AN OPERATOR VERSION OF A THEOREM OF KOLMOGOROV¹

G. D. ALLEN, P. J. NARCOWICH AND J. P. WILLIAMS

Let \mathscr{G} be a (separable) Hausdorff space and let K be a continuous nonnegative-definite kernel (covariance) from $\mathscr{D} \times$ *&* **to** *C.* **The well known theorem of Kolmogorov states** that in the case \mathcal{G} is the set of integers there is a continuous **mapping** (stochastic process) $x(\cdot)$ from \mathscr{D} into a (separable) **Hilbert space** \mathcal{K} such that $K(s, t) = (x(s), x(t))$. The theorem **is also known for any separable Hausdorff space. The pur pose of this paper is to replace the complex numbers** *C* **by the** algebra $B(\mathcal{H}, \mathcal{H})$ of bounded linear operators from a Hilbert **space into itself.** The factorization is then $K(t, s) = X(t)^* X(s)$ **with** X **a** continuous map from \mathscr{D} to $B(\mathscr{H}, \mathscr{K})$ for a suitable **Hilbert space** \mathcal{K} **. If** \mathcal{G} **is separable we may take** $\mathcal{K} = \mathcal{H}$ **.**

Two proofs of this theorem are given. The first, for $\mathscr G$ separable and \mathcal{H} of arbitrary dimension, uses an extension of the technique of [1] to obtain a triangular factorization for nonnegative-definite matrices with operator entries to construct the desired stochastic process $X(\cdot)$. The second, for $\mathscr G$ arbitrary and $\mathscr H$ of infinite dimension uses the techniques of reproducing kernel Hilbert spaces, and is a bit simpler.

Main results. Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H}, \mathcal{H})$ be the bounded linear operators on. Let $\mathcal G$ be a Hausdorff space and let $K: \mathcal{G} \times \mathcal{G} \rightarrow B(\mathcal{H}, \mathcal{H})$ be a (jointly) continuous function. We say that K is *nonnegative-definite* if for every $t_1, \ldots,$ $t_n \in \mathcal{G}$ and $x_1, \ldots, x_n \in \mathcal{H}$ the sum

(1)
$$
\sum_{i,j=1}^n (K(t_i, t_j)x_j, x_i) \geq 0.
$$

The generalization of the Kolmogorov theorem we wish to prove is contained in

THEOREM 1. Let \mathcal{G} be a separable Hausdorff space. If $K(\cdot, \cdot)$ *is a continuous nonnegative-definite function from* $\mathcal{G} \times \mathcal{G}$ *into B(J%*, Sίf) then there exists a separable Hilbert space 5ίΓ and a continuous function X(t) from* $\mathcal G$ *into B(H, X)* such that

$$
X^*(t)X(s) = K(t, s) .
$$

¹ This generalization was suggested to the authors by Professor P. Masani in January 1975.

In order to prove this theorem we require a number of facts about operator-valued matrices and about the solution of operator equations. The first result, is due to Douglas [2]. (See also Fillmore Williams [4].) We will denote the *range* of the operator A by $\mathscr{R}(A)$, and the kernel of A by $\mathcal{N}(A)$.

LEMMA 1. Let A and B be bounded operators on \mathcal{H} . Then the *following conditions are equivalent:*

 (i) $\mathscr{R}(A) \subset \mathscr{R}(B)$,

(ii) $A = BC$, for some bounded operator C on \mathcal{H} ,

(iii) $AA^* \leq \lambda^2 BB^*$, for some $\lambda > 0$.

Moreover, the operator C can be chosen so that $\mathcal{N}(C^*) \supset \mathcal{N}(B)$ and $\mathscr{R}(C) \subset \overline{\mathscr{R}}(B).$

COROLLARY. If B is bounded and nonnegative then $\mathscr{R}(\sqrt{B})$ $\mathscr{R}(B)$.

If we restrict K, of Theorem 1, to a finite subset of $\mathcal G$ the kernel *K* becomes a $n \times n$ matrix whose (i, j) entry is $K_{ij} = K(t_i, t_j)$, $1 \leq i, j \leq n$. This matrix is nonnegative-definite in the sense that for every $x_1, x_2, \ldots, x_n \in$

(2)
$$
\sum_{i,j=1}^n (K_{ij}x_j, x_i) \geq 0.
$$

Denote by \mathcal{H}_n the space which is a direct sum of *n* copies of $\mathcal{H} = \mathcal{H} \oplus \cdots \oplus \mathcal{H}$, with the natural inner product. Suppose that *K* is an operator on \mathcal{H}_n ; that is, *K* is an $n \times n$ operatorvalued matrix. Then (2) means that $(Kx, x) \geq 0$ for every $x =$ $(x_1, \ldots, x_n) \in \mathcal{H}_n$, that is K is a nonnegative operator on \mathcal{H}_n . Note that if *K* is nonnegative-definite, $K_{ij} = K_{ji}^*$, for all $1 \leq i, j \leq n$. If K is an $n \times n$ operator-valued matrix and $m \leq n$, we write K_m for the upper left $m \times m$ submatrix of K.

LEMMA 2. Let K be an $n \times n$ nonnegative definite, bounded *operator-valued mati Then there is a positive constant X so that*

$$
(3) \t K_{ii} \geq \lambda K_{ij} K_{ij}^*, 1 \leq i < j \leq n.
$$

Proof. Let $V_i: \mathcal{H} \to \mathcal{H}$ where $V_i h = (0, \dots, h, 0 \dots 0)$, *h* being in the ith position. If $h \in \mathcal{H}$, then

$$
\begin{array}{ll} (\, 4 \,) & | \, K^*_{ij}h \, |^2 = | \, K_{ji}h \, |^2 = | \, V^*_j \, K \, V_i h \, |^2 \leq | \, K \, V_i h \, |^2 \\ & = (\, V^*_i \, K^2 \, V_i h, \, h) \leq | \, K | \, (\, V^*_i \, K \, V_i h, \, h) = | \, K | (\, K_{ii}h, \, h) \ . \end{array}
$$

Thus $K_{ij}K_{ij}^*\leq |K|K_{ii}$.

We must show that

(10)
$$
T_{n-1,n-1}T_{n-1,n} = K_{n-1,n} - \sum_{i=1}^{n-2} T_{i,n-1}^* T_{i,n}
$$

has a bounded solution for $T_{n-1,n}$. By the Remark we have for any $z_{n-1} \in \mathcal{H}$ a vector $z_{n-2} \in \mathcal{H}$ such that

$$
T_{n-2,\,n-2}z_{n-2}+\,T_{n-2,\,n-1}z_{n-1}=0\;.
$$

Thus, proceeding sequentially we can solve the equations

(11)
$$
\sum_{j=i}^{n-1} T_{ij} z_j = 0 , \qquad i = n-2, n-3, \cdots, 1
$$

for $z_{n-2}, z_{n-3}, z_{n-4}, \cdots, z_1$, given z_{n-1} . Now, if $z = (z_1, \cdots, z_n)$, an application of (11) gives

$$
(12) \quad (Kz, z) = \sum_{j=1}^{n-2} (K_{n,j}z_j, z_n) + \sum_{j=1}^{n-2} (K_{j,n}z_n, z_j) + (K_{n-1,n}z_n, z_{n-1}) + (K_{n,n-1}z_{n-1}, z_n) + (K_{nn}z_n, z_n) + (T_{n-1,n-1}^2z_{n-1}, z_{n-1}).
$$

By (9),

(13)
$$
\sum_{j=1}^{n-2} (K_{j n} z_n, z_j) = \sum_{j=1}^{n-2} ((T_{j j} T_{j n} + \sum_{i=1}^{j-1} T_{i j}^* T_{i n}) z_n, z_j) \n= \sum_{j=1}^{n-2} (T_{j n} z_n, T_{j j} z_j) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{i j}^* T_{i n} z_n, z_j).
$$

We interpret all sums over not well defined limits to be zero (e.g. $\sum_{i=1}^{0} (\cdot) = 0$). From (11) we have

$$
T_{\,j} z_j = - \sum_{i=j+1}^{n-1} T_{\,j} z_i \ .
$$

Substitution into (13) gives

$$
\sum_{j=1}^{n-2} (K_{j_n} z_n, z_j) = - \sum_{j=1}^{n-2} \sum_{i=j+1}^{n-1} (T_{j_n} z_n, T_{j_i} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{i_n} z_n, T_{i_j} z_j)
$$
\n
$$
= - \sum_{j=1}^{n-3} \sum_{i=j+1}^{n-2} (T_{j_n} z_n, T_{j_i} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{i_n} z_n, T_{i_j} z_j)
$$
\n
$$
- \sum_{j=1}^{n-2} (T_{j_n} z_n, T_{j_n-1} z_{n-1}).
$$

The last term of (14) is

$$
-\sum_{j=1}^{n-2} (T_{j,n-1}^* T_{j,n} z_n, z_{n-1}) .
$$

Interchanging limits in the second term on the right hand side of (14), the equation (14) becomes

we will employ Lemma 1 (iii). $(T_{13}$ is obtained in the same way as T_{12} .) According to the Remark above we take $T_{11}z_1 = -T_{12}z_2$, for $z_2 \in \mathcal{H}$. If $z = (z_1, z_2, z_3)$, then

$$
\begin{aligned} 0 \leq (K_{\scriptscriptstyle{3}} z, \, z) & = (T^{\scriptscriptstyle{2}}_{\scriptscriptstyle{11}} z_{\scriptscriptstyle{1}}, \, z_{\scriptscriptstyle{1}}) + (T_{\scriptscriptstyle{11}} T_{\scriptscriptstyle{12}} z_{\scriptscriptstyle{2}}, \, z_{\scriptscriptstyle{1}}) + (T^{\ast}_{\scriptscriptstyle{12}} T_{\scriptscriptstyle{11}} z_{\scriptscriptstyle{1}}, \, z_{\scriptscriptstyle{2}}) \\ & + ((T^{\scriptscriptstyle{2}}_{\scriptscriptstyle{22}} + T^{\ast}_{\scriptscriptstyle{12}} T_{\scriptscriptstyle{12}}) z_{\scriptscriptstyle{2}}, \, z_{\scriptscriptstyle{2}}) + (T_{\scriptscriptstyle{11}} T_{\scriptscriptstyle{13}} z_{\scriptscriptstyle{3}}, \, z_{\scriptscriptstyle{1}}) \\ & + (K_{\scriptscriptstyle{23}} z_{\scriptscriptstyle{3}}, \, z_{\scriptscriptstyle{2}}) + (K_{\scriptscriptstyle{32}} z_{\scriptscriptstyle{2}}, \, z_{\scriptscriptstyle{3}}) + (K_{\scriptscriptstyle{33}}, \, z_{\scriptscriptstyle{3}}, \, z_{\scriptscriptstyle{3}}) \,, \end{aligned}
$$

which, since $T_{11}z_1 = -T_{12}z_2$ equals

$$
(T_{\,2z}^2z_z,\,z_z)\,+\,((K_{\rm z3}\,-\,T_{\,1z}^*T_{\,13})z_{\rm s},\,z_z)\,+\,((K_{\rm z2}\,-\,T_{\,13}^*T_{\,12})z_{\rm z},\,z_s)\,+\,(K_{\rm z3}z_{\rm s},\,z_{\rm s})\ .
$$

In matrix form this means, for every $z_2, z_3 \in$

$$
\left(\left(\begin{matrix} T^2_{22} & K_{23}-T^*_{12}T_{13} \cr (K_{23}-T^*_{12}T_{13})^* & K_{33} \end{matrix}\right)\left(\begin{matrix} z_2 \cr z_3 \end{matrix}\right)\right), \quad \left(\begin{matrix} z_2 \cr z_3 \end{matrix}\right)\right)\geq 0.
$$

By Lemma 2, then, there is a positive λ such that

$$
T_{22}^2 \geq \lambda (K_{23} - T_{12}^* T_{13}) (K_{23} - T_{12}^* T_{13})^* ,
$$

and hence by the Corollary and Lemma 2 (ii) T_{23} exists and is a bounded operator. Moreover, by Lemma 1 $\mathscr{R}(T_{23}) \subset \overline{\mathscr{R}(T_{22})}$. (This last fact together with the Remark is interpreted to mean that for any $y \in \mathcal{H}$ there is an $x \in \mathcal{H}$ so that $T_{22}x + T_{23}y = 0$.)

To show that T_{33} exists is now routine. Let $z = (z_1, z_2, z_3)$ *).* Then

$$
\begin{aligned} ((K_{33}-T_{13}^*T_{13}-T_{23}^*T_{23})z_{3},\,z_{3})&=(Kz,\,z)-\,\vert\,T_{22}z_{2}+T_{23}z_{3}\vert^2\\ &\quad -\,\vert\,T_{11}z_{1}+T_{12}z_{2}+T_{13}z_{3}\vert^2\\ &\geq -\,\vert\,T_{22}z_{2}+T_{23}z_{3}\vert^2-\,\vert\,T_{11}z_{1}+T_{12}z_{2}+T_{13}z_{3}\vert^2\,. \end{aligned}
$$

This inequality, combined with the Remark above gives the nonnega tivity of $K_3 - T_{13}^*T_{13} - T_{23}^*T_{23}$ and hence the existence of and boundedness of T_{33} .

We pass to the induction. Assume that $T_k^*T_k = K_k$, $k = 1, 2, \cdots$, $n-1$. Solve for T_{1n} in the same way as for T_{12} . Proceeding, once again, by induction we assume that the $T_{k n}$ exist and are bounded for $k = 2, 3, \dots, n-2$, and also that $\mathscr{R}(T_{k}) \subset \widetilde{\mathscr{R}(T_{k}})$, which makes the Remark applicable. The formula for the T_{km} are given by

$$
T_{kk}T_{km} = K_{km} - \sum_{i=1}^{k-1} T_{ik}^* T_{im}, k \leq m ,
$$

or

$$
(9) \t K_{km} = \sum_{i=1}^{k} T_{ik}^{*} T_{im}.
$$

We must show that

(10)
$$
T_{n-1,n-1}T_{n-1,n} = K_{n-1,n} - \sum_{i=1}^{n-2} T_{i,n-1}^* T_{i,n}
$$

has a bounded solution for $T_{n-1,n}$. By the Remark we have for any $z_{n-1} \in \mathcal{H}$ a vector $z_{n-2} \in \mathcal{H}$ such that

$$
T_{\scriptscriptstyle{ \, n-2, \, n-2}} z_{\scriptscriptstyle{ \, n-2}} + \, T_{\scriptscriptstyle{ \, n-2, \, n-1}} z_{\scriptscriptstyle{ \, n-1}} = 0 \,\, .
$$

Thus, proceeding sequentially we can solve the equations

(11)
$$
\sum_{j=i}^{n-1} T_{ij} z_j = 0 , \qquad i = n-2, n-3, \cdots, 1
$$

for $z_{n-2}, z_{n-3}, z_{n-4}, \cdots, z_{1},$ given z_{n-1} . Now, if $z = (z_1, \cdots, z_n)$, an application of (11) gives

(12)
$$
(Kz, z) = \sum_{j=1}^{n-2} (K_{n,j}z_j, z_n) + \sum_{j=1}^{n-2} (K_{j,n}z_n, z_j) + (K_{n-1,n}z_n, z_{n-1}) + (K_{n,n-1}z_{n-1}, z_n) + (K_{nn}z_n, z_n) + (T_{n-1,n-1}^2z_{n-1}, z_{n-1}).
$$

By (9),

(13)
$$
\sum_{j=1}^{n-2} (K_{jn}z_n, z_j) = \sum_{j=1}^{n-2} ((T_{jj}T_{jn} + \sum_{i=1}^{j-1} T_{ij}^*T_{in})z_n, z_j) \n= \sum_{j=1}^{n-2} (T_{jn}z_n, T_{jj}z_j) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{ij}^*T_{in}z_n, z_j).
$$

We interpret all sums over not well defined limits to be zero (e.g. $\sum_{i=1}^{0} (\cdot) = 0$). From (11) we have

$$
T_{jj}z_j=-\sum_{i=j+1}^{n-1} T_{ji}z_i.
$$

Substitution into (13) gives

$$
\sum_{j=1}^{n-2} (K_{j_n} z_n, z_j) = - \sum_{j=1}^{n-2} \sum_{i=j+1}^{n-1} (T_{j_n} z_n, T_{j_i} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{i_n} z_n, T_{i j} z_j)
$$
\n
$$
= - \sum_{j=1}^{n-3} \sum_{i=j+1}^{n-2} (T_{j_n} z_n, T_{j_i} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{i_n} z_n, T_{i j} z_j)
$$
\n
$$
- \sum_{j=1}^{n-2} (T_{j_n} z_n, T_{j_n-1} z_{n-1}).
$$

The last term of (14) is

$$
-\sum_{j=1}^{n-2} (T_{j,n-1}^* T_{jn} z_n, z_{n-1}).
$$

Interchanging limits in the second term on the right hand side of (14), the equation (14) becomes

$$
- \sum_{j=1}^{n-3} \sum_{i=j+1}^{n-2} (T_{j n} z_n, T_{j i} z_i) + \sum_{i=1}^{n-3} \sum_{j=i+1}^{n-2} (T_{i n} z_n, T_{i j} z_j) - \sum_{j=1}^{n-2} (T_{j n}^* z_n, z_{n-1}) .
$$

Upon interchanging *i* and *j* we obtain

(15)
$$
\sum_{j=1}^{n-2} (K_{j n} z_n, z_j) = - \sum_{j=1}^{n-2} (T_{j, n-1}^* T_{j n} z_n, z_{n-1}).
$$

Similarly

(16)
$$
\sum_{j=1}^{n-2} (K_{n,j}z_j, z_n) = -\left(\sum_{j=1}^{n-2} T_{jn}^* T_{j,n-1} z_{n-1}, z_n\right).
$$

Substituting (15) and (16) into (12) and writing the result in matrix form we have

$$
0 \leq (K_n x, x)
$$

= $\left(\left(\begin{matrix} T_{n-1,n-1}^2 & K_{n-1,n} - \sum_{j=1}^{n-2} T_{j,n-1}^* T_{j,n} \\ K_{n-1,n} - \sum_{j=1}^{n-2} T_{j,n-1}^* T_{j,n} \end{matrix} \right)^* \right) K_{nn}$ $\left(\begin{matrix} z_{n-1} \\ z_n \end{matrix} \right)$

An application of Lemmas 1 and 2 and the Corollary (ii), (iii) gives that there is a bounded operator $T_{n-1,n}$ satisfying (10) and moreover that $\mathscr{B}(T_{n-1,n}) \subseteq \overline{\mathscr{B}(T_{n-1,n-1})}$.

To show that T_{nn} exists a similar argument is used. This com pletes the induction and the Lemma is proved.

Lemma 3 works in any Hilbert space \mathcal{H} , finite or infinite dimensional. The following result, a considerable improvement of Lemma 3, applies only to infinite dimensional Hubert spaces.

LEMMA 3'. (a) Suppose dim $\mathscr{H} = \infty$ of K is a nonegative $n \times n$ $matrix \ with \ entries \ K_{ij} \in B(\mathcal{H}, \mathcal{H}) \ then \ there \ exist \ X_1, X_2, \cdots, X_n$ *in* $B(\mathcal{H}, \mathcal{H})$ *such that* $K_{ij} = X_i^* X_j (1 \leq i, j \leq n)$. Hence $K = X^* X$ *where X is the* $n \times n$ *matrix whose first row is* $(X_1 X_2 \cdots X_n)$ *and whose other entries are all* 0.

(b) If A is an $n \times n$ matrix with entries $A_{ij} \in B(\mathcal{H}, \mathcal{H})$ then *there exists a partial isometry* $U = (U_{ij})$ *in* $B(\mathcal{H}_n, \mathcal{H}_n)$ *and a matrix X* as in (a) such that $A = UX$, $X = U^*A$.

(c) If $A \ge 0$ then U may be chosen to be an isometry in (b).

Proof. (a) Let V_i be the isometry from \mathcal{H} into \mathcal{H}_n given by $V_i h = (0, 0, \dots, 0, h, 0, \dots)$ where the vector *h* appears as the *i*th coordinate. If h, k belong to \mathscr{H} then $(K_{i,j}h, k) = (KV_{j}h, V_{i}k) =$ $(\sqrt{K}V_jh, \sqrt{K}V_ih)$. Hence $K_{ij} = (\sqrt{K}V_i)^*(\sqrt{K}V_j)$. Let Φ be an isometry

from \mathscr{H} onto \mathscr{H}_n . Then $X_i = \Phi^* \sqrt{K} V_i \in B(\mathscr{H}, \mathscr{H})$ and $X_i^* X_j = K_{ij}$. (b), (c) Choose X as in (a) so that $A^*A = X^*X$. Then

$$
V\sqrt{A^*A}f = Xf
$$

defines an isometry *V* from $\mathscr{R}(\sqrt{A^*A})^-$ onto $\mathscr{R}(X)^-$. Since $\mathscr{R}(X)^{\perp}$ = $\varPhi^*({\mathscr{N}}(\sqrt{A^*A)})\oplus\mathscr{H}\oplus\mathscr{H}\oplus\cdots\oplus\mathscr{H}$ it is clear V can be extended to an isometry on \mathcal{H}_n . This proves (c) and to complete the proof of (b) use the polar factorization $A = W\sqrt{A^*A}$ and put $U = W V^*$.

REMARK. Lemma 3' is also valid for infinite matrices $K(\text{or } A)$ that define bounded operators on the direct sum of countably many copies of \mathcal{H} .

Proof of Theorem 1. Define the Hilbert space $\mathcal{K} = \mathcal{H}_1 \oplus$ where $\mathcal{H}_i = \mathcal{H}$, $i = 1, 2, \cdots$, with the natural inner product. Let $V_i (i \geq 1)$ be the isometry from $\mathscr H$ into $\mathscr K$ given by $V_i h =$ (h_1, h_2, \cdots) where $h_i = h$ and $h_j = 0$ for $j \neq i$. Let $\mathscr{R} = \{t_i : i =$ 1, 2, \dots } be a dense set of points in \mathcal{G} . Define the non negativedefinite, bounded operator-valued matrices

$$
K^{(n)}=K(t_i, t_j) , \qquad \qquad i, j=1, \cdots, n .
$$

By Lemma 3 there is an upper triangular operator-valued matrix *T*⁽ⁿ⁾</sub> for which $T^{(n)*}T^{(n)} = K^{(n)}$ and moreover from the construction, if $m \leq n$ then $K^{(m)} = K^{(n)}_m = (T^{(n)}_m)^*(T^{(n)}_m)$. Let *T* be the formal infinite upper triangular matrix whose n^{th} column is the n^{th} column of $T^{(n)}$, $n = 1, 2, \cdots$ For each $t_i \in \mathcal{R}$ define

$$
\widetilde{X}(t_i)=\textstyle\sum\limits_{i=1}^l\,V_iT_{i\,l}\;.
$$

Then, if $m = \min(k, l)$,

$$
\widetilde{X}(t_k)^* \widetilde{X}(t_l) = \left(\sum_{j=1}^k V_j T_{jk}\right)^* \left(\sum_{i=1}^l V_i T_{il}\right)
$$

=
$$
\sum_{j=1}^k \sum_{i=1}^l T_{jk}^* V_j^* V_i T_{il}
$$

=
$$
\sum_{i=1}^m T_{ik}^* T_{il} = K(t_k, t_l).
$$

From this it follows that

$$
|\widetilde{X}(t) - \widetilde{X}(s)| \leq |K(t, t) - K(s, t)| + |K(s, s) - K(t, s)|,
$$

for any *t*, *s* in \mathscr{R} . Using the completeness of $B(\mathscr{H}, \mathscr{K})$ and the continuity of K we can therefore extend \tilde{X} to a function X from \mathscr{L} into $B(\mathscr{H}, \mathscr{K})$ that satisfies the same inequalities for all t, s in F. The function X is then continuous and $X(t)^*X(s) = K(t, s)$.

In the following theorem the condition of separability is removed from \mathscr{G} . However, \mathscr{K} will be a nonseparable Hilbert space. The construction below seems to have originated with Naimark [5].

THEOREM 2. Let \mathcal{G} be a Hausdorff space, and let $K(\cdot, \cdot)$ be as *in Theorem* 1. *Then there is a Hubert space 3ίΓ and a continuous function X(t) from* $\mathscr G$ *into B(* $\mathscr H$ *,* $\mathscr K$ *)* such that $X^*(t)X(s) = K(t, s)$.

Proof. Let $\mathscr L$ be the vector space of functions $\xi: \mathscr G \to \mathscr H$ that vanish at all but a finite number of points of \mathcal{G} , and for ξ , η in *Sf* put

$$
(\xi,\,\eta)=\sum_{s,\,t}\left(K(s,\,t)\xi(t),\,\eta(s)\right).
$$

Let $\mathcal{N} = {\xi \in \mathcal{L} : (\xi, \xi) = 0}.$ Then \mathcal{N} is a subspace of \mathcal{L} and

$$
(\xi+\mathscr{N},\xi+\mathscr{N})=(\xi,\eta)
$$

defines an inner product on $\mathcal{K}_0 = \mathcal{L}/\mathcal{N}$. Let \mathcal{K} be the completion of \mathcal{K}_0 . For $s \in \mathcal{G}$ and $h \in \mathcal{H}$ define

$$
\xi_s h(t) = \begin{cases} h & \text{if} \quad t = s \\ 0 & \text{if} \quad t \neq s \end{cases}.
$$

Then $X(s)h = \xi_s h + \mathscr{N}$ defines a bounded operator $X(s)$ from \mathscr{H} into \mathcal{K} . A simple computation shows that $X(t)^*X(s) = K(t, s)$. This implies $|X(t) - X(s)|^2 \leq |K(t, t) - K(t, s)| + |K(s, s) - K(s, t)|$, so the continuity of the map $s \to X(s)$ follows from that of K.

REFERENCES

1. G. D. Allen, *An extension of Kolmogorov's theorem for continuous covariances,* Proc. Amer. Math. Soc, 39 (1973), 214-216.

2. R. G. Douglas, *On majorization, factorization, and range inclusion of operators on Hilbert space,* Proc. Amer. Math. Soc, 17 (1966), 413-415.

3. D. K. Faddeev and V. N. Fadeeva, *Computational Methods in Linear Algebra,* Figmatgiz, Moscow, 1960; English transl., Freeman, San Francisco, Calif., 1963.

4. P. A. Fillmore and J. P. Williams, *On operator ranges,* Advances in Mathematics, 7 (1971), 254-281.

5. M. A. Naimark, *On a representation of additive operator set functions,* Comptes Rendus (Doklady) Acad. Sci. USSR, 41 (1943), 359-361.

Received March 25, 1975 and in revised form November 4, 1975.

TEXAS A & M UNIVERSITY AND INDIANA UNIVERSITY