with respect to the
Grzegorczyk hierarchy. See [3] and [6] for the details on the
equivalence of g7" w.p. and having an g7" standard index for f.g.
groups.
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3* The main result* We now state and prove the

THEOREM. The word problem in a one relator group

G = gp(a, 6, « ;i2(α, δ, . . . ) )

is at most gf2+σ(i?) solvable. In particular it is p.r.

Proof. We prove the "extended word problem" (henceforth
"e.w.p.") for G is g?2+σ(β) where we mean the problem of deter-
mining if a freely reduced word on the generators of G represents
an element of the subgroup H < G generated by a given proper
subset of the generators and, if so, to rewrite it in terms of the
generators of H. The proof will involve an induction on σ(B) which
raises the degree of computational complexity by at most 1 at each
stage.

It should be observed that we may assume R involves all of
the generators of G, and in particular that G is f.g., for otherwise
we can write G as the free product of a free group with a 1-relator
group in which the relator involves all of the generators. Such a
free product has an g7* e.w.p. if the 1-relator factor does, by virtue
of the normal form theorem for free products and the obvious g*3

e.w.p. for free groups. Also, observe that by the Freiheitssatz the
subgroup of G generated by deleting one relator is free. Thus, if
H < G is a subgroup generated by a proper subset of the generators,
say a£H, and W is an arbitrary word, the e.w.p. for W reduces
to the question of W representing a word in K = gp(b9 c, •••;)<<?
and of rewriting W in terms of 6, c, •••, because the e.w.p. in K
(with respect to generators b, c, •••) is gf3. This last remark holds
in particular if H = {1}, so an g " solution to the e.w.p. implies an
g7* solution to the w.p.

Now if G has one generator, G is either trivial or finite cyclic
and the e.w.p. is identical to the w.p. and is g73. Thus, we assume
G has at least two generators, say a and 6, and hence that R has
length at least two. The proof proceeds by recursion on the length
of the relator.

Given a subgroup H < G generated by all but one of the
generators of G and a word W representing an element of G the
recursion reduces the question of W representing an element of H
in G (we write WeH<G) to the question W eH' < G', where
G' is a 1-relator group with relator of length less than that of
R and Hr is generated by a proper subset of the generators of
G'. We show at each stage of this recursion the encoding of W is
gf3 computable from the result of the previous stage and that at
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each stage the level of computability is raised by at most 1, involving
an (inner) recursion. The result then follows since the number of
steps in the recursion is bounded by σ(R) independent of σ(W).

First, assume σa(R) — 0. Also assume H < G, is generated by
all generators of G excluding a. Let N < G be the normalizer of
the set of generators of G excluding a. Then since σa(R) = 0, the
map G-+gp(a;) by α π α and all other generators t-*l extends to
an epimorphism G-»gp(a;) given by W(a, b, •..)h->a*«(wr(e'6'"')). Thus,
WeN iff σa(W) = 0 (an gf3 decision) and since H < N, W$H in G
otherwise. By a Reidemeister-Schreier rewriting process (using coset
representatives ak) N has a presentation

N = gp(- , δ_x, b0, blf , c_19 c09 clf •; , P__w Po, Pίf •) where

bk = akba~k, ck = akca~k, etc. and P* is akRa~k e N rewritten in terms
of the 6fc, ck, etc. For T^eiNΓ, TF is rewritten by replacing V (or cj

etc.) by 6ί for k equal to the exponent sum on a of the symbols
preceding b{. (For example aΨac^a"1 is rewritten δJcjΓ1.) I n particular
the rewriting lowers the length of W. Notice also that Pk may be
obtained from Po by raising the subscripts by k.

Now for WeN, WeH iff its rewrite WeH' for Hf =
9P(bo, cQf - •) < N. Note σ(W') ^ σ(TF). For simplicity of notation,
assume R begins with the symbol 6 (conjugate R if necessary) and
let n be the minimum subscript of b in Po (n ^ 0 by the simplification)
and m the maximum subscript of b in Po (m ^ 0). Set

No = gp(bn, . . , δm, , ex, Co, cx, - - Po) .

Note JEί' < JV0 since ^ ^ 0 ^ m. Recursively form

Nk = gp(bn+k, , δm+fc, , c_lf c0, Ci, •; P f c).

It should be observed that the iSΓfc are all isomorphic to No the
isomorphism given by lowering the subscripts of the b generators
by k. Also note the group No (and subsequent groups in the recur-
sion playing the role of iVo) are determined by R independent of W.
Thus (formal) questions and rewritings of words in Nk may be treated
as questions and rewritings in No by an g7 3 modification of sub-
scripts. The significance of the above is that in the following the
groups N-σlw)9 N_σ{w)+1, , No, , NσW) must be considered, the
number dependent on W. Nevertheless, the algorithms involved
depend only on R.

Form No>1 = No *Φ Nx where φ amalgamates the free subgroup
generated by bn+1, « , δ m , , c_1? c0, c19 ••• (all but bn) in No with
the free subgroup having the same generators in Nλ. Next, form
JVLlfl = No *Φ iSΓ_! for φ amalgamating the free subgroups generated
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by bnf , δm_x, , c_i, c0, Ci, and proceed to form No < NOtl <
JVLlfl < iV_1>2 < iV_2>2 < . Now N is the union of this chain so if
We N, W is eventually in one of these groups (at least by stage
N-*m,σiw)) Note H' < NQ. Also observe that up to isomorphism
by change of subscripts of the b symbols, there are two types of
amalgams namely one generated by bn+k, , bm+k_19 , c_x, e0, clf ,
and one generated by bn+k+1, , bm+k, , c^19 c09 c19 . Thus ques-
tions and rewrites in the amalgams do not depend on k and hence
not on W up to an g7 3 process on the subscripts.

We must show both the question W e Hr and, if true, the
process of rewriting W in terms of δ0, c09 ••• are g72+αlB). Then the
rewriting in terms of δ, c, (i.e. renumbering to delete the sub-
scripts) is g7 3 and so the e.w.p. is gP2+σ(R) in this case.

By an g7 3 process, W = Wx Wp in syllables, each Wt in a
different Nk. We describe a recursion involving the e.w.p. in Nk (or
in JVo). Inductively (recursively) the e.w.p. in Nk is g72+σ(po) and
(7(P0) < σ(i2) so the computability of the (inner) recursion is at most
g,2+σ(Po)+1 c g,2+α(β)> W e consider e a c h pair of syllables WtWi+1. Let
Wi e Nk and Wi+ι e Nt and assume k < I (for simplicity; the case
k > I is similar). Then we ask: can Wt be rewritten without the
bn+k symbol? and if so rewrite it (an gf2+σ(po) process). Next, we
ask: can Wi+ι be rewritten without the δm+&_1 symbol? and if so
rewrite it. The rewritings are in Nk+ί and N^ if possible. We
continue until neither type of rewrite is possible or Wt has been
rewritten Wl e N3 and Wt+ι rewritten W!+1 e N3 for k <£ j ^ I. In
the former event, WiWi+1 is left as in the original; in the latter
WiWi+ι is replaced by the single syllable (Wf

tWl+d reducing the
syllable length. The process continues until W has been rewritten
W" with minimal syllable length. Now the possibilities for W"
are:

( i ) W" = A (the empty word) whence WeH with rewrite A,
(ii) the syllable length of W" is greater than 1 whence W&H,
(iii) the syllable length of W" is 1 with W"eNk in which

case we ask if W" can be rewritten W" involving δ0 as the only
6 symbol if n + k^O^m + k or no b symbol otherwise (an
g?2+σ(p0) ( j e c i s j o n a n ( j process) so either

(iii) (a) W" can not be obtained hence WiH
(iii) (b) W'"eN0 can be obtained but W'"$H' (an <%**<***

decision) so W ί H or
(iii) (c) W'"eN0 can be obtained and W'"eH' so WeH and

TΓ is rewritten in terms of δ, c, by rewriting TF'" in terms of
δ0, c0, and deleting the subscripts.

Recall that we had assumed above that σa(R) — 0 and a $ H.
Now assume σa(B) = 0 but δ g ί f (so aeH). In this case We if
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does not imply WeN but for a = σa{W), WeH iff Wa,~aeH and
Wa~a e N. Thus the above argument is carried out replacing W by
Wa~a and using H', the subgroup generated by all generators of N
excluding the bk for all k. It should be observed that Hf < No and
also that the rewrite W of Wa'

a satisfies σ(W') ^ σ(W). Step (iii)
c) must be replaced by W'"eH generated by c_19 c09 cί9 ,
d-ίy dQ, and W is rewritten in terms of α, c9 by rewriting
W " replacing ct (respectively dt etc.) by aica~i (d^d'* respectively),
concatenating aa and freely reducing (all g7 3 processes).

Next, assume none of the expenent sums of R is zero and the
problem is to determine if W{a,b,c, •••) is equal in G to a word
not involving b and if so rewrite W without b. Let σJJR) = a Φ 0
and σh(R) = βΦθ. Consider E=gp(τ], 6, c, •; JS(^, 6, )) = G *φ gp(η;)
where φ amalgamates the infinite cyclic groups generated by a and rjK
By an i? 3 process W(a, b, •) e G can be rewritten "W(ψ, &, ---)eE.
By a Tietze transformation

# = gp(7], ζ, δ, c, •; R{ψ, 6, •), δ = C^α)

where σv{R{ψ, ζη~a

f . . . ) ) = 0. Now T7(a, 6, e, •) is equal in G to a
word involving only a, c, iff TΓ(^, ζ)?~α, •••) is equal in E to a
word involving only ^ , c, •••. Note that expressing W(i}β, ζψ", •••)
in terms of W(a, b, c, •••) is an g7 3 process. We proceed with the
previous analysis letting N be the normalizer of {η, c, } (excluding
ζ) in E. Thus, by the recursion we can determine if W(ψy ζjfa

9 c, •)
is equal in E to a word say V{~η, C, ) (excluding ζ symbols) and
if so compute V by an g?2+σ(Λ> process. Now since the subgroup of
E generated by τj9 c, (excluding ζ) is free, it is an g7 3 process to
determine if all powers of η in V are multiples of β. If so, replacing
ψ by a in V is also an gf3 process. Thus, this situation has been
reduced to the previous one. This completes the proof.

4* The power problem* We now turn to the power problem
in 1-relator groups. The reader will recall that the generalized word
problem (g.w.p.) for a subgroup H < G = gp(S; D) is the algorithmic
problem of deciding whether or not an arbitrary word WeG defines
an element of H. If the g.w.p. is solvable for every cyclic sub-
group of G then G is said to have solvable power problem. The
object of this section is to prove that the power problem is g*2+σ(i2)-
decidable in 1-relator groups. We followed the discussion in McCool
[10], indicating where the argument McCool must be modified to
obtain the information needed to locate the decidability level with
respect to the hierarchy {i?α}.
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The first step after noting that McCooΓs lemma [10, p. 428] is
identical to parts of our theorem above, is to show the order problem
is i?2+<7(i?)-decidable. That is, the algorithmic problem of deciding
the order of the element defined by a word W in a 1-relator group
is ί?2+σ{R). We follow the discussion in [9] Theorem 4.13, page 269.
Now a 1-relator group has an element of finite order if and only if
the relator R is a kth power, k > 1, of some non-empty word V in
the free group on the generators of the 1-relator group). Thus we
assume G — gp(alf , αn; V

k(alf , an)), k > 1. Furthermore, we
may assume V is cyclically reduced since we assume Vk is. (The
reduction of a word If to a cyclically reduced word can be accom-
plished by an g'3 process because a word is cyclically reduced if and
only if each of its cyclic permutations is freely reduced. Clearly all
cyclic permutations and their subsequent free reductions are obtainable
from the index of W by an g*3 process.) Thus given F \ since
k ^ σ(Vk) and o(V) ^ σ(Vk) we can use bounded minimalization,
which preserves level g73, to obtain V and ί; by an g73 process.
Then WeG has finite order (^k) if and only if W is conjugate to
a power of V ([9] Theorem 4.13, p. 269). Therefore W has finite
order if and only if Wk = 1, and ^2+σ^ decision, since the word
problem in G is if2+σ(i?). If the order of W is finite, it is the
minimal m ^ k such that Wm = 1 and so is £f2+σ(Λ> computable by
a bounded minimalization on the decision procedure for the word
problem. The remainder of Case 1 of McCool [10], page 428 can be
decided at level g"2+σ(Λ), since the induction used is identical to the
recursion given above for the g?2+σ(i2)-decidability of the e.w.p. As
above, Case 2 reduces to Case 1. Thus we have the

THEOREM. The order and power problems in a 1-relator group
are <tf2+a{R)-decidable. In particular, they are p.r.

5* Remarks, example and questions* We remark again that
the groups considered in the Magnus process are determined, up to
isomorphism by relabelling subscripts, only by the relator and not
by the word under consideration. The induction on the length of
the relator introduces at each stage two new groups, the amalgams.
Thus the number of groups which must be considered is <g"χw+1 — 1
where a{R) is the number of stages in the induction and depends
only on the relator R. It is also clear that a better bound on the
computability level is ^3+α(ie> where a(R) ^ σ(R)-l.

In fact each stage of the recursion need not raise the com-
putability level since in many cases the length of the word currently
under consideration is reduced permitting a bound on the resursion.
However every application of the case type σgenerator (Relator) Φ 0 in
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the course of the recursion can increase the length of the rewriting.
This being the only instance in which the length of the rewrite of
W can increase, a better bound than g*3+α(i2) can be obtained for
particular groups.

In view of the above, the authors had long erroneously con-
jectured that the computability bound g73 could be obtained for the
Magnus process on any one relator group. The following example
which shows the conjecture false- has been brought to their attention.
Let G = gp(a, b; a^b-'aba-'bab'2), Xo = 6, Xk+ι = a~lXk

l(iba-lXka. Then
σ(Xk) = 2k + 5(2fc - 1), an ^ 3 function of k and X= 6'*(I'*} for /4

as defined in [4], an g74 — g73 function of k. This shows the Magnus
process for G has a lower computability bound of g74. In fact a
careful consideration of the recursion in the Magnus process for G
shows one occurrence of the σgenerator (Relator) Φ 0 case and exactly
the g74 -- g73 computability of the Magnus algorithm.

It is tempting to conjecture that the group G in the above
example has g74 — g*3 computable w.p. To see however that G has
an g73 computable w.p. first observe G ~ gp(a, δ, c; c~ιbc = δ2, aΓιba = c)
by a Tietze transformation. Let F = gp{b;) and φs.F-+F by 61—> 62

(an g73 isomorphism in F an defined in [7]). Then by Tietze trans-
formations the strong Britton extension FΦl = gp(bf c; c~γbc = b2) <
gp(bf c;) *^1 gp(b, s;) = M where fa amalgamates H, the subgroup of
gp(b, c;) generated (freely) by b and c^bc with the subgroup R of
gp(b, s;) generated (freely) by b and s'Φs (see [7] proof of Theorem
3.1). We show M has g73 computable w.p. and hence so does Fh.
To see the w.p. in M is g73 let W be a word on 6, c, 6, s. Then
following the proof of Theorem 4.10 of [4], W = W^W% Wp in
syllables and the w.p. for M is solved by rewriting the syllables to
obtain a word of shorter syllable length. Since the rewriting are
b <-• b and c~ιbc >̂ s'Φs, the length of a rewrite is at most twice the
length of the original and since each rewrite lowers the syllable
length, the length of any rewrite is bounded by 2pσ(W) ^ 2σ[W)σ{W),
an g73 function of W. Thus the recursion has an g73 bound and
the w.p. in M is g'3. Similarly, φ2 given by φ2: b H* C is an g"3

isomorphism in FΦί and hence in M so FΦvΦ2 < Mh a subgroup of a
free product with amalgamation where in this case the rewrites do
not increase the length of the word under consideration. Thus Mφ%

hence FΦvH = gp(a, δ, c; c~ιbc = δ2, α-1δα = c) = G has g"3 w.p.

Thus the question of whether or not the w.p. for one relator
groups is g73 remains open. One might also ask if the example
given can be generalized to obtain one relator groups with strictly
g7" Magnus process and g73 w.p.

The authors would like to thank Charles F. Miller III for his
constructive advice.
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