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AN OPERATOR VERSION OF A THEOREM
OF KOLMOGOROV1

G. D. ALLEN, P. J. NARCOWICH AND J. P. WILLIAMS

Let ^ be a (separable) Hausdorff space and let K be a
continuous nonnegative-definite kernel (covariance) from ^ X
& to C. The well known theorem of Kolmogorov states
that in the case & is the set of integers there is a continuous
mapping (stochastic process) x(-) from & into a (separable)
Hubert space J2T such that K(s, t) = (x(s), x{t)). The theorem
is also known for any separable Hausdorff space. The pur-
pose of this paper is to replace the complex numbers C by the
algebra B{£$f, £ff) of bounded linear operators from a Hubert
space into itself. The factorization is then K(t, s) = X(t)*X(s)
with X a continuous map from ^ to B(^ 3ΐΓ) for a suitable
Hubert space ^ If ^ is separable we may take ^ Γ = %f.

Two proofs of this theorem are given. The first, for gf separable
and Sίf of arbitrary dimension, uses an extension of the technique
of [1] to obtain a triangular factorization for nonnegative-definite
matrices with operator entries to construct the desired stochastic
process X( ). The second, for ^ arbitrary and Sίf of infinite dimen-
sion uses the techniques of reproducing kernel Hubert spaces, and
is a bit simpler.

Main results. Let £ίf be a complex Hubert space and let
B{Sίf, Sίf) be the bounded linear operators on. Let ^ be a Haus-
dorff space and let K: gf x & —• B{3$f, 3ίf) be a (jointly) continuous
function. We say that K is nonnegative-definite if for every tu ,
tn € g^ and a?t, ••- ,$,€ Sίf the sum

(1) Σ (K(ti9 tt)xh x<) ^ 0 .

The generalization of the Kolmogorov theorem we wish to prove is
contained in

THEOREM 1. Let gf be a separable Hausdorff space. If K(-, •)
is a continuous nonnegative-definite function from & x *%? into
B(J%*, Sίf) then there exists a separable Hilbert space 5ίΓ and a
continuous function X{t) from & into B{£ίf, 3ίΓ} such that

X*(t)X(s) = K{t, s) .
1 This generalization was suggested to the authors by Professor P. Masani in

January 1975.
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In order to prove this theorem we require a number of facts
about operator-valued matrices and about the solution of operator
equations. The first result, is due to Douglas [2]. (See also Fillmore-
Williams [4].) We will denote the range of the operator A by
and the kernel of A by

LEMMA 1. Let A and B be bounded operators on £$f. Then the
following conditions are equivalent:

( i ) ^(A)cz^(B),
(ii) A = BC, for some bounded operator C on Sίf,
(iii) AA* ^ λ2J3J5*, for some λ > 0.

Moreover, the operator C can be chosen so that ^/KiC*) Z) ^V(B) and

COROLLARY. If B is bounded and nonnegative then

If we restrict K, of Theorem 1, to a finite subset of & the
kernel K becomes a n x n matrix whose (i, j) entry is Ki3 = K(tif t$),
1 <̂  i, j <; n. This matrix is nonnegative-definite in the sense that
for every xl9 x2, , xn e

(2) Σ (ίϋ*i, »*) ^ 0 .

Denote by S(f% the space which is a direct sum of n copies of
^ ς = β^ 0 . . . 0 ^ with the natural inner product. Suppose
that K is an operator on Jg^; that is, K is an n x n operator-
valued matrix. Then (2) means that (Kx, x)^0 for every x =
(xί9 •••, xn)eJ%^, that is K is a nonnegative operator on £έfn. Note
that if K is nonnegative-definite, K^ = ίΓ^, for all 1 ^ i, j ^ n.
If ϊ is an w x n operator-valued matrix and m g n, we write
iΓm for the upper left m x m submatrix of K.

LEMMA 2. Let K be an n x n nonnegative definite, bounded
operator-valued mati Then there is a positive constant X so that

(3) Ku ^ \KtiK?i9 l £ i < j ^ n .

Proof. Let V4: ^ T — ^ ς where F ^ = (0, , h, 0 . 0), h being
in the ith position. If h e Sίf, then

(4) \KΪM

- (^fJBΓ^Λ *) ^ \K\iVfKVih, h) = |JP|(X«Λ, λ) .

Thus JΓtfJBΓS
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We must show that

n-2

(10) 2»-l,«-l-*«-l,n = *K-n-l,n 2^i •*• i,n-l* i,n
i=l

has a bounded solution for ΓΛ_lfΛ. By the Remark we have for any
£„_! e ̂ g^ a vector zn_2 e έ%f such that

•1 n-2,n-2%n-2 ι~ -* n-2,n-l%n-l = l)

Thus, proceeding sequentially we can solve the equations

(11) Σ TtiZ, = 0 , i = n - 2, w - 3, , 1

for 2.-2, «—β, «—4, •••,«» given z ^ . Now, if « = fo, , 2Λ), an
application of (11) gives

(Kz, z) = Σ ( ^ i , n) Σ
(12)

+ (-*£«,Λ-1#Λ-1> 2Λ) + {KnnZny Zn)

By (9),

Σ (**.*« »i) = 2((r«Γi. + Σ r s r
(13) ί = ι ^

We interpret all sums over not well defined limits to be zero
(e.g. Σ t i ( ) = 0). From (11) we have

n—1

Substitution into (13) gives

ΣΪ(Kjnzn9 zj) = ~ Σ Σ (Tinzn9 τHzx) + Σ Σ (TiA, τi5zό)

(14) = - Σ Σ (τίnzn, τdizt) + Σ Σ ( Γ i Λ , τiSZi)
j=l i=j+l j=l ί = l

^-ί (-t 3n%n> J- 3,n-l%n-l)

The last term of (14) is

n—2

"~" 2-i (•*• j,n~l-L 3n%ny %n-l)

Interchanging limits in the second term on the right hand side of
(14), the equation (14) becomes
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we will employ Lemma 1 (iii). (Γ13 is obtained in the same way as
T12.) According to the Remark above we take TVLz1 — — Tl2z2, for
some z2 e §ίf. If z — (zu z2, z3), then

0 ^ (K3z, z) = (T2

uzu zj + (TnT12z2, zj + (nTnzu z2)

+ ((ΓL + T*2Tί2)z2, z2) + (ΓuΓ1 3s3, z,)

+ (K23Z3, Z2) + (K32Z2, Z3) + (JK33, Zz, Z3) ,

which, since Tnzt = — T12z2 equals

(T\2z2, z2) + {{K23 - T*2Tι3)z3, z2) + ((K32 - T*3T12)z2y z3) + (K33z3, z3) .

In matrix form this means, for every z2, z3 e

τι, κ23 - nτι3\/zΛ ίzs

(κ23 - n τ n r κ33 )[z3j, U
By Lemma 2, then, there is a positive λ such that

Γ2 ^> \ / T7" rp* rn \ / ΎT rp*rp \*

22 = = Aί^jΠL 2 3 ^ 1 2 - * l3/V- ί : V 23 •*• 12-* 13/ >

and hence by the Corollary and Lemma 2 (ii) T23 exists and is a
bounded operator. Moreover, by Lemma 1 &(T23)cz&(T22). (This
last fact together with the Remark is interpreted to mean that for
any ye<%? there is an x e 3ίf so that T2Zx + T23y = 0.)

To show that Γ33 exists is now routine. Let z — {zu z2, z3). Then

13 -*• 23-« ZZ/^Zj ™Z) — \JΆ-'ύy 6) I •*• 22^2 ' •*• 23^3 I

L 11^1 \ -L 12^2 r X 13^3 I

22^2 \ •*• 23^3 I I -*• 11^1 Π^ -* 12^2 Γ -ί 13^3

This inequality, combined with the Remark above gives the nonnega-
tivity of Kz—T?zT13—Tt3T23 and hence the existence of and boundedness
of T33.

We pass to the induction. Assume that Tk Tk = Kk, k = 1, 2, ,
w — 1. Solve for Tln in the same way as for Γ12. Proceeding, once
again, by induction we assume that the Tkn exist and are bounded
for k = 2, 3, , w — 2, and also that &(Tkn) c &(Tkk), which makes
the Remark applicable. The formula for the Tkm are given by

fc-l

-*• kk-*- km -"-fcm 2-Λ -*• ik *- imy "^ = " ^ >

or

( 9 )
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We must show that

n—2
/I Λ\ rp ηπ Tf v~» ΓΠ* rp

i=l

has a bounded solution for ΓΛ_lfΛ. By the Remark we have for any
2;̂ -! e Sίf a vector ^%_2 6 £έf such that

Thus, proceeding sequentially we can solve the equations

(11) Σ TiSzs = 0 , ί = w - 2, w - 3, , 1

for 3.-2, s»-8, s»-4, •••, Si> given ^ _ x . Now, if s = fo, •••, s»), an

application of (11) gives

(Kz, z) = Σ ( ^ i«i, «») Σ
(12)

By (9),

Σ (tfi.*., «i) =

(13) i=1 f 2

 ί=1

V ΣΣ
We interpret all sums over not well defined limits to be zero
(e.g. Σ t i ( ) = 0). From (11) we have

n—1

= — Σ ^i^i

Substitution into (13) gives

Σ (^iA, «i) = ~ Σ Σ (ΓyA, Γy^O + Σ Σ (Tinz%, TtiZi)
3 = 1 3 = 1 i=j+l 3 = 1 i=l

(14) = - Σ Σ (Tinz., Tltzt) + Σ Σ (TiA, TiSz})
3 = 1 i=j+l j=l ΐ = l

n—2

~ Σ (TjnZn, Tj^^Zn^) .

The last term of (14) is

n~~2

Interchanging limits in the second term on the right hand side of
(14), the equation (14) becomes
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- Σ Σ (Tinzn, τitz<) + Σ Σ (Tinzn, τtiz,)

2-ι\Tj!n-ιl jnZn, Zn-\)
3 = ί

Upon interchanging i and j we obtain

(15) Σ(Kinzn, zj) = - Σ (Γ .-iΓy.*,, zn.d .
3=1 i = i

Similarly

(16) X(Knjzh zn) = -
1 = 1

Substituting (15) and (16) into (12) and writing the result in matrix
form we have

0 ^ (Knx, x)

An application of Lemmas 1 and 2 and the Corollary (ii), (iii) gives
that there is a bounded operator Tn_hn satisfying (10) and moreover
that ~M^Z

To show that Tnn exists a similar argument is used. This com-
pletes the induction and the Lemma is proved.

Lemma 3 works in any Hubert space £ίf, finite or infinite dimen-
sional. The following result, a considerable improvement of Lemma
3, applies only to infinite dimensional Hubert spaces.

LEMMA 3'. (a) Suppose dim £{f = oo ofKisa nonegative n x n
matrix with entries Ki5eB{^f, §ίf) then there exist Xί9 X2, •••, Xn

in B(<%*, ^f) such that Kί3- = XfX3{l £ i, j £ n). Hence K = Z * X
where X is the n x n matrix whose first row is (XiX* Xn) and
whose other entries are all 0.

(b) If A is an n x n matrix with entries Ai5 e B{§ίf, Sίf) then
there exists a partial isometry U = (Ui3) in B{£έfn, Sίf^ and a matrix
X as in (a) such that A = UX, X = U*A.

(c) // A ^ 0 then U may be chosen to be an isometry in (b).

Proof, (a) Let Vt be the isometry from 34f into 3ff% given by
γ.h — (0, 0, , 0, h, 0, •) where the vector h appears as the ith
coordinate. If h, k belong to 3ί? then (KiSh, k) = (KVdh, Vtk) =
(l/KVjh, VKVtk). Hence Kiό = (VKV^iVΈVj). Let Φ be an isometry
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from J3T onto 3F%. Then X, = Φ*vrKVi e B{^f, 3έf) and XfX, = Kti.
(b), (c) Choose X as in (a) so that A* A = X*X Then

- X/

defines an isometry V from ^(i/A*A)~ onto &(X)~. Since
Φ*(^(V /A*^) 0 ^ r 0 ^ ^ 0 0 ^ ^ i t i s clear F can be extended
to an isometry on £έf%. This proves (c) and to complete the proof
of (b) use the polar factorization A = W~\/A*A and put U = WV*.

REMARK. Lemma 3' is also valid for infinite matrices ίΓ(or A)
that define bounded operators on the direct sum of countably many
copies of

Proof of Theorem 1. Define the Hubert space J Γ = < f̂ 0
where £ift = £ίf, i = 1, 2, , with the natural inner product.

Let Vt(i ^ 1) be the isometry from £ίf into ^ " given by VJv =
(K K •) where ht = h and fey = 0 for j ^ i. Let ^ = {î : i =
1, 2, •••} be a dense set of points in ^ . Define the non negative-
definite, bounded operator-valued matrices

By Lemma 3 there is an upper triangular operator-valued matrix
T{n) for which T{n)*T{n) = Kin) and moreover from the construction,
if m ^ n then if(m) = JKΓίΓ} = (Γϊ))*(27ί)). Let T be the formal infinite
upper triangular matrix whose nth column is the nth column of T{n\
n = l,2, . For each tte& define

= Σ
4=1

Then, if m = min (A;, ϊ),

tίίfkf
3=14=1

= ί; nτu =
From this it follows that

\X(t) - X(s)| ^ I JΓ(ί, t) - ί(β f t) | + \K(8, s) - K(t, s)\ ,

for any t, s in &. Using the completeness of B(βέf, 5ίΓ) and the
continuity of K we can therefore extend 1 to a function X from
Sf into B{£ίf, 3tΓ) that satisfies the same inequalities for all t, s in
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^ . The function X is then continuous and X(t)*X(s) = K(tf s).
In the following theorem the condition of separability is removed

from &. However, 3ίΓ will be a nonseparable Hubert space. The
construction below seems to have originated with Naimark [5].

THEOREM 2. Let & be a Hausdorff space, and let K( , •) be as
in Theorem 1. Then there is a Hubert space 3ίΓ and a continuous
function X(t) from gf into B(<%f, 3ίΓ) such that X*(t)X(s) = K(t, s).

Proof. Let J?f be the vector space of functions ξ: & —• Sίf that
vanish at all but a finite number of points of ^ , and for ξ, η in
Sf put

(,V) Σ
s,t

Let ^V = {ξ e £f: (ζ, ξ) = 0}. Then ^V is a subspace of £? and

(ί + ^ ς + ^r) = (ξ, v)

defines an inner product on J?ΓQ = £?/<yK Let S%" be the completion
of 3%l. For s e ^ and h e Sίf define

h if t = s

(0 if t Φ s .

Then X(s)fe = ξ8h + ^Γ defines a bounded operator X(s) from .^^
into\5Γ. A simple computation shows that X(t)*X(s) = iΓ(ί, β). This
implies |X(t) - X(s)\2 ^ | J8Γ(t, ί) - K(t, s)\ + |JSΓ(β, β) - K(β, t)\, so the
continuity of the map s—>X(s) follows from that of K.
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