AN OPERATOR VERSION OF A THEOREM OF KOLMOGOROV¹

G. D. Allen, F. J. NARCOWICH AND J. P. WILLIAMS

Let \mathscr{G} be a (separable) Hausdorff space and let K be a continuous nonnegative-definite kernel (covariance) from $\mathscr{G} \times \mathscr{G}$ to C. The well known theorem of Kolmogorov states that in the case \mathscr{G} is the set of integers there is a continuous mapping (stochastic process) $x(\cdot)$ from \mathscr{G} into a (separable) Hilbert space \mathscr{K} such that K(s, t) = (x(s), x(t)). The theorem is also known for any separable Hausdorff space. The purpose of this paper is to replace the complex numbers C by the algebra $B(\mathscr{H}, \mathscr{H})$ of bounded linear operators from a Hilbert space into itself. The factorization is then $K(t, s) = X(t)^*X(s)$ with X a continuous map from \mathscr{G} to $B(\mathscr{H}, \mathscr{K})$ for a suitable Hilbert space \mathscr{K} . If \mathscr{G} is separable we may take $\mathscr{K} = \mathscr{H}$.

Two proofs of this theorem are given. The first, for \mathcal{G} separable and \mathcal{H} of arbitrary dimension, uses an extension of the technique of [1] to obtain a triangular factorization for nonnegative-definite matrices with operator entries to construct the desired stochastic process $X(\cdot)$. The second, for \mathcal{G} arbitrary and \mathcal{H} of infinite dimension uses the techniques of reproducing kernel Hilbert spaces, and is a bit simpler.

Main results. Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H}, \mathcal{H})$ be the bounded linear operators on. Let \mathcal{G} be a Hausdorff space and let $K: \mathcal{G} \times \mathcal{G} \to B(\mathcal{H}, \mathcal{H})$ be a (jointly) continuous function. We say that K is nonnegative-definite if for every $t_1, \dots, t_n \in \mathcal{G}$ and $x_1, \dots, x_n \in \mathcal{H}$ the sum

(1)
$$\sum_{i,j=1}^{n} (K(t_i, t_j)x_j, x_i) \ge 0$$
.

The generalization of the Kolmogorov theorem we wish to prove is contained in

THEOREM 1. Let \mathcal{G} be a separable Hausdorff space. If $K(\cdot, \cdot)$ is a continuous nonnegative-definite function from $\mathcal{G} \times \mathcal{G}$ into $B(\mathcal{H}, \mathcal{H})$ then there exists a separable Hilbert space \mathcal{K} and a continuous function X(t) from \mathcal{G} into $B(\mathcal{H}, \mathcal{K})$ such that

$$X^*(t)X(s) = K(t, s) .$$

¹ This generalization was suggested to the authors by Professor P. Masani in January 1975.

In order to prove this theorem we require a number of facts about operator-valued matrices and about the solution of operator equations. The first result, is due to Douglas [2]. (See also Fillmore-Williams [4].) We will denote the range of the operator A by $\mathscr{R}(A)$, and the kernel of A by $\mathscr{N}(A)$.

LEMMA 1. Let A and B be bounded operators on \mathcal{H} . Then the following conditions are equivalent:

(i) $\mathscr{R}(A) \subset \mathscr{R}(B)$,

(ii) A = BC, for some bounded operator C on \mathcal{H} ,

(iii) $AA^* \leq \lambda^2 BB^*$, for some $\lambda > 0$.

Moreover, the operator C can be chosen so that $\mathcal{N}(C^*) \supset \mathcal{N}(B)$ and $\mathcal{R}(C) \subset \overline{\mathcal{R}(B)}$.

COROLLARY. If B is bounded and nonnegative then $\mathscr{R}(\sqrt{B}) \supset \mathscr{R}(B)$.

If we restrict K, of Theorem 1, to a finite subset of \mathcal{G} the kernel K becomes a $n \times n$ matrix whose (i, j) entry is $K_{ij} = K(t_i, t_j)$, $1 \leq i, j \leq n$. This matrix is nonnegative-definite in the sense that for every $x_1, x_2, \dots, x_n \in \mathcal{H}$,

(2)
$$\sum_{i,j=1}^{n} (K_{ij}x_j, x_i) \ge 0$$
.

Denote by \mathscr{H}_n the space which is a direct sum of n copies of \mathscr{H} , $\mathscr{H}_n = \mathscr{H} \bigoplus \cdots \bigoplus \mathscr{H}$, with the natural inner product. Suppose that K is an operator on \mathscr{H}_n ; that is, K is an $n \times n$ operatorvalued matrix. Then (2) means that $(Kx, x) \ge 0$ for every x = $(x_1, \dots, x_n) \in \mathscr{H}_n$, that is K is a nonnegative operator on \mathscr{H}_n . Note that if K is nonnegative-definite, $K_{ij} = K_{ji}^*$, for all $1 \le i, j \le n$. If K is an $n \times n$ operator-valued matrix and $m \le n$, we write K_m for the upper left $m \times m$ submatrix of K.

LEMMA 2. Let K be an $n \times n$ nonnegative definite, bounded operator-valued mather Then there is a positive constant λ so that

(3)
$$K_{ii} \geq \lambda K_{ij} K_{ij}^*, 1 \leq i < j \leq n$$
.

Proof. Let $V_i: \mathcal{H} \to \mathcal{H}_n$ where $V_i h = (0, \dots, h, 0 \dots 0)$, h being in the *i*th position. If $h \in \mathcal{H}$, then

$$(4) |K_{ij}^*h|^2 = |K_{ji}h|^2 = |V_j^*KV_ih|^2 \le |KV_ih|^2$$

= $(V_i^*K^2V_ih, h) \le |K|(V_i^*KV_ih, h) = |K|(K_{ii}h, h).$

Thus $K_{ij}K_{ij}^* \leq |K|K_{ii}$.

We must show that

(10)
$$T_{n-1,n-1}T_{n-1,n} = K_{n-1,n} - \sum_{i=1}^{n-2} T_{i,n-1}^*T_{i,n}$$

has a bounded solution for $T_{n-1,n}$. By the Remark we have for any $z_{n-1} \in \mathscr{H}$ a vector $z_{n-2} \in \mathscr{H}$ such that

$$T_{n-2,n-2}z_{n-2} + T_{n-2,n-1}z_{n-1} = 0$$
.

Thus, proceeding sequentially we can solve the equations

(11)
$$\sum_{j=i}^{n-1} T_{ij} z_j = 0$$
, $i = n - 2, n - 3, \dots, 1$

for z_{n-2} , z_{n-3} , z_{n-4} , \cdots , z_1 , given z_{n-1} . Now, if $z = (z_1, \cdots, z_n)$, an application of (11) gives

(12)
$$\begin{array}{l} (Kz,\,z) = \sum\limits_{j=1}^{n-2} \left(K_{nj}z_{j},\,z_{n}\right) + \sum\limits_{j=1}^{n-2} \left(K_{jn}z_{n},\,z_{j}\right) + \left(K_{n-1,\,n}z_{n},\,z_{n-1}\right) \\ & + \left(K_{n,\,n-1}z_{n-1},\,z_{n}\right) + \left(K_{nn}z_{n},\,z_{n}\right) + \left(T_{n-1,\,n-1}^{2}z_{n-1},\,z_{n-1}\right). \end{array}$$

By (9),

(13)
$$\sum_{j=1}^{n-2} (K_{jn} z_n, z_j) = \sum_{j=1}^{n-2} ((T_{jj} T_{jn} + \sum_{i=1}^{j-1} T_{ij}^* T_{in}) z_n, z_j) \\ = \sum_{j=1}^{n-2} (T_{jn} z_n, T_{jj} z_j) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{ij}^* T_{in} z_n, z_j) .$$

We interpret all sums over not well defined limits to be zero (e.g. $\sum_{i=1}^{0} (\cdot) = 0$). From (11) we have

$${T}_{jj} {z}_j = -\sum\limits_{i=j+1}^{n-1} {T}_{ji} {z}_i$$
 .

Substitution into (13) gives

(14)

$$\sum_{j=1}^{n-2} (K_{jn} z_n, z_j) = -\sum_{j=1}^{n-2} \sum_{i=j+1}^{n-1} (T_{jn} z_n, T_{ji} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{in} z_n, T_{ij} z_j)$$

$$= -\sum_{j=1}^{n-3} \sum_{i=j+1}^{n-2} (T_{jn} z_n, T_{ji} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{in} z_n, T_{ij} z_j)$$

$$-\sum_{j=1}^{n-2} (T_{jn} z_n, T_{j,n-1} z_{n-1}) .$$

The last term of (14) is

$$-\sum_{j=1}^{n-2}(T_{j,n-1}^*T_{jn}z_n, z_{n-1})$$
.

Interchanging limits in the second term on the right hand side of (14), the equation (14) becomes

we will employ Lemma 1 (iii). $(T_{13}$ is obtained in the same way as T_{12} .) According to the Remark above we take $T_{11}z_1 = -T_{12}z_2$, for some $z_2 \in \mathscr{H}$. If $z = (z_1, z_2, z_3)$, then

$$egin{aligned} 0 &\leq (K_3 z,\,z) = (T_{11}^2 z_1,\,z_1) + (T_{11} T_{12} z_2,\,z_1) + (T_{12}^* T_{11} z_1,\,z_2) \ &+ ((T_{22}^2 + T_{12}^* T_{12}) z_2,\,z_2) + (T_{11} T_{13} z_3,\,z_1) \ &+ (K_{23} z_3,\,z_2) + (K_{32} z_2,\,z_3) + (K_{33},\,z_3,\,z_3) \;, \end{aligned}$$

which, since $T_{11}z_1 = -T_{12}z_2$ equals

$$(T^2_{22}z_2, z_2) + ((K_{23} - T^*_{12}T_{13})z_3, z_2) + ((K_{32} - T^*_{13}T_{12})z_2, z_3) + (K_{33}z_3, z_3)$$
 .

In matrix form this means, for every $z_2, z_3 \in \mathcal{H}$,

$$igg(igg(egin{array}{cccc} T^2_{22} & K_{23} - T^*_{12}T_{13} \ (K_{23} - T^*_{12}T_{13})^* & K_{33} \ \end{pmatrix}igg(egin{array}{cccc} z_2 \ z_3 \ \end{pmatrix}, \quad igg(egin{array}{ccccc} z_2 \ z_3 \ \end{pmatrix}igg) \ge 0 \;.$$

By Lemma 2, then, there is a positive λ such that

$$T_{22}^2 \ge \lambda (K_{23} - T_{12}^*T_{13})(K_{23} - T_{12}^*T_{13})^*$$
 ,

and hence by the Corollary and Lemma 2 (ii) T_{23} exists and is a bounded operator. Moreover, by Lemma 1 $\mathscr{R}(T_{23}) \subset \overline{\mathscr{R}(T_{22})}$. (This last fact together with the Remark is interpreted to mean that for any $y \in \mathscr{H}$ there is an $x \in \mathscr{H}$ so that $T_{22}x + T_{23}y = 0$.)

To show that T_{33} exists is now routine. Let $z = (z_1, z_2, z_3)$. Then

$$egin{aligned} & ((K_{33}-T_{13}^*T_{13}-T_{23}^*T_{23})z_3,\,z_3)=(Kz,\,z)-|\,T_{22}z_2+T_{23}z_3|^2\ & -|\,T_{11}z_1+T_{12}z_2+T_{13}z_3|^2\ & \geq -|\,T_{22}z_2+T_{23}z_3|^2-|\,T_{11}z_1+T_{12}z_2+T_{13}z_3|^2\,. \end{aligned}$$

This inequality, combined with the Remark above gives the nonnegativity of $K_3 - T_{13}^*T_{13} - T_{23}^*T_{23}$ and hence the existence of and boundedness of T_{33} .

We pass to the induction. Assume that $T_k^* T_k = K_k$, $k = 1, 2, \dots, n-1$. Solve for T_{1n} in the same way as for T_{12} . Proceeding, once again, by induction we assume that the T_{kn} exist and are bounded for $k = 2, 3, \dots, n-2$, and also that $\mathscr{P}(T_{kn}) \subset \overline{\mathscr{P}(T_{kk})}$, which makes the Remark applicable. The formula for the T_{km} are given by

$${T_{{\scriptscriptstyle k}{\scriptscriptstyle k}}}{T_{{\scriptscriptstyle k}{\scriptscriptstyle m}}} = {K_{{\scriptscriptstyle k}{\scriptscriptstyle m}}} - \sum\limits_{i = 1}^{k - 1} {T_{{\scriptscriptstyle i}{\scriptscriptstyle k}}^{*}}{T_{{\scriptscriptstyle i}{\scriptscriptstyle m}}},\,k \le m$$
 ,

or

(9)
$$K_{km} = \sum_{i=1}^{k} T_{ik}^{*} T_{im}$$

We must show that

(10)
$$T_{n-1,n-1}T_{n-1,n} = K_{n-1,n} - \sum_{i=1}^{n-2} T_{i,n-1}^*T_{i,n}$$

has a bounded solution for $T_{n-1,n}$. By the Remark we have for any $z_{n-1} \in \mathscr{H}$ a vector $z_{n-2} \in \mathscr{H}$ such that

 $T_{n-2,n-2}z_{n-2} + T_{n-2,n-1}z_{n-1} = 0$.

Thus, proceeding sequentially we can solve the equations

(11)
$$\sum_{j=i}^{n-1} T_{ij} z_j = 0$$
, $i = n - 2, n - 3, \dots, 1$

for z_{n-2} , z_{n-3} , z_{n-4} , \cdots , z_1 , given z_{n-1} . Now, if $z = (z_1, \cdots, z_n)$, an application of (11) gives

(12)
$$\begin{array}{l} (Kz,\,z) = \sum\limits_{j=1}^{n-2} \left(K_{nj} z_{j},\,z_{n} \right) + \sum\limits_{j=1}^{n-2} \left(K_{jn} z_{n},\,z_{j} \right) + \left(K_{n-1,\,n} z_{n},\,z_{n-1} \right) \\ & + \left(K_{n,\,n-1} z_{n-1},\,z_{n} \right) + \left(K_{nn} z_{n},\,z_{n} \right) + \left(T_{n-1,\,n-1}^{2} z_{n-1},\,z_{n-1} \right) \,. \end{array}$$

By (9),

(13)
$$\sum_{j=1}^{n-2} (K_{jn} z_n, z_j) = \sum_{j=1}^{n-2} ((T_{jj} T_{jn} + \sum_{i=1}^{j-1} T_{ij}^* T_{in}) z_n, z_j) \\ = \sum_{j=1}^{n-2} (T_{jn} z_n, T_{jj} z_j) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{ij}^* T_{in} z_n, z_j) .$$

We interpret all sums over not well defined limits to be zero (e.g. $\sum_{i=1}^{0} (\cdot) = 0$). From (11) we have

$$T_{jj}z_{j} = -\sum_{i=j+1}^{n-1} T_{ji}z_{i}$$
 .

Substitution into (13) gives

(14)

$$\sum_{j=1}^{n-2} (K_{jn} z_n, z_j) = -\sum_{j=1}^{n-2} \sum_{i=j+1}^{n-1} (T_{jn} z_n, T_{ji} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{in} z_n, T_{ij} z_j)$$

$$= -\sum_{j=1}^{n-3} \sum_{i=j+1}^{n-2} (T_{jn} z_n, T_{ji} z_i) + \sum_{j=1}^{n-2} \sum_{i=1}^{j-1} (T_{in} z_n, T_{ij} z_j)$$

$$-\sum_{j=1}^{n-2} (T_{jn} z_n, T_{j,n-1} z_{n-1}) .$$

The last term of (14) is

$$-\sum_{j=1}^{n-2}(T_{j,n-1}^*T_{jn}z_n, z_{n-1})$$
.

Interchanging limits in the second term on the right hand side of (14), the equation (14) becomes

$$-\sum_{j=1}^{n-3}\sum_{i=j+1}^{n-2} (T_{j_n}z_n, T_{j_i}z_i) + \sum_{i=1}^{n-3}\sum_{j=i+1}^{n-2} (T_{i_n}z_n, T_{i_j}z_j) \\ -\sum_{j=1}^{n-2} (T_{j_n,n-1}^*T_{j_n}z_n, z_{n-1}) .$$

Upon interchanging i and j we obtain

(15)
$$\sum_{j=1}^{n-2} (K_{jn} z_n, z_j) = - \sum_{j=1}^{n-2} (T_{j,n-1}^* T_{jn} z_n, z_{n-1}).$$

Similarly

(16)
$$\sum_{j=1}^{n-2} (K_{nj} z_j, z_n) = - \left(\sum_{j=1}^{n-2} T_{jn}^* T_{j,n-1} z_{n-1}, z_n \right).$$

Substituting (15) and (16) into (12) and writing the result in matrix form we have

$$0 \leq (K_n x, x)$$

$$= \left(\left(\begin{pmatrix} T_{n-1,n-1}^2 & K_{n-1,n} - \sum_{j=1}^{n-2} T_{j,n-1}^* T_{jn} \\ \left(K_{n-1,n} - \sum_{j=1}^{n-2} T_{j,n-1}^* T_{jn} \right)^* & K_{nn} \end{pmatrix} \middle| \begin{pmatrix} z_{n-1} \\ z_n \end{pmatrix}, \begin{pmatrix} z_{n-1} \\ z_n \end{pmatrix} \right) \right)$$

An application of Lemmas 1 and 2 and the Corollary (ii), (iii) gives that there is a bounded operator $T_{n-1,n}$ satisfying (10) and moreover that $\mathscr{R}(T_{n-1,n}) \subseteq \overline{\mathscr{R}(T_{n-1,n-1})}$.

To show that T_{nn} exists a similar argument is used. This completes the induction and the Lemma is proved.

Lemma 3 works in any Hilbert space \mathcal{H} , finite or infinite dimensional. The following result, a considerable improvement of Lemma 3, applies only to infinite dimensional Hilbert spaces.

LEMMA 3'. (a) Suppose dim $\mathscr{H} = \infty$ of K is a nonegative $n \times n$ matrix with entries $K_{ij} \in B(\mathscr{H}, \mathscr{H})$ then there exist X_1, X_2, \dots, X_n in $B(\mathscr{H}, \mathscr{H})$ such that $K_{ij} = X_i^* X_j (1 \leq i, j \leq n)$. Hence $K = X^* X$ where X is the $n \times n$ matrix whose first row is $(X_1 X_2 \cdots X_n)$ and whose other entries are all 0.

(b) If A is an $n \times n$ matrix with entries $A_{ij} \in B(\mathcal{H}, \mathcal{H})$ then there exists a partial isometry $U = (U_{ij})$ in $B(\mathcal{H}_n, \mathcal{H}_n)$ and a matrix X as in (a) such that A = UX, $X = U^*A$.

(c) If $A \ge 0$ then U may be chosen to be an isometry in (b).

Proof. (a) Let V_i be the isometry from \mathscr{H} into \mathscr{H}_n given by $V_i h = (0, 0, \dots, 0, h, 0, \dots)$ where the vector h appears as the *i*th coordinate. If h, k belong to \mathscr{H} then $(K_{ij}h, k) = (KV_jh, V_ik) = (\sqrt{K}V_jh, \sqrt{K}V_ik)$. Hence $K_{ij} = (\sqrt{K}V_i)^*(\sqrt{K}V_j)$. Let Φ be an isometry

310

from \mathcal{H} onto \mathcal{H}_n . Then $X_i = \Phi^* \sqrt{K} V_i \in B(\mathcal{H}, \mathcal{H})$ and $X_i^* X_j = K_{ij}$. (b), (c) Choose X as in (a) so that $A^*A = X^*X$. Then

$$V\sqrt{A^*A}f = Xf$$

defines an isometry V from $\mathscr{R}(\sqrt{A^*A})^-$ onto $\mathscr{R}(X)^-$. Since $\mathscr{R}(X)^\perp = \Phi^*(\mathscr{N}(\sqrt{A^*A})) \oplus \mathscr{H} \oplus \mathscr{H} \oplus \cdots \oplus \mathscr{H}$ it is clear V can be extended to an isometry on \mathscr{H}_n . This proves (c) and to complete the proof of (b) use the polar factorization $A = W\sqrt{A^*A}$ and put $U = WV^*$.

REMARK. Lemma 3' is also valid for infinite matrices K(or A) that define bounded operators on the direct sum of countably many copies of \mathcal{H} .

Proof of Theorem 1. Define the Hilbert space $\mathcal{K} = \mathcal{H}_1 \bigoplus$ $\mathcal{H}_2 \bigoplus \cdots$ where $\mathcal{H}_i = \mathcal{H}, i = 1, 2, \cdots$, with the natural inner product. Let $V_i (i \ge 1)$ be the isometry from \mathcal{H} into \mathcal{K} given by $V_i h =$ (h_1, h_2, \cdots) where $h_i = h$ and $h_j = 0$ for $j \ne i$. Let $\mathcal{R} = \{t_i : i =$ $1, 2, \cdots\}$ be a dense set of points in \mathcal{G} . Define the non negativedefinite, bounded operator-valued matrices

$$K^{(n)} = K(t_i, t_j)$$
, $i, j = 1, \cdots, n$.

By Lemma 3 there is an upper triangular operator-valued matrix $T^{(n)}$ for which $T^{(n)*}T^{(n)} = K^{(n)}$ and moreover from the construction, if $m \leq n$ then $K^{(m)} = K_m^{(n)} = (T_m^{(n)})^*(T_m^{(n)})$. Let T be the formal infinite upper triangular matrix whose n^{th} column is the n^{th} column of $T^{(n)}$, $n = 1, 2, \cdots$. For each $t_l \in \mathscr{R}$ define

$$\widetilde{X}(t_l) = \sum\limits_{i=1}^l \, V_i {T}_{il}$$
 .

Then, if $m = \min(k, l)$,

$$egin{aligned} \widetilde{X}(t_k)^* \widetilde{X}(t_l) &= \left(\sum\limits_{j=1}^k V_j T_{jk}
ight)^* \left(\sum\limits_{i=1}^l V_i T_{il}
ight) \ &= \sum\limits_{j=1}^k \sum\limits_{i=1}^l T_{jk}^* V_j^* V_i T_{il} \ &= \sum\limits_{i=1}^m T_{ik}^* T_{il} = K(t_k,\,t_l) \ . \end{aligned}$$

From this it follows that

$$|\widetilde{X}(t) - \widetilde{X}(s)| \leq |K(t, t) - K(s, t)| + |K(s, s) - K(t, s)|$$

for any t, s in \mathscr{R} . Using the completeness of $B(\mathscr{H}, \mathscr{K})$ and the continuity of K we can therefore extend \tilde{X} to a function X from \mathscr{G} into $B(\mathscr{H}, \mathscr{K})$ that satisfies the same inequalities for all t, s in

 \mathscr{G} . The function X is then continuous and $X(t)^*X(s) = K(t, s)$.

In the following theorem the condition of separability is removed from \mathcal{G} . However, \mathcal{K} will be a nonseparable Hilbert space. The construction below seems to have originated with Naimark [5].

THEOREM 2. Let \mathcal{G} be a Hausdorff space, and let $K(\cdot, \cdot)$ be as in Theorem 1. Then there is a Hilbert space \mathcal{K} and a continuous function X(t) from \mathcal{G} into $B(\mathcal{H}, \mathcal{K})$ such that $X^*(t)X(s) = K(t, s)$.

Proof. Let \mathscr{L} be the vector space of functions $\xi: \mathscr{G} \to \mathscr{H}$ that vanish at all but a finite number of points of \mathscr{G} , and for ξ, η in \mathscr{L} put

$$(\xi, \eta) = \sum_{s,t} (K(s, t)\xi(t), \eta(s))$$
.

Let $\mathcal{N} = \{\xi \in \mathcal{L} : (\xi, \xi) = 0\}$. Then \mathcal{N} is a subspace of \mathcal{L} and

$$(\xi + \mathcal{N}, \xi + \mathcal{N}) = (\xi, \eta)$$

defines an inner product on $\mathcal{K}_0 = \mathcal{L}/\mathcal{N}$. Let \mathcal{K} be the completion of \mathcal{K}_0 . For $s \in \mathcal{G}$ and $h \in \mathcal{H}$ define

$$\xi_s h(t) = egin{cases} h & ext{if} & t = s \ 0 & ext{if} & t
eq s \ . \end{cases}$$

Then $X(s)h = \xi_s h + \mathscr{N}$ defines a bounded operator X(s) from \mathscr{H} into \mathscr{H} . A simple computation shows that $X(t)^*X(s) = K(t, s)$. This implies $|X(t) - X(s)|^2 \leq |K(t, t) - K(t, s)| + |K(s, s) - K(s, t)|$, so the continuity of the map $s \to X(s)$ follows from that of K.

References

1. G. D. Allen, An extension of Kolmogorov's theorem for continuous covariances, Proc. Amer. Math. Soc., **39** (1973), 214-216.

2. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.

3. D. K. Faddeev and V. N. Fadeeva, Computational Methods in Linear Algebra, Figmatgiz, Moscow, 1960; English transl., Freeman, San Francisco, Calif., 1963.

4. P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Mathematics, 7 (1971), 254-281.

5. M. A. Naimark, On a representation of additive operator set functions, Comptes Rendus (Doklady) Acad. Sci. USSR, **41** (1943), 359-361.

Received March 25, 1975 and in revised form November 4, 1975.

TEXAS A & M UNIVERSITY AND INDIANA UNIVERSITY

312