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FINITELY GENERATED IDEALS IN
REGULAR F-ALGEBRAS

J. M. BRIGGS

Let A be a regular, semisimple, commutative i^-algebra
with identity. For each point in the spectrum of A, let J^,
denote the local algebra of germs at p of elements of A and let
^tp denote its maximal ideal. When ^fp is finitely generated
we show to what extent representatives of its generators
are generators of the maximal ideals in the algebras of
functions locally belonging to A on some neighborhood of p.
We show that if ~<#p is finitely generated, then all point
derivations of A at p are continuous. Using this last fact,
we describe the generators of maximal ideals when the
polynomials in finitely many elements of the algebra are
dense in the algebra.

l Preliminaries* Throughout we assume that all algebras are
commutative algebras with identity over the complex field C and
that all homomorphisms of algebras carry the identity of one to
the identity of the other. For general references in topological
algebras we refer the reader to [1] and [6].

For X a Hausdorff topological space, we denote by C(X) the
algebra of all complex-valued, continuous functions on X where
C(X) has the pointwise operations and the topology of compact
convergence. The seminorms of this topology will be denoted \\ \\κ

where K is a compact subset of X and for feC(X), \\f\\κ =
swp{\f(x)\:xeK}.

A locally m-convex (LMC) algebra is a locally convex (Haus-
dorff) topological algebra A with a topology given by a family
{\\ - \\n: ne (Df ̂ )} of submultiplicative seminorms. An jP-algebra is
a complete LMC algebra with a topology given by a countable
family of seminorms. It can always be assumed that these families
of seminorms are directed (i.e., if n <* m in ΰ , then | | α | | n ^ | |α | | »
for all aeA). If A is an LMC algebra and if {|| | |Λ: ne D) is a
directed family of seminorms for A, then for each ne D, the set
{x: \\x\\n = 0} is a closed ideal in A and A/{x: \\x\\n = 0} is a normed
algebra with norm || 7Γ»B|| = | | ίc | |Λ, where πn is the natural map.
Let An denote the completion of this algebra. If n ^ k, then the
maps πn and πk induce a norm-decreasing homomorphism πnk of Ak

onto a dense subalgebra of An, and {An, πnk9 D) forms a dense inverse
limit system. Moreover, lim inv An is topologically and algebraically
the completion of A, where A is imbedded via π(x) = {πnx}. If A
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is complete, then π is surjective and we identify A and lim inv An.
Of interest to us later are the facts that an inverse limit of F-
algebras is a complete LMC algebra and that the inverse limit of a
countable family of F-algebras is an F-algebra.

The spectrum of A, denoted Sp (A), is the space of all nonzero,
continuous, multiplicative, linear functionals on A with the Gelfand
(relative weak*) topology. If A is a commutative F-algebra with
identity, {|| ||Λ} is an increasing sequence of seminorms for A, and
An and πn are as above, then πn induces a topological map of
Sp (A J onto a compact set Sn of Sp (A) such that St c S2 c and
Sp (A) = U Sn. Moreover, every compact subset of Sp (A) is con-
tained in some Sn; hence, Sp(A) is hemicompact. This implies that
Sp (A) is Lindelof and Sp (A) is also completely regular and Hausdorff.
Since Sp(A) is both Lindelof and regular, it is paracompact and
normal.

For each / e A, define the mapping /: Sp (A) -* C by fix) = x(f),
x 6 Sp (A). / is called the Gelfand transform of /, and the mapping
/—*/ is a homomorphism of A onto a separating subalgebra A of
C(Sp(A)). A is called semi-simple if α e A and a = 0 on Sp(A)
implies that a = 0. If A is semi-simple, then the Gelfand mapping
a-+ά is an algebraic isomorphism and we can regard A as an
algebra of complex-valued functions on Sp (A) with the topology
transferred from A via this isomorphism. This topology is weaker
than the topology of compact convergence. Throughout, whenever
an algebra is semi-simple we assume that it has been identified in
this way.

A commutative LMC algebra A is said to be regular if for each
closed set F in Sp (A) and each point x e Sp (A)\F, there is an element
a in A such that a = 0 on F and d(x) = 1. The algebra A is
normal if for each pair JF\ and F2 of disjoint closed subsets of
Sp (A), there exists an element a in A such that α = 0 on F1 and
α = 1 on F2. Regular F-algebras are normal (see [8, p. 160] or
[3, p. 266]).

Let A be a regular, semi-simple, commutative F-algebra with
identity. For S a subset of Sp (A), let A\S denote the algebra of
restrictions of functions in A to the set S. Let F be a closed subset
of Sp(A). It is easy to see that the mapping f\F~+f + k(F)
gives an algebraic isomorphism of A | F onto A/k(F) where Jc(F) =
{feA:f=0 on F}. But A/k(F) with the quotient topology is a
regular, semi-simple, commutative F-algebra with identity (see for
instance [2, p. 264]). We transfer the topology of Afk(F) to A | F
via the isomorphism described above.

If V is an open subset of Sp(A) and feC(V), then we say
that / locally belongs to A on V if for each point xe V, there
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exists an open neighborhood U of x in V and an element ae A such
that a\U = f\U. Let A(V) denote the collection of all such func-
tion. It is shown in [3, p. 271] that A(Sp (A)) = A. If Sp(A) is
locally compact and V is an open subset of Sp (A), then we shall
give A(V) a locally m-convex topology by realizing it as a dense
inverse limit of F-algebras of the form A \ K where K is a compact
subset of V.

Let A be a regular, semi-simple, commutative jF-algebra with
identity such that Sp (A) is locally compact and let V be an open
subset of Sp(A). Let {Kλ:XeA} be the collection of all compact
subsets of V where A — {K: K compact, K(zV) is partially ordered
by X <: μ if and only if Kλ c Kμ. For each X e A let Aλ = A\Kλ

with its F-algebra topology defined above (Kλ is closed in V).
Hence Aλ is a regular, semi-simple i^-algebra with identity. If X ^ μ,
then Kλ c Kμ and the restriction mapping rx: Aμ —• Aλ is defined,
continuous, and surjective. Hence {Aif rx, Λ} is a dense inverse
limit system of F-algebras. Let A\V) = l iminv^. Since each Aλ

is an .F-algebra, we have that A'(V) is a complete, locally m-convex
algebra. We next show that A'(V) is algebraically isomorphic to
A(V). If feA'(V), then we may represent / = {fχ}λeΛ where fλe Ax

and rxfμ = fx(X ^ μ). For each fe A\V), define /: V-+C by /(a?) =
fx(x) if ice Z;. Suppose #e iΓ; Π iΓ̂  and let v }>X, μ. Then /;(#) =
{r\fXx) = /v(a?) = (rί/v)(a?) = /„(&). Hence / is well-defined and / is
that unique function on V such that /1 Kλ = fλ(\e A). Since V is
locally compact, each / is continuous on V. If / = 0, then fλ = 0
in Aλ for each λ since Â  is semi-simple and thus / = 0 in A'(V).
Therefore /—>/ is a monomorphism of A'(V) into C(F). Further-
more, it is clear that the image is {fe C(V):f\ Kλ e Aλ(XeA)} which
is just A(V) = {feC(V):F locally belongs to A on V). To verify
this statement, it is clear that {fe C(V):f\ Kx e Aλ(Xe A)} Q A(V)
because V is locally compact. To show the opposite inclusion, let
feA(V) and let K be a compact subset of V. Let W be an open
set such that KaWdWaV. Since K and Sp(A)\TΓ are closed
subsets of Sp(A) and since A is normal, there exists g in A such
that g I K = 1 and # | Sp (A)\TF = 0. Now, f g locally belongs to A
on Sp(A); consequently, f-geA. But /•# = / on K. Hence, feAκ.
From this, the set inclusion is proven. Thus we may identify A(V)
via this isomorphism with A'( V) and transfer the topology of A'( V)
to A(V). Call that topology τv.

Since A'(V) = l i m i n v ^ and since U ejSp(A ) = \J^AKX = F, it
is clear that we may identify Sp(A'(F)) with F. That identifica-
tion we will call h and it is given of course by: if φeSip(A'(V)),
then h(φ) is that unique point in V such that φ{f) = f(h(φ)) for
every fe A. We need still show that the topologies are the same.
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Let φa~>φ in Sp(A'(F)). Then f(φa)->f(<P) for every feA'(V).
If g e A, then g' = {g\ Kλ) e A'{ V). Hence g(h(φa)) = g\φa) -* #'(?>) =
g(h(φ)). Hence, h(φa)—>h(φ) in F the relative topology from Sp(A).
Therefore h(φa) —• &(<£>) in F. It is clear that hrγ is continuous since
the functions / are in C(V). Thus Sp (A'(F)) = F.

Thus, if Sp(A) is locally compact and V is open, then (A(V), τv)
is a semi-simple, commutative, complete, LMC algebra with identity
such that Sp (A(F)) = F. Furthermore, since A | V is contained in
A(V), we have that A(V) is regular.

If Sp(A) is second countable, then, since Sp(A) is also hemi-
compact, we have that Sp(A) is locally compact. Furthermore, if
Sp (A) is second countable, we can choose a sequence {Kn} of compact
subsets of V covering V such that A'(V) = liminv A | Kn. Con-
sequently A(V) is an i^-algebra if Sp(A) is second countable. This
topology will be used in Corollary 2.6 of the next section.

Notice that the topologies which have been given for A\F and
A(V) are natural generalizations of the relationship between the
topologies found in familiar examples: for instance, C(R), C((0, 1)),
and C([0, 1]).

2* Local maximal ideal structure* Throughout this section, A
is assumed to be a regular, semi-simple, commutative F-algebra
with identity. At each point p e Sp (A), we define the local algebra
Szfp of germs at p of functions in A. In this section information is
obtained concerning the algebra A when the maximal ideal of J^J is
finitely generated. Specific information is obtained about representa-
tives of generators of the maximal ideal, about the number of
generators of the maximal ideal, and about continuity of point
derivations.

For V an open subset of Sp(A), A(V) denotes the algebra of
all continuous, complex-valued functions on F which locally belong
to A on F. If F is a closed subset of Sp (A), then A | F denotes
the algebra of restrictions of elements of A to the set F; for a
description of the topology of A | F and a topology for A( V) when
V is locally compact see Section 1. For #eSp(A) let Mp, MP(V),
and MP\F denote the maximal ideal of all elements of A, A(V),
and A | F, respectively, which vanish at p. Let Jp denote the ideal
of all elements of A vanishing in neighborhoods of p, let J ^ denote
the factor algebra A/Jp with Ύp the natural projection of A onto j*ζ,
and let ^fp — 7P(MP). Thus ^fp is the algebra of germs at p of
elements of A. It is easy to see that J ^ is a local algebra (that
is, Sxfp is a complex algebra with a unique maximal ideal) and that

is its unique maximal ideal.
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LEMMA 2.1. // {pn} is a sequence of distinct points such that
pn-+P in Sp (A), then there exists GeJp such that G(pn) Φ 0 for
each n.

Proof. Let {|| ||*}ϊU be an increasing sequence of semi-norms
determining the topology of A. Since A is regular, there exists a
sequence {fjrn}»el contained in Jp such that gn(pk) — 0 if k Φ n, gn(pn) Φ 0,
and | | f l r . |L<l/2\ Let G# = ΣS=iflrt. Then {Gn}~=1 is a Cauchy
sequence in A and consequently converges to some G e Jp. Since for
each n, G(pn) = gn(Pn), the proof if complete.

If p is isolated in Sp {A), then Jp = Mp and Ssfp ~ C. Through-
out the rest of this section, we assume that p is not isolated in
Sp(A) and also that Sp(A) has a countable neighborhood base at p.
As an immediate consequence of these assumptions, Lemma 2.1
implies that Jp is not closed; hence Jp Φ Mp and J ^ is nontrivial.

We now obtain information about representatives of generators
of ^ p when ^ p is finitely generated. An ideal is n-generated if it
contains elements aιt , an such that each element of the ideal is
of the form Σ£=i#A From the definition of J*J, we see that ^J?p

is finitely generated if and only if there exist finitely many functions
fit •• ,/»eΛfp such that to each geA correspond an open neighbor-
hood V of p, functions g19-..,gneA, and Gek(V) such that
g — g(p) = ΣiU 9ifί + Cr Notice that in general the neighborhood
V may depend on the function g. The next theorem states that it
is possible to choose the neighborhood independently of the particular
function. We first need two lemmas. For functions fl9 ••• , /»€ A,
let Z(flf , / . ) = {x G Sp (A): f(x) = ... = fn(x) = 0}.

LEMMA 2.2. If fί9 . . . , fn e Mp and ΎP{f), , τ p ( / J generate
then there is an open neighborhood V of p in Sp (A) sw/

, • " , / J n F = {ί>}. Consequently [Sp (A)\Z(fl9 , Λ)] U {p}
in Sp(A).

Proof. If not, since there is a countable neighborhood base at
p, there exists a sequence of points {pfc}̂ =i converging to p which
are contained in Z(f19 •••,/„). By Lemma 2.1, there is an element
g of A such that g(p) — 0 but g(pk) Φ 0 for each k. By earlier
comments, there exist a neighborhood ί7 of p, functions gί9 , gne A
and Gek(U) such that # = Σ?=i 9ift + G. Consequently g(^) = 0
for Λ sufficiently large which gives a contradiction.

LEMMA 2.3. Let V be an open subset of Sp (A) and let flf •••,/»
be elements of A such that Z{f, ,/Λ) c F . // #
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there exist g19 , gne A such that g = Σ?=i Qifί

Proof. Let F = Sp (A)\ F . Since fx \ F, >-,fn\F have no common
zero on F, the spectrum of A\F, there exist h19 — ,hneA such
t h a t (Σ?=i htfi) \ F = I. Lett ing gi = ^ j ^ , 1 <J i <J w, we have t h a t

THEOREM 2.4. Le£ /Ί, •••,/„ δβ representatives of generators of
^ p 9 let W= &p[(A)\Z(f19 •••,/»)] U {#}, αra£ ίβέ 7 6β αw opew
neighborhood of p such that V aW. Then for each g £ A, there
exist g19 , gne A and Gek(V) such that g — g(p) = Σ?=i #*/* + G.
Furthermore, if Z(f19 •,/„) = {p}, ίΛ,e^ / l f •••,/» generate Mp.

Proof. In the case that Z(fί9 , / J = {p}, then W = S p ( A ) ,
= {0} since A is semi-simple, and we may choose V = W. Let

βr e A. By an earlier remark, there exist an open neighborhood U
of p (which is contained in V) and functions gl, « , ^ e i and
G'ek(U) such that g - ff(p) = ΣlU/ifi + (?'._ Applying Lemma 2^3
to the algebra A\V where Z ( / J F , . . , fn\V) - {p} c C 7 c S p (A \V)
and G ' | F vanishes on U, we have that there exist hlf ---,hneA
such that G'\V= (Σ?=i ^/ i) I ̂  Let if, = ^ + hi9 1 ^ i ^ w, and
G = G ; - Σ?«ιΛ*/i. Then Gefc(F) and 0 - flr(p) = Σ?=i^/* + G

Let N = N(p) and n = ^(ί>) denote the minimal number of
generators of MP and ^ ^ respectively. We have not been able to
show that N = n except in special cases (for instance, if A is closed
under complex conjugation), but we do get the following:

COROLLARY 2.5. Mp is finitely generated if and only if ^J?v is
finitely generated. In fact, n ^ N ^ n + 1.

Proof. Assume that n < 00 and let /„ •••,/» be representatives
of generators of ^ v . Let U and V be open neighborhoods of p
such that UaV and Z(f19 ,/Λ) Π V = {p}. Since A is regular,
there exists a function fe A such that /(p) = 0 and / = 1 on
Sp (A)\U. But since 7p(fJ, , 7P(/J, 7P(/) generate ^ < and
^(/if •••»/»»/) = {̂ }» Theorem 2.4 guarantees that /„ . . . , /n, /
generate Mp and thus i\Γ ̂  ^ + 1. The rest of the proof of this
corollary is clear.

If f19 « ,/TO generate the maximal ideal Mp9 then p must be
their only common zero. If /„ « , / m are representatives of genera-
tors of ^#P9 then p might not be their only common zero. To what
extent they can generate a maximal ideal is given in Theorem 2.4
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and the following corollary.

COROLLARY 2.6. // 7p(f), •• ,7 P (/») generate ^fp,flf •••,/
representatives of these generators, and W = [Sp(A)\Z(/i, •••,/»)] U

{#>}, ίfeβw (i) if F is a closed subset of W containing p, then

A\F, -—>fn\F generate Mp \ F and (ii) if U is a second countable

open subset of W containing p, then fι\U, •••,/»! U generate

MP(U).

Proof. Let V be an open set such that F(zVaV(zW. If
geA, there exist g19 -- ,gneA and Gek(V) such t h a t g — g(p)—

Σ?=i 0*Λ + G. By restricting to ί7, we see that (i) is established.
If U is second countable, then we give A(U) an .F-algebra topology
such that A(U) is regular and Sp(A(Z7)) = U. (See Section 1 for
details.) But Z(f \ U, •,/„ | U) = {p}, and clearly the germs of
/i! Uf —->fn\ U in the algebra of germs of A(U) functions at p
generate the maximal ideal; hence Theorem 2.4 applies to the
algebra A(U) and (ii) follows.

In order to obtain more information about generators of ^ £ , it
is convenient to study point derivations and tangent vectors on A.
For p e Sp (A), there is a natural notion of the value of a germ a
at p since representatives of a must agree in value at p. Define
a{p) = f(p) where fe A and 7P(/) — a. A tangent vector of A at p
is a linear functional v on J ^ satisfying !;(«£) = cc(p)v(β) + /3(pMαO
for all a, β e Ssfp. T{J%ζ) will denote the collection of all tangent
vectors of A at p. A point derivation of A at p is a linear
functional D on A satisfying D(fg) = f(p)D(g) + g(p)D(f) for all
/, # 6 A. Let Tp(A) denote the collection of all point derivations of
A at p.

T(J*ζ) and Γp(A) with the natural operations of addition and
scalar multiplication are vector spaces over C. Let \^£V\^£PY and
[Mp/Mp

2]* denote the algebraic duals of the vector spaces Λ€V\Λ€P

and Mp/Mp
2 respectively (vector spaces with the quotient operations).

LEMMA 2.7. K / ^ ' l * ==; T(^ζ) = TP(A) =[MP/M2

P]*. If ^ p is
finitely generated, then ^,/^p2 = T(J*$) = Tp(A) = Mp/Mp and each
of these vector spaces is finite dimensional.

Proof. In the first statement, the outside isomorphisms follow
since Γ(J*J) consists precisely of those linear functionals on J ^
which vanish on ^ 2 + C and that TP(A) consists precisely of those
linear functionals on A which vanish M2 + C (see [10, p. 263]).
Define φ: T{J%TP)-+TP{A) by φ(v) = vojp for VG T(J^ζ). It is clear
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that φ is linear and injective. Since every De TP(A) vanishes on
Jp, φ is surjective, and the first statement has been proved.

If Λ€P is finitely generated, so is Mp. To establish this lemma,
we shall only show that Mp/Mp is finite dimensional since the
argument that ^p\^p is finite dimensional is similar. The iso-
morphisms in the second statement follow from this finite dimen-
sionality and the isomorphisms in the first part. Let fl9 • • • , /«
generate Mpf and let geMp. Then there exist gl9 ---fgmeA such
that g = Σ"iOifi = ΣίUgt{p)ft + ΣΓ«i (ft ~ 9M)U Since the latter
sum is in M\, we see that {/* + Ml}?=1 spans MP\M\ and the proof
if complete.

To describe a basis for T ( j ^ ) when ^€p is finitely generated,
we suppose that n = w(p) is finite and let a19 " 9aΛ be generators
of ^ . Define 0W . . . , θ% e T(J^ζ) such that θk(ad) = £ w (the Kronecker
delta) by 0A(£) = βk(p) where A, . . , βne ^fp satisfy β - /S(p) =
*ΣS=ιβjθLj. Since J ^ is a local algebra and since n is the minimum
number of generators of ^p9 we have that each θk is well-defined.
It is straightforward to verify that θίf -- , θne T(Jϊζ). The proof
of the following lemma is omitted. (The proof is similar to a proof
in [7, p. 57].)

LEMMA 2.8. If ccl9 , an generate ^€p, then the tangent vectors
θi, •••>#» βefined above form a basis for T(Jϊζ). If Dk = θk°Ύp,
1 <̂  k ^ n, then Dlf , Dn form a basis for TP{A).

THEOREM 2.9. If ,y£p is finitely generated, then every point
derivation of A at p is continuous.

Proof. Because ^ p is finitely generated, so also is Mp finitely
generated, and Mp has finite codimension in Mp. We now prove
that Ml is closed in Mp as follows. Suppose that fί9 •••,/» generate
Mp. Let An be the direct product of n copies of Mp. Now, Mp is
a Frechet space; consequently, An with the product topology is also
a Frechet space. Let Φ be the mapping of A% into Mp defined by
Φ(9i, •• 9g»)= f9i + + fngn- Then, Φ is a continuous linear map
of An into Mp whose range Φ(An) is Mp. Thus its range has finite
codimension. Using the Open-mapping Theorem as in the proof of
the corresponding theorem for Banach Spaces (see [5, p. 186]), we
conclude that Ml is closed,.

To complete the proof, every element De TP(A) factors as D =
D*oπ<>T where D* e(MP/M})*9 π is the natural projection of Mp

onto Mp/Mlf and T: A — Mp is defined by T(f) = / - /(p). Because
Mp

2 is closed, MpjM
2

p with the quotient topology is a Hausdorff,
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finite-dimensional vector space. Hence D* is continuous and it is
clear that π and T are continuous; therefore D is continuous.

We will use the information that we have derived about point
derivations of A at p to obtain more information about generators
of j ζ . As before we let n = n(p) denote the minimal number of
generators of

LEMMA 2.10. Suppose that a19 *--,a:n generate ^ v and define
tangent vectors θu •••,#„ with respect to these generators. If βe

and #i(/3) Φ 0, then β, ct2, , an generate ^ p .

Proof. Let β19 , βn e J ^ satisfy β = Σ?=i &«,. β1 is invertible
in J^ζ since β^p) = θ^β) Φ 0. Hence ax is in the span of β9 a2, , an

and the conclusion follows.

The next theorem describes the generators of a finitely generated
maximal ideal when the polynomials in finitely many elements are
dense in the algebra. (This extends to regular .P-algebras a theorem
of Banach algebras [4, Theorem 2.2]. Also, compare this theorem
to [9, Proposition 8.3] since n(p) is the dimension of TP(A) when

is finitely generated.)

THEOREM 2.11. Suppose that the polynomials in ulf •••,%» are
dense in A and that ^€£ is finitely generated. Then Mp is
generated by ut — ux{p), , um — um{p), ^ v is generated by n = n(p)
of Ίp{ux - u^p)), , Ύp{um - um{p)), and N(p) ̂  m.

Proof. Let βi — Ύp(Ui — Ui(p))f 1 ^ i ^ m. I t suffices to show
t h a t n of βl9 , βm generate ^ p since Z(ut — u^p), ---,um- um(p)) =
{p}. This proof consists in inductively applying Lemma 2.10 to
specific sets of generators of ^ p . Let al9 , an generate ^ p and
define the tangent vectors θn, : fθι% with respect to these genera-
tors and let Dιk = θlkoyp as in Lemma 2.8. Since each Dιk is con-
tinuous on A and nontrivial, and since the polynomials in ul9 •••, um

are dense in A, there exist integers j and k, 1 ^ j <̂  m, 1 ̂  A; ̂  w,
such that θlk(βj) = Dlk(Uj) Φ 0. For definiteness, we assume that

^ 0 and by Lemma 2.10, we have that βl9 a29 , an generate
If n = 1, the proof is complete. If not, define tangent vectors

0Άf fθ*n and corresponding point derivations D21,- -,D2n with
respect to ft, a2, •••, αΛ . As before, we can conclude that for some
integers j and k, 2 ^ j <L m, 2 <^ k <^ n, Θ2k{βό) = D2k{u0) Φ 0. Thus
we can replace βs and αfc in the system of generators of ^ p .
Continuing this argument inductively gives the desired conclusion
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since it will be clear that n can be no greater than m.

We now give two examples; the first shows that there may be
strict inequality in the conclusion of the last theorem. Before we
consider the examples we prove a lemma which we will use.

LEMMA 2.12. If A is closed under complex-conjugation, then
N{p) = n(p).

Proof. By Corollary 2.5 we need only consider the case that
n = n(p) is finite. Since A is closed under conjugation, applications
of Lemma 2.10 to real and imaginary parts of generators give that
there are real-valued functions flf ••-,/» in A such that their germs
generate ^ ζ . Let V be a neighborhood of p such that Z(fl9 , /JlΊ
V — {p}. Since A is regular, it is also normal; hence, because
Sp(A) is a normal topological space, there is a real-valued function
/ in Jp such that / == 1 in a neighborhood of Sp (A)\ V. Since
W i + if)> Tpt/i), » ?*(/•) generate ^ and Z(f, + if, / „ . . . , /.) = {p},
we conclude that /i + if, /2, , /Λ generate ifp and that iV(p) ^ %(p).
Therefore N(p) = w(#>).

EXAMPLE 2.13. The algebra C°°(i22) is a regular, semi-simple,
commutative i^-algebra with identity such that all of its maximal
ideals are two-generated. Let F = {(r, \r\):reR} and let Ax be the
restriction of C™{R2) to the set F with the quotient topology (see
Section 1). Let hi R-^F be the homeomorphism given by h(r) =
(r, I r I), and let A = {f°h:fe Ax}. Then A is algebraically isomorphic
to Ai via the isomorphism induced by this homeomorphism and we
can transfer the topology of At to A. Then A is a regular, semi-
simple, commutative jF-algebra with identity such that Sp (A) — R.
Since the polynomials in the coordinate functions on R2 are dense in
C°°(R2), we see that the polynomials in x and \x\ are dense in A
where x denotes the coordinate function of R. Since A is closed
under conjugation N(p) = n(p) <Ξ 2 for every p e R. We will now
show that n(p) = 1 for p Φ 0 and w(0) = 2. Since the maximal
ideals of C™(R2) are generated by appropriate translates of the
coordinate functions, it is easy to see that Mp is generated by x — p
and \x\ — p for every pe R. But since Ίp(x — p) = ±7P(| x \ — \ p |)
for p =̂ 0, we see that for p ^ 0, ^ ^ is generated by Ύp(x — p)
and n(p) = 1. To show that w(0) = 2, we assume that %(0) = 1 and
that h is a generator of Mo. Consequently, there exist hx and h2 in
A such that x = fe^ and | a? | = ΛaΛ It is easy to show that /̂ (O) =
ft2(0) = 0. But since the polynomials in x and | a; | are dense in A
and since there are nontrivial point derivations on A at 0, we have
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a contradiction. Therefore n(0) = 2.

The final example shows that in a regular F-algebra a finitely
generated maximal ideal can be isolated. This cannot happen in a
Banach algebra (see [4, Theorem 2.1)].

EXAMPLE 2.14. For all positive integers k and n, let Kn =
[-n, n], In = ( — 1/n, 1/n), and In>k = [ —1/w + 1/nk, 1/n — 1/wfc]. Let
A be the algebra of all continuous, complex-valued functions on R
which are w-times continuously differentiable on ln for each n. For
a compact subset K of i2, H-H* will denote the supremum semi-
norm, and for positive integers n and j , || \\nfj will denote the semi-
norm on A given by || / \\nJ = Σ?=o(l/ϋ) l l / ( Ί k , r Give A the
topology induced by the semi-norms {|| \\Kn, || ||WtJ : n, j = 1, 2, •}.
Then A with this topology is a semi-simple, commutative F-algebra
with identity. Furthermore, A contains C°°(R), the polynomials in
the coordinate function x are dense in A, Sp (A) = R, and A is
regular. It is straightforward (for example, by using LΉospitaPs
rule repeatedly) to show that Mo is generated by x. For p Φ 0,
Mp is not finitely generated, for if it were it would have to be
generated by x — p (Theorem 2.11). But it is an easy matter to
construct functions in A which are not divisible by x — p (construct
such a function to have the minimum amount of differentiability
required at p). Hence, Mo is the only finitely generated maximal
ideal in A. Every function in A is infinitely differentiable at 0; we
will now show that not only does there not exist a fixed neighbor-
hood of 0 such that all functions in A are infinitely differentiable
in that neighborhood, but that there exist functions in A which are
not infinitely differentiable in any neignborhood of 0. Let {|| | | J be
an increasing sequence of semi-norms determining the topology of A.
Let {fn}n=ι be a sequence of functions in A satisfying (1) fin+1) does
not exist at some point pn of (1/(^ + 1), l/n), (2) fn = 0 off (1/(^+1), lfn)
and (3) | | / J | . ^ l/2\ Define g = Σ?-iΛ> w h i c h e x i s t s i n A b y (3)
Furthermore by (1) and (2), g{n+1)(pn) does not exist and hence,
since pn —> 0, g is not infinitely differentiable in any neighborhood
of 0.
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