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AN OPERATOR VERSION OF A THEOREM
OF KOLMOGOROV*

G. D. ALLEN, F. J. NARCOWICH AND J. P. WILLIAMS

Let & be a (separable) Hausdorff space and let K be a
continuous nonnegative-definite kernel (covariance) from ¥ X
¥ to C. The well known theorem of Kolmogorov states
that in the case ¥ is the set of integers there is a continuous
mapping (stochastic process) z(-) from & into a (separable)
Hilbert space -2 such that K(s, t) = (x(s), 2(f)). The theorem
is also known for any separable Hausdorff space. The pur-
pose of this paper is to replace the complex numbers C by the
algebra B(57, 5#) of bounded linear operators from a Hilbert
space into itself. The factorization is then K(¢, s) = X(£)*X(s)
with X a continuous map from ¥ to B(5Z, 2¢") for a suitable
Hilbert space %, If ¥ is separable we may take %= 57.

Two proofs of this theorem are given. The first, for & separable
and 57 of arbitrary dimension, uses an extension of the technique
of [1] to obtain a triangular factorization for nonnegative-definite
matrices with operator entries to construct the desired stochastic
process X(-). The second, for & arbitrary and S# of infinite dimen-
sion uses the techniques of reproducing kernel Hilbert spaces, and
is a bit simpler.

Main results. Let 5 be a complex Hilbert space and let
B(2#, 5#°) be the bounded linear operators on. Let & be a Haus-
dorff space and let K: & X & — B(5#, 5#) be a (jointly) continuous
function. We say that K is nonnegative-definite if for every ¢, ---,
t,eZ and %, +--, x, € 57 the sum

(1) 3 (Kt t)w;, 2) 2 0.

The generalization of the Kolmogorov theorem we wish to prove is
contained in

THEOREM 1. Let & be a separable Hausdorff space. If K(-, -)
18 a comtinuous nonmegative-definite fumction from Z X & into
B(S7Z, 57°) then there exists a separable Hilbert space 92 and a
continuous function X(t) from & into B(SZ, 2¢7) such that
X*@t)X(s) = K(t, s) .

! This generalization was suggested to the authors by Professor P. Masani in
January 1975.
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In order to prove this theorem we require a number of facts
about operator-valued matrices and about the solution of operator
equations. The first result, is due to Douglas [2]. (See also Fillmore-
Williams [4].) We will denote the range of the operator A by <z (4),
and the kernel of A by _#7(4).

LEMMA 1. Let A and B be bounded operators on 5Z. Then the
following conditions are equivalent:

(i) <#(4)c.#(B),

(ii) A = BC, for some bounded operator C on =7,

(iii) AA* < MBB*, for some )\ > 0.
Moreover, the operator C can be chosen so that 47 (C*)D A47(B) and
#(C) c #Z(B).

COROLLARY. If B is bounded and monnegative then Z(V'B)D
Z(B).

If we restrict K, of Theorem 1, to a finite subset of Z the
kernel K becomes a » X m matrix whose (7, j) entry is K,; = K(¢,, t:),
1 £14,7 <n. This matrix is nonnegative-definite in the sense that
for every z, x,, ---, x, € 57,

(2) “Z_JI(KM%, xz)=0.

Denote by £7, the space which is a direct sum of n copies of 5%
=@ - @ S with the natural inner product. Suppose
that K is an operator on S#,; that is, K is an n X m operator-
valued matrix. Then (2) means that (Kz,x) =0 for every z =
(x, *--, x,) € 57, that is K is a nonnegative operator on 5%,. Note
that if K is nonnegative-definite, K;; = K}, for all 1 <1, j<mn.
If K is an n X n operator-valued matrix and m < n, we write
K, for the upper left m X m submatrix of K.

LEMMA 2. Let K be an m X n nonnegative definite, bounded
operator-valued mat Then there 1is a positive constant M so that

(3) K, =2MNK;;K5,1<1<j=<mn.
Proof. Let V. 57 — 5%, where V;h = (0, -+, b, 0---0), h being
in the ith position. If h € 5%, then

(4)  |Kih = |Khl* = |V;KVh| = |[KVA]
= (VIK*Vih, h) < | K|(VIKVih, h) = | KI(Kih, B) .
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We must show that

n—2

(10) Tn—l,n—lTn—l,n = Kn—l,n - Z T:n—lTi,n
i=1

has a bounded solution for T,_,,.. By the Remark we have for any
2.1 € 57 a vector z,_,€ 57 such that
Tn——Z,n-Zzn—Z + Tn—z,n—-lzn-—l = 0 .

Thus, proceeding sequentially we can solve the equations

n—1

(11) Z,‘T“-z,-zO, i=n—2,n—3, -1

for 2,_,, Z._s Ru_sy **°, 2, given z,_,. Now, if z=1(z2, -+, 2,), an
application of (11) gives

n—2 n—2
(Kz’ z) = Zl (Knizi9 zn) + ; (anzn’ z.’i) + (Kn—l,nzm zn—-l)

(12
+ (Kn,'n—lzn——l) zn) + (Kwnz'm zn) + (T'i—l,n—lzln—h zn-—l) .
By (9),
Z (K.Mzm z.?) = Z ((T.’IJT]n + Z T m)zm zi)
@w

- nzz(Tinzm T.HzJ) + Z Z (Tl*JTmzm zﬂ)
We interpret all sums over not well defined limits to be zero
(e.g. 3., (+) = 0). From (11) we have

n—1

Tizi = — >, Tz, .

i=j+1
Substitution into (13) gives

N

n—2 j—1
Z (anzm zJ) - = Z Z (Tlnzm T.uz) + Z 21 (Tmzm Twza)

J=1 i=j+ j=1
n—3 n—2

(14) = =5 5 (T Tiz) + S, S (T2, Tt

J=11i=5+ j=1 =1

—2
- é (Ti'nzm Tj,n-—lzn—l) .

The last term of (14) is

n—2

- ZI (T;F,n—lT.’inzm zn—l) .
J=1

Interchanging limits in the second term on the right hand side of
(14), the equation (14) becomes
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we will employ Lemma 1 (iii). (T,; is obtained in the same way as
T..) According to the Remark above we take T,z = — T2, for
some z,€ 24 If z = (2, 2, #;), then

0 = (Kyz, ) = (Thz, 2) + (Tulezz, z) + (TET 2, 2,)
+ (T3 + TET w2, 25) + (T4 T a2, 2,)
+ (Kos2s, 25) + (K2, 25) + (Kis, 25, 25) 5

which, since T2, = — T2, equals
(T%2, 25) + (Ko — TET 15)2s 2) + (K — THET 0)2, 25) + (Kus2s, 25)

In matrix form this means, for every =z, z,€ 5%

((P-r e W )
(Kza — TETp)* K, 23/ %3

By Lemma 2, then, there is a positive A\ such that

\%

0.

ng g )"(Kzs - T$T13)(Kza - TZI;Tla)* ’

and hence by the Corollary and Lemma 2 (ii) T, exists and is a
bounded operator. Moreover, by Lemma 1 <Z(Ty)C P (T). (This
last fact together with the Remark is interpreted to mean that for
any y € 57 there is an v € 57 so that Tx + Ty = 0.)

To show that T,; exists is now routine. Let 2 = (2, 2, 2;). Then

(K — TET s — T3:T2)2s 25) = (Kz, ?) — | Ty + Ty2s *
— [ Ty2, + Ty, + Tiazsl?
= — | Tory + Ty’ — | T2, + T2, + Tis2s* .

This inequality, combined with the Remark above gives the nonnega-

tivity of K;— T%T,;— T%T,, and hence the existence of and boundedness
of T,..

We pass to the induction. Assume that T;T., =K, k=1,2, .-,
n — 1. Solve for T,, in the same way as for T, Proceeding, once
again, by induction we assume that the T, exist and are bounded
for k=28, .-+, n — 2, and also that . Z(T}.) € F#(T}:), which makes
the Remark applicable. The formula for the T, are given by

k—1
Tkkam = chm - 2 T;kkTimr k é m,
=1
or

k
(9) Kkm = ;1 TﬁcTim .
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We must show that

n—2

(10) Tn~1,n——1Tn-—1,n = n -1, Z Tl n— 1

has a bounded solution for T,_,,.. By the Remark we have for any
2., € 57 a vector z,_,€ 57 such that

Tosnsns+ Togns®ny,=0.

Thus, proceeding sequentially we can solve the equations

n—1

(11) S Tuzs=0, i=n—2n-3 1

for 2,5 %._s %n_y **°, %, given z,_,. Now, if z=(z, ---,2,), an
application of (11) gives

n—2 n—2
) (Kz’ z) = ; (Kniziy zn) + ; (Kinzm zi) + (K'n—l,ﬂ.zm zn-—l)
+ (Kn,n—lzn—ly zn) + (Knnzm zn) + (T'i—l,n—lz'n—ly zn—l) M

(12

By (9),

z(Kinzn, Zj) = ,Sf((TjjTjﬂ + Jit T;’Tin)zm zj)
@y -

—2
- E‘JI(T.Mzm T.Hzl) + Zl 2 (TlJTmzm z.’l)

g=1i=1

We interpret all sums over not well defined limits to be zero
(e.g. 3., (-) =0). From (11) we have

n—1

Tiz; = — 3 Tz .
t=j+1
Substitution into (13) gives
n—2 n—2 n—1 n—2 J —1
Z (anzm zj) = Z Z (Tmzm T:zz) + Z Z (Tznzm Tuza)
=1 j=1 i=j+1 J=1 i=1
®—3 n—2

(14) S S Tt Tiz) + S S (T2, Tiiz)

Jj=1l1i=j5+1 Jj=1 i=1
- AV_} (Tinzm Tf,n-lzu—l) .
i=

The last term of (14) is

n—2

- Z (T;'k,n—lT:inzm zn—l) .

j=1

Interchanging limits in the second term on the right hand side of
(14), the equation (14) becomes
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n—3 n—2

- Z Z (T:mz'm T“Z) + Z E (Tmzm Tzazﬂ)

J=1 i=j+1 i=1 j=i+

- %(T}I{,n-lT.inzm z’n—l) .

Upon interchanging 4 and j we obtain

(15) g (Kinzm z.’i) = - g(T;{,n—lTinzm zn—l) .
Similarly
(16) jz:ll(Knjzj; zn) = _<JZ; T;'knTJ','n—lzn—L; zn> .

Substituting (15) and (16) into (12) and writing the result in matrix
form we have

0 = (K2, )
( Ti-—l,n—l 'n Lin Z TJ n— 1 z'n—l zn—l
(%

n—2 kS
n Z TJ n— 1 ) Knn z,,, b z’n

An application of Lemmas 1 and 2 and the Corollary (i), (iii) gives
that there is a bounded operator T,_, ., satisfying (10) and moreover
that Z(Th-,n) S P (Tres,n-)-

To show that T,, exists a similar argument is used. This com-
pletes the induction and the Lemma is proved.

Lemma 38 works in any Hilbert space 57 finite or infinite dimen-
sional. The following result, a considerable improvement of Lemma
3, applies only to infinite dimensional Hilbert spaces.

LEMMA 8. (a) Suppose dim 57 = o of K is a nonegative n X n
matric with entries K,; € B(SZ, 5#°) then there exist X, X,, ++-, X,
wn B(SZ 5#°) such that K,;; = XFX;(1<1,7 <n). Hence K= X*X
where X is the n X n matrix whose first row s (X, X,--- X,) and
whose other entries are all 0.

(b) If A is an n X n matric with entries A,; € B(5#, 57) then
there exists a partial isometry U = (U,;) in B(S7,, 57,) and a matrix
X as wm (a) such that A =UX, X =U*A.

(¢) If A=0 then U may be chosen to be an isometry in (b).

Proof. (a) Let V, be the isometry from 5# into 5%, given by
h=1(0,0,---,0,h,0,---) where the vector % appears as the ith
coordinate. If h, &k belong to 5# then (Kh, k) = (KV;h, V.k) =
(VEV;h, VEV,k). Hence K;;=(/KV)*(VKV;). Let®bean isometry
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from 5# onto 57,. Then X, = 0*V' KV, € B(57, 57) and X} X; = K,;.
(b), (¢) Choose X as in (a) so that 4*A = X*X. Then

VVA*Af = Xf

defines an isometry V from (1" A*A)” onto &#(X)~. Since Z(X)* =
Y AN (VA*A) D SF D S~ P --- P 57 it is clear V can be extended
to an isometry on &#,. This proves (c¢) and to complete the proof
of (b) use the polar factorization A = W1/A*4 and put U = WV*.

REMARK. Lemma 3’ is also valid for infinite matrices K(or A)
that define bounded operators on the direct sum of countably many
copies of 2Z

Proof of Theorem 1. Define the Hilbert space % = S D
D -+ where 54, = 5£,1=1, 2, .-+, with the natural inner product.
Let Vi (¢ = 1) be the isometry from S# into % given by Vh =
(hy hy +++) where h, =h and h; =0 for j=#14. Let #Z={t 1=
1,2, ...} be a dense set of points in &. Define the non negative-
definite, bounded operator-valued matrices

K(n):K(tiy ti): i;jzly”'rn'

By Lemma 3 there is an upper triangular operator-valued matrix
T™ for which T"™*T™ = K™ and moreover from the construction,
if m < n then K™ = K = (TW)*(TW). Let T be the formal infinite
upper triangular matrix whose %'* column is the %' column of 7T,
n=12 ---. For each t,€ &7 define

~ 1
X(tz) = g‘{ ViTil .
Then, if m = min (k, 1),

)X =

e
nMr
i

l

2 TRViViTa

1i=1

T Til - K(tk, tl) .

i
Ma-

.|
]

o,
Il
-

Il
Ms

From this it follows that
| X () — X(s)| S | K¢, 1) — Ks, ¢)| + | K(s, s) — K(t, 5|,

for any ¢,s in 2. Using the completeness of B(SZ, 9%") and the
continuity of K we can therefore extend X to a function X from
< into B(S#, 2¢") that satisfies the same inequalities for all ¢, s in
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&. The function X is then continuous and X(t)*X(s) = K{(¢, s).

In the following theorem the condition of separability is removed
from . However, %% will be a nonseparable Hilbert space. The
construction below seems to have originated with Naimark [5].

THEOREM 2. Let & be a Hausdorff space, and let K(-, +) be as
wn Theorem 1. Then there is a Hilbert space 92" and a continuous
function X(t) from & into B(SZ, 5¢7) such that X*(t)X(s) = K¢, s).

Proof. Let & be the vector space of functions & & — 5 that
vanish at all but a finite number of points of &, and for &, 7 in
< put

& n = 2; (K(s, 1)£(2), 7(s))

Let 4" ={e:(& &) =0}. Then _#" is a subspace of & and
E+ A6+ )=(7)

defines an inner product on °¢; = /4. Let % be the completion
of .9%;. For se & and hec 57 define

(h if t=s
t) =
S(E) 0 if t=s.

Then X(s)h = &h + .+~ defines a bounded operator X(s) from 57
into 977 A simple computation shows that X{(¢)*X(s) = K(¢, s). This
implies | X(¢) — X(s)|* < | K(¢, t) — K{(¢, s)| + | K(s, s) — K(s, t)|, so the
continuity of the map s — X(s) follows from that of K.
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