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AN INDIRECT SUFFICIENCY PROOF FOR
PROBLEMS WITH BOUNDED STATE VARIABLES

I. BERT RUSSAK

A set of sufficient conditions is obtained for problems
involving constraints of the form 4*(t,x)=0a =1, -+, m. The
method of proof is indirect. It is shown by essentially
strengthening the first and second order necessary results previ-
ously obtained by the author for problems of this type, that a
proper strong relative minimum is obtained.

1. Introduction. Consider the class of arcs

a:x'(1), p (1), b, t'=t=r'

i=1,--,N k=1,--,K o=1,---r
where' elements (¢, x(t), p(¢)) and b lie respectively in open sets R in txp
space and B in b space. The terms x' are called state variables while

the terms p* b° are called control variables and control parameters
respectively. We require these arcs to satisfy the constraints

(1-1) x'(t)=f(t,x(t), p(2)), i=1,-- N ae. in [t°1]
(1-2) ¢ (t,x(1)=0 a=1,--m [2%t']
(1-3) L(a)=0 y=1,---,p" L(a)=0 y=p'+1,--p
(1-4) x'(r)=X*(b) s=0,1

(1-5) where IL(a)=g,(b)+ J:: L,(t,x(t),p(t))dt y=1,--+p

and are interested in minimizing the functional

(1-6) I(a)=gu(b) + f Lo(t, x(1), p(t))dt.

Let C be the class of arcs described above with x(¢) absolutely

continuous, p(t), f(t,x(t),p(t)) and L,(t,x(t),p(t)) vy=0,1,---,p in-
tegrable on [¢%t']. It is desired to minimize I,(a) on the class C.

' Unless otherwise noted, the indices i, k, o, « will have the respective ranges i =1,---, N,
k=1,--K o=1,---;randa=1,--m

219



220 I. BERT RUSSAK

In [2] and [3] the author establishes first order necessary conditions
for this problem. By essentially strengthening those conditions, and
extending a technique devised originally by Hestenes and used by Pennisi
in [1], a set of sufficient conditions for a proper strong relative minimum
is obtained without the use of field theory and an invariant integral.

2. Assumptions. Using the problem defined above, the func-
tions will be assumed to possess the following continuity properties; the
functions ¢* will be class C* while the functions f’, X", g,, L,, Lo, and g,
will be of class C®. Also, an arc will be called admissible if it is in the
class C.

Next, define the functions’ ¢ = ¢+ ¢yaf a=1,---,m. These
functions act as derivatives of ¢* along admissible arcs. Also define the
set R, of points (txp) in R satisfying

(2-1) Yy =0
(2-2) ¢* =0 for all @ with ¢* =0 or ¢* =0 for all @ with ¢* =0.

We shall be concerned with a particular admissible arc a,
ay: x;(t), ps(t), 7, ==

and shall make some assumptions about the arc a,. In order to state
these we first make the following definitions:

The set $* is the set of ¢t such that ¢~ (¢, x,(¢)) =0.

For each ¢, the symbol I'(t) denotes the set of indices a such that
l/ja(tv xO(t)) = 0

We will have need to talk of the quantities z,(¢), u.(t), A,, K* where
z,(t) are of class C', u,(t) are absolutely continuous functions with
continuous derivatives i, (¢t)and K% A, (p = 1,-- -, p + N) are constants.

For each 1, the set A(t) is the set of « indices such that g, (t) # 0.

The functions ¥* and ¢° are defined as

3) o=y /[1+ @) b= /[1+ ()]

Our assumptions concerning a, are as follows:

(i)  po(t) is continuous in [¢° t'].

(i) For each t the set I'(t)— A(t) contains at most one index.

(iii) The matrix ($;-) has rank m along a,.

(iv) There exist the quantities z;(t), u.(t), K¢ A,
(p=1,--+,p+ N) as referred to above, satisfying

? For a function M (4, x, p, b) the notations M,:, M x, M,, M, will denote first partial derivatives
with respect to the indicated variable. Also repeated indices will be summed.
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4-1) A z0 with A, =0 if I,(a)<0 1=sy=p,
K= 0, /\pﬂ = K“([/:*(to)
L () =0 if ¢*(t)<0
te (1) = K> with u,(t9)=K* if (%<0

and also such that the functions u,(t) are nonincreasing nonnegative
functions which are constant on intervals where® ¢*(¢) <0. Notice that
this last statement means

(4-2) ﬁ fha ()02 (t)dt = 0.

Using the terms of (iv) define the functions

®) G(b)=2gub)*+ A,g,(b)+A,.Xb) y=1,---p
(6—1) H(t? X, D Z(t)7 ,LL([)) = Z,(t)fi —Lo— AyLy - /J“a(t)(ba
(6_2) G(t’ X, P Z([), /J'(t))E - H(t’ X, D, Z(t)’ /"L(t))_ j‘(t)xi

and the Weierstrass E function for G,

(7) Eo(t, x,p,q, 2 (1), u (1)) = G (t,x,q, z(t), u(t)) — G(t, x, p,z(t), u(1))
—(q* —p* )Gy (t, x, p, (), (1))

Then the following statements are true:
(va) The arc a, satisfies the transversality relation

(8) A6 +[z(t*)dX ]2 = 0

(where e.g. d9 means %,-(b,)db”) for arbitrary vectors db.
(vb) The relations

©) ;(=-H, i=H, Hyx=0
hold along a,. Note that (9) implies that

(10) Ge.=0 Gp=0

along ay.

* Henceforth unless otherwise stated, a function M(t, x,p, b) evaluated along a, at
(1, xo(t), po(t), bo) will be denoted by M(t) or if just a function of b, it will be denoted by M(b,) or just
M.
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(vc) There is a positive constant b and a neighborhood D, of a,
relative to R, such that*

(11)  Es(t, x,p, q, 2(t), (1)) + pha (£)9° (1, x)
Z b[EL(p, q) + max (ko (1)9° (1, x), | fa (1) (1, X, )]

and with E, as the E function for L,, also

(12) Es(t, x,p, q, 2 (t), w (1)) + i ()Y (1, x) Z b |E, (t,x,p,q)| ¥ =1, -, p

when (t,x,p) is in D,, (t,x,q) is in R, and ¢°(tx,p)=0 if
t.(t)#0. The function E,(p, q) is the E function for the function

(13) L(p)= (1+p*p*)

which is the integrand of the length integral. Thus

(14) E (p,q)=L(q)— L(p)—(¢" —p*)L,-(p)

which is the same as

EL(p,q)=L(q)-1—+L£%D

(vi) There is a neighborhood of a, in tx space and a positive
constant p such that the Lipschitz condition

(16) 1f(t,x,p)—f(t, z,q))| < pllx —z]+ |p—q [T

holds for all points (¢, x,p) and (¢, z, q) in that neighborhood.

We note that the majority of these assumptions about a, are either
just the necessary conditions for a solution to our problem or the
assumptions used in proving these necessary conditions as shown in [2]
and [3].

In particular, the only assumptions listed which do not come under
those headings’ are:

(a) the existence of u,(t) on S$¢ sets, and

(b) the assumptions (ii), (vc) and (vi).

* We shall often omit the argument ¢ when referring to the functions p, () and (. (t) of (4).
However we shall always understand the terms w, and g, to refer to those functions.

* A note soon to appear will modify the results of [3] to include the last stated property in (4-1)
as a necessary condition.
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3. Statement of the main result and definition of an
admissible variation. We next define what we shall mean by an
admissible variation of the arc a,.

A set of functions

17) da: &x'(1), Spk (1), 8b°, t’=t=t¢

with 6x(¢) absolutely continuous and 8p(t), 86x(¢) square integrable on
[°%¢'] will be called a variation of the arc a, and for any function
M(t, x, p, b) which possesses first partial derivatives along a, we call

(18) SM(t) = M, (£)8x' (t)+ M, (£)8p* (1) + My (1)5b°

the variation of M along a, due to the variation éda.
Next define the functionals of any arc a as:

Jv(a)zlv(a)» ‘Y=0’1""’p
(19) Jpwi(a)=x' ()~ X"(b)
} i=1,--- N,

Toonsi(@) = X(b)— x' (%)

and the variations of these functionals due to the variation da as:
J(ao, 8a) = 8g,(b,) + fﬂ oL, (t)dt vy=0,1,---,p

(20) Jpidao, 8a) = 6x'(t')— 8X"(b)

} i=1,---,N.
Jpelao, 8a) = 8X(by) — 6x'(t°)

Also let vy, be those indices 1 =y = p’ for which

(21) I,(a))<0 Y= Ve

Then, we know by (4) that

(22) A, =0.

Yk

With these definitions in mind, we call a variation admissible if the
following are true:

(23-1)  &x'(t)=56f'(¢) a.e. on [t%¢]
(23-2) &4 (t)=0 on S°
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23-3) Sy (tH)=0 if wp.(tH#0

(23-4) G (®)8¢(t)=0 ae. on [t°%¢t'] (a notsummed)
(23-5) &Y (t=0 if u,()#K*"

(23-6)  Ji(ay,6a)=0 if A,F#0 1=y=p’

(23-7)  Jfapba)=0 if A, =0 y#y 1=y=p’
(23-8)  J,(ay,8a)=0 p'<p=p+2N.

For each such admissible variation the second variation
(24) (a0, 8a) = [(2' (') X iZ0+ Goosr + KU 2udt) X2 X ) 8b b
+ ft: [Gidx8x) +2G 1px8x'8p* + G ,n,x8p"Sp*]dt
Lj=1,---,N o,T=1,-""r a=1,---m hk=1,--- K

(where ¥, G are the functions of (5) and (6-2) respectively, and K* are
the constants referred to in assumption (iv)) is well defined.
The Theorem to be proven in this paper is:

THEOREM 3.1. Let a, be an admissible arc which satisfies assump-
tions (i) through (vi) and suppose that J,(a,, 8a)>0 for every non-null
admissible variation. Then there is a neighborhood F of a, in txb space
such that the inequality I(a)> Iy(a,) holds for every admissible arc a in F
which is different from a,.

It is noted that [2] proves as a second order necessary condition that
Jas, 8a)=0 for all such admissible variations 8a as described
above®. Thus the hypotheses of the theorem is only a strengthened
necessary condition.

Henceforth unless otherwise stated, our arc a, will be assumed to
satisfy the conditions (i) through (vi) and we shall not explicitly state this
each time we refer to a,.

4. Convergent sequences of admissible arcs. We pro-
ceed in a manner similar to [1]. Consider a sequence’ {a,} of admissible
arcs which converges uniformly to a, in txb space.

¢ Actually in [2] the condition (23-5) is replaced by 8¢~ (¢°) = 0 if . (t°) # 0. However a note to
appear soon will extend that proof to the condition which we use.

7 Subscripts attached to the symbols x,p, b will denote association with an arc with that
subscript. Thus p,(¢) is the value of control along an arc a..
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Using the function L(p) defined in (13) we first define a quantity
which will act as part of the square of a norm in arc space. Let

25) K(aa) = [ [LGO)~ pe)-1)d

where p, p, are the respective controls along a, a,. Our first major result
is

THEOREM 4.1. If {ai} is a sequence of admissible arcs which
converges uniformly to a, in txb space and also satisfies lim sup, ... Io(a; ) =
Iy(a,), then lim, ... K (ai, a,) =0 and there is a subsequence {a.} of {a}
such that p, (t) converges to py(t) [a. unif.] on [¢° t'].

The proof of this theorem will be based on a number of definitions
and lemmas which we proceed to list. The first of these is:

LemMMA 4.1.  There exist functions P*(t,x) k = 1,- - -, K which are of
class C* with respect to x, C° in t and satisfy ¢°(t,x, P(t,x))— ¢°(¢t) =0,
a=1,--mt°st=t', |x — x,(t)| < £ for some positive constant ¢&. In
addition, P*(t, x,(t)) = p§(t) on [t t'].

Proof. The proof of this follows from the continuity properties of
% the definitions of ¢ and the use of Lemma 10.1 of [3].

Next with the functions P(t,x) of Lemma 4.1 we shall be able to
break up the functionals of our problem in a convenient manner.

As a first example of this, we consider the functional J;(a) defined
by:

(26-1)  Jr(a)=[z' ()X ()5 + go(b) + A,g, (b) + f G(t, x, p)dt.

Notice that by (1-5), (1-6), (6-1), and (6-2) we have (with arguments
along a), that

6D I@=J(@) =A@ = [ e 06" (6 xp)de
Next, we write:

(27-1) Ji(a) = [z (") X" (bo)}iZ0 + 8o(bo) + A,8, (bo)
[z () X520+ gow + A8 e [b7 — bT]

+ f [G(t, x, P)+[p* — P*]G, (¢, x, P)]dL.
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Q1-)EHa)= || Eoltx P.p)ds

= f [G(t,x,p)— G(t,x, P)—[p* — P*]G,+(t, x, P)]dt

(27-3)B%(a) = z'(t*)[X*(b) — X*(bo) — X-[b” — b5]};=5+ go(b) + A,g, (b)
- gO(bO) - /\vgv(bo) - [gOb" + )‘vg yb"] [ba - bg]

where: (i) all derivatives with respect to b are at b,; (ii) the arguments
x, p, P,b are evaluated along a with P = P(t,x) and (iii) the functions
E;, G are the function of (6-2), (7) where for conciseness of notation we
have deleted the arguments z(¢), u(¢) but understand them to still be
present. This convention in writing the arguments of E;, G will be used
throughout this paper.

It is convenient here also to define another functional of an arc a.

8) Er(@) = Et(a) + [ (00"t x)d

where E% is from (27-2), u.(t) are the derivatives appearing in the
assumption (iv) and the arguments ¢, x are on a. With these definitions,
we see that

(29) Jo(a)=J%a)+ B*(a)+ E*(a).

Next, let V(¢, x, p) be any function of class C*>. Then we make the
following definitions:
(i) For an arc a set

V(a) = f V(i x,p)di

(where the arguments are along a) and
(i) we shall say that V is E; dominated near a, on R, if there is a
positive constant ¢ and a neighborhood R, of a, relative to R, such that

(30"'1) EG(t’ X, P Cl)+ F'La (t)l!}a(t’ x)é 4 IEV(t? X, P Q)[

whenever £, x,p isin Ry, t, x,q isin Ry, and ¢°(t, x, p) = 0 if 1, (¢) # 0 and
where

(30"2) EV(t7 X, P CI) = V(t7 X, q)— V(t’ X, p)—(pk —qk)vpk(t’ X,p)

We shall further restrict the neighborhood R, and constant ¢ if necessary
so that
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(1) Es(t,x,p,q)* ()Y (,x)Z cEL(p — P(, x),  — P(1,x))
(where E, is the function introduced in (14)) whenever ¢, x, p is in R, and
t,x,q is in Ry and ¢°(t, x,p)=0 if w,(t)#0. The proof of this is

analagous to [1] Page 30, using our assumption (vc).
We next prove:

LEMMA 4.2. Given €' >0 then there is a neighborhood ¥ of a, in txb
space such that

(32) —€'+(1—€")Er(a)<I(a)-— INao)
for each admissible arc a in F.

Proof. By the definition of the functions ¢* we see that along any
admissible arc a

1 1 d o1 )
(3) [ matedr = [ L tpprar = [ ppear

with arguments along® a. Then by (26-2), (29), (28) and (33), we have for
a, an admissable arc that

(B4) I(a)=Jt(a)+ pa () (t°, x(t°)) + Er(a) + BH(a) — AL (a)
= Mo (tl)"pa (tl’ X (tl))
(where x(t°), x(¢') are along a).

Then with A denoting’ the change in a quantity evaluated from a, to
a, so that e.g.

(35) Al(a) = Iy(a) - I(a)

we have

(36)AL(a) = AT¥a) + . (DAY= (% x (°)) + Er(a) + B%(a)— A, AL (a)
— pa (t)AY (1, x(2))

where in (36) we have recognized, because of (4-2) together with the

¢ We shall often omit arguments in this fashion whenever the context makes clear what those
arguments are.

° Henceforth we shall use this notation frequently, thus as another example Ax, (t) will mean
x, (1) — xo(t) where x,(t) is the value of state on an arc a,.
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definition of E% in (27-2) and the construction of the functions P of
Lemma 4.1, that Er(a,) =0 and also, by (27+3), that B¥(a,) =0.
Now in (31) set p* = P* so that

(37) c[L(g—P(tx))—1]=cE.(0,q9 — P(t,x)) = Es(t, x, P(t,x),q)

+ pa ()Y (1, x)
which is true for ¢, x in some neighborhood % (in tx space) reduced if
necessary from the projection of R, of (31) and also for ¢, x,q in R,.

Next with p(t) having the value associated with the arc a, set q equal
to p(t) so that we get

(38)  [p()=P(tx)| < L(p(t)~ P(t,x))

=c ' [1+Es(t,x, P(t,x), p(t)) + o ()= (2, x)]
for t,x in the neighborhood % of (37), where in (38) we have increased
¢! to be greater than 1 if it was not already so.

Now consider the integral part of AJ%(a), that is the terms

(39) f!" [G(t, x, P(t,x))— G(t)+ (p* — P*(t, x))G,«(t, x, P(t,x))]dt

where x, p are x(t), p(t) of a. Since G satisfies (10), then we can find a
neighborhood & of a, in tx space such that

(40) |G (t,x, P(t,x))| < €

for ¢, x in %. Then by (38) and (40) we have with & as the intersection of
% and % that if a is in F

(41) H (p* = P*(t, x))G,<(t, x, P(t, x))dt| < ec”'[t'—t°+ Er(a)].

Also with & small enough we will have
(42) IG(t,x, P(t,x)—G(t)| <€

for t,x in &.
Thus by (41) and (42) we have that for a an admissible arc in &, then

(43) f.‘ [G(t,x, P(t,x))— G(t)+ (p* — P*(t, x))G,~(¢t, x, P(t, x))]dt

<e[t'— 1)+ ec'[t'—1t°+ Er(a)].
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Now except for the quantities A,AIL, and Er(a), all other terms on the
right hand side of (36) depend solely on txb values and vanish on a,. Then
by considering & as a neighborhood in txb space and making it small
enough, we can make the sum of all of these quantities less than € and
then by (43) and (37) achieve for an admissible arc a in %,

(44)  |AL(a)+ A, AL(a)— Er(a)| <e[t'— "+ 1]+ ec'[t' — t*+ Er(a)].
Inequality (44) implies that

(45) Er(a)— A AL(a)—€[t'—t"+ 1] —ec”'[t' = t°+ Er(a)] < Ala).

Now by the admissibility of a and the nonnegativity of A, (see (4)), we see
that

(46) ~AAL(a)=0

then (46) implies that for a admissible and in %

47) — €[+ =)+ 1]+ (1 - ec)Er(a) < Alya).
Now select € such that

(48) e[l+c (' -t)+1]<e’ and ec'<€’

so that our lemma is proven.
Now with V(a) as the functional defined below (29) we prove:

Lemma 4.3. If V(t,x,p) satisfies
(49) Ve (2, xo(t), po(2)) =0 t'=r=r'

and if Vis Er dominated near a, on R, with constant c, then for each €' >0
there is a neighborhood I of a, in tx space such that

|V(a)— V(ay)| < €'+ (c'+€')Er(a).

Proof. Set
(50) V*(a) = ﬁ [V(t,x,P(t, x))+ (p* — P*(t,x)) V,« (1, x, P(t, x))]dt

and

1) E(a) = f Ev(t, x, P(t, x), p)dt

t
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where all arguments are along a and Ey is the function of (30-2). Then

(52) V(a)= V*(a)+ E(a)
and

(53) AV(a)=AV*a)+ E%(a).

Now by reasoning entirely analagous to that used in obtaining (43),
then for any € >0 we can find a neighborhood J in tx space about a,
such that for any admissible arc a in J we have

(54) [AV*(a)| < e[t'—t]+ec[t' = t°+ Er(a)].

Then by the E; domination of V near a,, we have by reducing ¥ if
necessary that

(55) [AV(a)| = [AV*(a)| + |EV(a)
< e[t'—t]+ec[t'—t°+ Er(a)]+ ¢ 'Er(a)
=e(1+cH[t' =11+ c'(A+ €)Er(a).

Now select € such that
(56) e(l+cH[t'—1t)1<e€e and ec'<é€

Then the lemma is proven.
We next prove:

LEmMA 4.4. Let V satisfy the hypotheses of Lemma 4.3. Then
given € <0, there exists 7 >0 and a neighborhood & of a, in txb space such
that if a is admissible and in ¥ and satisfies

(57 I(a) = I(ag)+
then
(58) [V(a)— V(ay)| < e.

Proof. Assume the contrary, that is that there is.a sequence {a,} of
admissible arcs which converge to a, uniformly in txb space such that

(59) Ia)—I(a))=r" and |V(a)— V(a)| > e

By Lemma 4.2 given €' >0, then if r is large enough so that a, is in the
neighborhood # of that lemma, then
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(60) - 6, + (1 - 6')E7(a,) < Ig(a,») - Io(ao) é r-l.

Also, by Lemma 4.3, for r large enough so that a, is in the
neighborhood J of that lemma

(61)| V(a,)— V(ap)| < €'+ (c'+ €)Er(a,)<e'+(c'+€') L———)'l_lfj :

Since this holds for all large r and since €’ can be made arbitrarily small,
this gives a contradiction to the second part of (59) thus proving the
Lemma.

With the help of these last three Lemmas, we can prove Theorem 4.1
as follows:
Proof. The integral of K(a,, a,) defined in (25) involves the function

I:(t, x,p)= L(p — po(t)) — 1. This function is Er dominated near a, on R,
for the same reasons that (31) was true and furthermore satisfies

(62) '%-E%R)= 0 along a,

so that L satisfies the hypothesis of Lemma 4.4. Also, we note that
(63) L(t,x, pu()) = L(po(t) — po(£)) — 1 = 0.

Then by Lemma 4.4 we have

{64) lim K(a, a,)=0

proving the first statement of Theorem 4.1.
Now by Holder’s Inequality

6 ([ 1p-plar] = [ [ 106~ =1L - po+ 11 ]

= K(a, a,) j " [L(p, - po)+ 1)
= K(a, a))[2(¢' — t°) + K(a, a,)].

where p,, po mean p evaluated respectively on a,, ao. Then by (64) we see
that p, converges to p, [mean] which by standard theorems implies the
existence of a subsequence {a,} satisfying the second statement of
Theorem 4.1 and proving the theorem.
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5. Definition of the functions 7, «, . Now suppose
that there is a sequence {a,} of admissible arcs converging to a,
uniformly in txb space with Iy(a,) = I;(a,). Then by Theorem 4.1, we may
replace this seqeunce by a subsequence which we again call {a,} such that
with control p, on a,

(66) lim p, = p, [a. unif.] on [£9%1¢'].
Also, the quantities

b, — by|, max |Ax, ()]

©7) . o
| dade a1l

all converge in bounded manner to zero as r — » where: (i) ¥°, ¢* are
the functions introduced in (3), (ii) the subscript r, as usual denotes values
on the arc a, (iii) for the convergence of the integrals in (67) to zero we
have used the fact that

(68) J b (t)dt =0 and f b (1)dt =0

0
t

because of the properties of the functions g, (¢).
Thus if we define:

©) K=K rmax] [ adea |16l

+

b, — by[* + max |Ax,(t)[
[l”‘t']

where /%, ¢° are evaluated along a,, then by Theorem 4.1 and the above
statements, we have that

(70) lim k, = 0.

r—oc

Now define the vector functions

' Henceforth unless otherwise specified, all references to arcs @, will mean members of
subsequences (as defined in the following pages) of the sequence introduced here.
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(71-1) nt)=Axi(t)/k, ak(t)y=Apk(t)/k, 7=Ab7/k,
and

(71-2) h.(t) =1+ L(p,(t) = po(1)) = k7| a. () /(L (. (£) =~ po(t)) = 1)

the second equality for h, following from the above definitions. Then by
(71-2)

™ [

which implies by the definition of k, that

f J——J-dt<1

o, Plhdt = f " [L(p, — po)— 1)/k2dt = K(a, ap)/k?

(73) B+ max [n, [

and hence in particular that the integral in (73) is uniformly bounded with
respect to r.
We next prove:

LEMMA 5.1. The integrals of h,(t) are absolutely continuous uni-
formly with respect to r.

Proof. This follows because h,(¢) differs by 2 from the integrand of
K(a, ay) and lim,_..K(a, a,) = 0.

LemMMA 5.2. The integrals f a,dt are absolutely continuous uni-
M

formly with respect to r.

Proof. By Holder’s Inequality and (73) we have that

2
= f |a, /h.dt - f hdt = f h.dt
M M M

and by Lemma 5.1 this last integral is uniformly absolutely continuous.

(74) UM wdt

6. Existence of the variation 7,. We next establish a
number of results concerning the convergence of 7, «, B. With {a}
always as the sequence of arcs considered above we prove:

THEOREM 6.1. With B, defined in (71-1) then there exists a vector B,
and a subsequence of arcs {a,} which we again call {a,} such that with
{B.} as the associated values, then B, converges to .
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Proof. This follows from the definitions of k, and B, and the
Bolzano Weierstrass Theorem, applied to the original sequence {B,}.

THEOREM 6.2. There exists a function a, in &,[t°,t'] and a subse-
quence of arcs {a, } which we again call {a,} such that with {a,} (defined in
(71-1)) as the associated quantities, then for each bounded integrable
function g

(75) lim L gadt = fo ga,dt

r—o

and if s is a set on which p, converges uniformly to p, and g is square
integrable then

r—w®

(76) lim J' ga,dt = f gadt.

Proof. By the uniform boundedness of the integral in (73), there is a
subsequence {a, } which we again call {a,} and a function &, in L,[t°, t']
such that for every square integrable function g and any measurable set s.

(77) lim f %Z’ - f g@odi.

r—

Now let s be [t°, '] if g is bounded and integrable while if g is only
square integrable, let s be a set on which p, converges uniformly to
po- Then we can write

(78) fga,dt=\/§f g%mfg(\/ﬁ,—\/i)%dt

and by Hoélder’s Inequality together with (73)

a, Pdt
h,

(79) U )g(\/ﬁ,-\/i)%‘dt]zgjs gZ(\/E—\/E)Zdt.f

= f g*(Vh,— V2ydt.

Since h,(t)=2, we have
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(80) ogfo V- V2)dt = [ Vi~ V3 (VE+ V2)dt

=f0 (h,—2)dt=f0 [L(p, — po)—1]dt = K(a,,a))—0 as r—> o

so that
81) tim [ (VA V2)de =
Also since

(82) j (Vh~V2)ydi = f (h, = 2)dt =2V2 - f (Vh,~V2)dt
then

(83) lim (\/_ V2)dt =

r—o

Now let g be a bounded integrable function and let s be [t°, t'] in the
statements, (78) and (79). Then by (79), (83) and the boundedness of g
we see that

(84) nmf g(Vh,— \/§)sz

so that by using (77), (78) and defining a, = V24, we have

r—w

(85) lim | gadt=1lim V2 g—-——dt V2 f gaodt = f gadt

rox Jo r—x

proving the first statement of the Theorem.

In order to prove the second statement let g be in £,[¢° t'] and let s
be a set on which p, converges to p, uniformly. Then our statements
(78) and (79) hold also in this case, and on s we have

lim (h, —2)=0 uniformly on s

so that (84) and (85) hold also in this case, proving the Theorem.
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Now with {a,} as the sequence of arcs yielded by the previous two
theorems and with 7, (¢) defined in (71-1) as the associated quantities, we
next prove:

THEOREM 6.3. There exists a function n(t) on [t° t'] with deriva-
tive 1o(t) in L[t t'] and a subsequence of arcs {a, } which we again call
{a,} such that n,(t) converges to n(t) uniformly on [t°,t'). Furthermore,
if g is a bounded integrable function on [t° t'], we have

(86) lim f , gndt = J’ . 8Modt

r—wo

while if g is in £y[t° t'] and if s is a set on which p, converges to p,
uniformly, then

(87) lim f gndt = f gnodt
where 7, is the derivative of 7,.
Proof. We note that

(88) (1) = [%.(1) = Xo(O)/k, = [ f (1, x,(2), p.(1)) = f (D) K.

Now by assumption (vi), we have

(89) |1 (O] = p’[In. (D + e (1)]
so that
(90) [n.(O)F > p7 [0 () — | (D)}

Then by dividing (90) by h, and integrating and then adding that
inequality to (73) we get

O)  premax [nfos [ i<+ [ Frh
[ I £©

Also by the definitions of k, and h, we see that

(92) max |n,[*/h, =3
(%Y

so that
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!!
(93) j " Prhde =3[0 = 10
t

and then by (91), the first integral there is uniformly bounded with
respect to r, that is

(94) f [, Plhdt =T uniformly with respect to r.

Then by using an argument similar to that used in the previous Theorem,
there exists a function 7,(t) on %,[t° t'] such that the conclusions of the
present theorem which concern the function 7, are true.

In order now to prove the remaining item of our Theorem, set

95) ni(t) = ‘MB;HJ“ nhdt ==t i=1,---,N

where X' are the functions of (1-4), B, is the vector of Theorem 6.1, and
i are evaluated on a,.
By Holder’s Inequality together with (94) we have for any measura-
ble set M

(96) [ fM [ﬁ,!dt}z < jM 9, Plhde - jM hd

éf 1, */h.dt [ h,dtgl“f h,dt.
M M

0
t

Then by the uniform absolute continuity of the integrals of.h, (Lemma
5.1) we sec that the functions

97) n;(t)zk,“‘Ax‘,(r”)wtf“ ndt '=t=t'

are absolutely continuous uniformly with respect to r.
Also by (86) which we’ve already proven,

t

(98) lim ndt = f nodt '=t=1"

r—x o
1

Furthermore by Theorem 4.3 and the admissibility of our arcs we have
that

i0
(99) 1'1_1:13 Ax‘,(t“)/k, = l,‘_r,E A_)Zbgb_') Bo= leO"Bg
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Thus by (97) through (99), the definition (95) and the uniform absolute
continuity of n(t) we see that

(100) lim n(t) = no(t) uniformly on [f°¢]

thus proving the theorem.
We have thus proven that if we define 7, as the variation

(101) No: Mo(t) aot) Bo °’=t=t'
and 7, as the vector functions

(102) n.: M, (¢) a,(t) B. t'=t=t
then 7, converges to n, in the sense that

B, converges to B

71,(t) converges uniformly to n(t)
} '=st=t.
a,(t) converges [a. unif.] to a(r)

7. Additional properties of the variation m,. Now,
using the functions P(z, x) of Lemma 4.1, we recall that by our conven-
tion P*(t)= P“(t,xo(t)) = po(t) the value of the control on @, For
convenience, let us denote this as Pj(t). Thus P§(t) = pg(t). Next denote
by P,(t) the values of P along the arc (a,), i.e.,

(103) Pi(t)=P*(t, x.(1)) k=1,-- K t'=r=r

and also define the vector functions

108 o =EOZBO o = b x)mic)

Then we state the following results which are proven in an analagous
manner to Lemmas 8.1 through 8.4 of [1] except that derivatives of state
functions are replaced by controls.

LeEmMMA 7.1. The following relations are true:

(105-1) o (t, x, P,)= ¢ (t, xo, Po) a=1m

(where ¢° are the functions introduced above (2))
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(105-2) lim P,(t) = Po(t) = po(t) uniformly on [ t']
(105-3)  lim p,(t)= pu(r) uniformly on [¢°, 1],

If N¥(t) are continuous functions which converge uniformly to Ni(t)
on [t%¢'] and if g is square integrable then

(106-1) tim [ NYa-phydr = [ Niat=plyd
for every measurable set s in [¢° ¢'] and

(106-2) tim [ gl pydi = [ glat- ptyar

for every measurable set s in [¢°, ¢t'] upon which p,(t) converges uniformly
to po(t). Furthermore if W(t, x, p) is any function of class C' near a,
then

(107) l'i_g} k:l[W(t, Xr Pr) - w(ty Xo, PO)] = CWX'T'(; + kapg

uniformly on [¢°, ¢t].
Finally with the functions ¢* of (105-1) we have

(108) dino+ dops=0 a=1,---,m '=r=-1"

Now using the functions P(t,x) of Lemma 4.1 we extend to any
measurable set s in [¢° t'], the technique used to break up functionals in
(50) as follows:

Let ¥(t,x,p) be a function of class C’ near a, and a an arc and
define

109-1)  V(as)= f Vs, x, p)dt
(109-2)  ¥*(a5)= f (V& x, P)+ (p* — P*)YVou (& x, P)]dt

(109-3)  E%(a,s)= f Ey(t,x, P, p)dt.

Also, for a variation n of the arc a,
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n: n(t) a(t) B ==t

define
(109-4) Vi, s)= f [Vin'+ Vyrak]dt

where: (i) all values of x, p, P in (109-1) through (109-3) are along the arc
a, (ii) the function E, in (109-3) is the Weierstrass E function for ¥, and
(iii) the arguments of ¥, ¥« in (109-4) are from a,. Then as in (52) we
see that

(110) V(a,s)= V*(a,s)+ Ei{a,s).
and, in analagous manner to Lemma 9.1 of [1] we have

LEmmAa 7.2. If V(t,x,p) is of class C' near a,, then
(111) lim k;'[V*(a, s)— V*(ao, s)] = Vi(mo, ).

8. Evaluation of second order terms. Our ultimate pur-
pose now is to prove the admissibility of the variation 7, defined in (101)
and constructed in Theorems 4.3 through 5.1. As a first step in this
procedure, we evaluate certain second order terms.

Continuing with our sequence {a,}, then dividing (36) by k?, evalua-
ting the expression on this sequence, moving most of the terms to the left
side and taking superior limits, we obtain

(112) limsup k’[ - AJ%(a,) — pa (1°)A (2%, x, (1°))]
+limsup k.’[~ B%(a,)] +limsup k,*A,AL(a,)

+limsup k2w, (¢)AY= (¢!, x,(t') = lim sup k;?Er(a,).

r—o

In order to establish the admissibility of n,, we shall have to deal
with the separate terms of (112). The first term to come under consider-
ation is the integral part of AJ%(a,) which we denote by the symbol
AJ%(a). Thus

(113-1)  AJ%a,) = f [G(t,x, P)— G(t)+ (p* — P¥)G,(t,x, P,)]dt.
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With no(t), ao(t) as quantities associated with the variation 1, and p,
as the terms of (104) and finally with ws (7, @) denoting the quadratic
form

N

L . ', ] = 1, S
(113—2)0)6(7’07 aO)E GX'X’n6n6+ 2Gxipkn(‘)a(’)‘+ GP"Pkaga(’" b =1,---. K

h, k
where the partial derivatives are formed along a,, we next prove:

LemmMma 8.1.

. 1
(114)lim k78,7%@) =3 [ [0 (10, 20) = Gyt = ply (= plyld
Lj=1,--- N hyk=1,--- K.
Proof. By Taylor’s Theorem and the definitions of P, p,

Gt x,P)—G@)+(p— PHYG {t,x,P,)
k:

_ k[Gn:+ Gypr +(a/ = pr)Gpr]
- 2

(115)

r

+ Kilat = p)[Guypt+ G
k2

K2 a o iaa e
5 [Geommi +2Gepmip’ + Gprprp'ip']

+ P

where:_(i) G., G,» are evaluated on the arc a, and (ii) G, é,spk, G,,h,,u,
G, G, are all evaluated at intermediate points on the line segment

(t, xo+ 0Ax, P,+ 0AP,) 0<o<l1.

Now using (10) together with Lemma 7.1 and the uniform con-
vergence of x, to x, and 7, to n,on [¢°, t'] we see by integrating (115) that

. 1 (" o )
(116) lim kA ¥a,) =1 f " [Guumint +2G.pmiph + Gppploh

+2(as — Pg)(Gp"p"pg + ka,‘mé)]dt

where all partial derivatives are evaluated along a,. Combining terms
this becomes
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. B 11" o )
(17) tim k280%@) =5 [ [Geumind +2Gumia = Goypll
+2G,mrpiacs]dt.

Now adding and subtracting the terms G,»+ata§ in the above integrand
produces (114) and the lemma is proven.

Next, by using the definition of AJ%(a,) together with Lemma 8.1,
the transversality relation (8) and the relation for A,.; in (4-1) we get

(118) lim sup k[~ AJ%(a,) = p. (1)AG* (%, x,(1°))]
= lim sup k[K“Ys()XPAbT — pa (1A (1, %, (1))
-1 [ " (w0 (0, @)= Gy el — pB) (k= ph))d.
As a next step we prove
LEMMA 8.2.
(119)  limsup k(K e(t)XPAbT — p, (1)Ah* (1%, x,(1)]
= lirrrl_)sxup k77— (e (%) — K=Y 2(t)Ax (t")]
—% [Kga(t)X %+ KUo(1)) XS X1 B3B3
=5 (e ()= KWL ()i (1)

Proof. By Taylor’s Theorem and the admissibility of our arcs, we
have

(120-1) £Ab7 = Axi(1") - 3 XiheAbzAb;
and
(120-2)  Ag (2%, x, (%) = P 2(t)AxI (1) +% beoAxi()AxI(1°)

where X%, ¢, are intermediate values on the line segments
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bo+ 0Ab, and 1% x(t)+ 0Ax, (1) 0<6<I1.
Then by using (120) and combining terms, we have that

K is(t)XAD T — o (()AY (%, %, (1) = — (1 (£°) — K* ) 3(t*)Ax1(2°)
(121)
— 2 KoUK AbTADT = 1, ()AL (AR (1Y),

Now by the admissibility of our arcs, the terms,
(122) Axi(t°) AX*(b,)

(where AX™(b,) means X*(b,) — X*(b,)) are equal, so that we may add to
and subtract from (121) the respective quantities

(123) 1Kﬂ¢/}:.,,Ax:(t°)Ax{(t°) and lK“":i,u«AX""(b,)AX")(b,)

(3]
[\S)

(where 2., here means evaluation at the same point as for that term in
(121)) to get

K Yi(t)X5AbT = o (1)AY (1, x,(£°)) = = (a (1°) = K*)Y3(t)Ax; (1)
(124) =1 Koun ()Xt Abs by — 3 KedAX (b)AX(b,)
= 5 (1)~ K2 x (107,

Now, dividing by k?, taking superior limits and using the definition of 8,
yields (119) proving the lemma.

The next term of (112) which we consider is the -one involving
B*(a,). We prove:

LEMMA 8.3.

(125)  lim k?B¥(a,) = 5 [(2.(t)X 5420+ o+ A,8 e BIBE.

D

Proof. By Taylor’s Theorem and (27-3) we have

1 5 1, = ~
(126) B%(a,)= 3 ()X 5520+ Goww T A8 ] ADSADT a7 =1,--- K
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where X-,-, € 0noes & wawe iNdicate intermediate values on the line segment
bo+6Ab, 0< 6 <1. By dividing by k? taking limits and using the
definition of B, in (101) we obtain (125).

Now by using (118) and (112) together with Lemmas 8.2 and 8.3 we
obtain

(127) - [(Z l (ts)X;:°b’ jzé + ngz,f+ Ayg YbOBT + K“l/f:‘(tO)XZ(Lb*

DN —

+ K (1) X - X P BB

1
31, [wc (Mo, a0) = Gprpe (g — po)(a§ — ps)]dt

=3 (e (1) = KWzl )mi (1) mi (1)
+lim sup k7= (s, (1) = K )02()Ax! (1)

+ lin,l,iuP k7?A,AL(a,)+ lirxrl_)sxup k2w, (tHAY (2, x. (1Y)

= lim sup k;’Er(a,).

Referring to (24) and (5) for the definition of J,(a,, 1) and 4 we see
that (127) gives

(128) =5 Jawm) + 5 [ G (el = pb)(ah ~ o)
= 3 () = KW i ()i (1)
+ lin,lqsxup k720 = (pa (1°) = K (t%)Ax ()]
+lim sup k;?A,AL/(a,)+ lim sup k72 (EHAY= (e, x,.(t")

r—x r—

= lim sup k;’Er(a,).

r—o

Using the inequality (128) we now obtain an important relation which will
aid us in proving the admissibility of the variation 7,.

LEMMA 8.4.

(129) lim k;'Er(a,) = 0.
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Proof. The first three terms in (128) are bounded quantities. Also
by the last item in (4-1) we have that

(130) p()=K* and p,()=Ke* if = (t°)<0.

Then by (130) together with the admissibility of our arcs which implies
that for r large enough

(131) YA ()=0 if ¥ (t)=0
we have for each « that
— (a (9= K*)Y2(t)Ax (1) =0 (@ not summed).

Then by summing, multiplying by k;? and taking the superior limit we get
(132) limsup k[ — (n.(t°) — K*)¢a(t)Axi(t°)] =0.

Furthermore by the definition (4-1) of the terms A, together with the
admissibility of our arcs we see also that

(133) lim sup k;?°A,AL(a,)=0

r—o

and by the properties of u,(t) as listed in (4) and again the admissibility
of our arcs, also that

(134) lim sup k;?u, (tHAY(t', x,(t") =0.

Thus all terms on the left hand side of (128) are either bounded or non
positive. Putting this statement together with the nonnegativity of
E:(a,) (which follows for large enough r by (11)), then we get that

(135) lim sup k;*E(a,) is finite

thus proving (129) and the lemma.

By using Lemma 8.4 together with the break-up of functionals as in
(109), we are now able to prove the analogue of Lemma 9.4 of [1] which
we just state, since the proof is directly analagous to that used in [1].

Lemma 8.5. If V'(t,x,p) is of class C' near a, and is E; dominated
near a, then
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(136) lim k;'[V (a, s) = V' (a0, $)] = Vi(no, 5).

by using (129) together with other observations obtained from (128), we are
now in position to establish most of the requirements for admissibility of the
variation 1.

9. Admissibility of the variation 7).

LemMA 9.1. The variation m, of (101) satisfies the conditions
(23-3), (23-5), (23-6), (23-7), (23-8), which are respectively

137-1) M) =0 if p.(t)#0
(137-2) Pe(')ns (1) =0 if p.(t°)# K"
(137-3) Jan,n0)=0 if A#0 1=y=p’
(137-4)  Jfa,n)=0 if A, =0 y£y 1sy=p’
(137-5) Ja,m)=0 p'<p=p+2N
where vy, are the indices of (22).
Proof. According to the statements used in proving Lemma 8.4

concerning the boundedness or the signs of terms in (128) we see in
particular that

(138-1) limsup k;*u.(tHAY*(t', x,. (1)) is finite

(138-2) limsup k;7[ — (ma (1) — K*)¢Y3(t)Axi(t°)] is finite
and
(138-3) limsup k;*A,AL(a,) is finite.

Now by an application of Taylor’s Theorem together with the
convergence of 7, to 1, we see that for each «

(139-Dlim k"o (1YAY" (1, x,(11) = e (1YYt )0 (¢') ( not summed).

Thus this limit exists for each «. By summing on a, we have that the
sum of the limits exists and that by (138-1) this sum must vanish, that is

(139-2)  0=lim k;"u. (DAY= (1", %, (1Y) = pa (Y20 (1).
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However by reasoning as used in obtaining (134), for each « index the
product of the terms on the left side of (139-1) and hence also on the right
side, is nonpositive. Putting this statement together with (139-2) estab-
lishes (137-1).

Next, we see by (15) that, L, is Er dominated near a, so that by using
Lemma 8.5 with ¥ = L, we see that for each y

(140)  tim k'L AL (@) =\, [ 8,85 + [ [Loumi+ Loat]at]

= A J (a0, Mo) (y not summed)

where the last equality follows from (20). Thus this limit exists, for each
y. By summing on y and using (139-3) we see that the sum of the limits
exists and must vanish, that is

(141) 0= lim k;'A, AL (@) = AJ (a0, 1)

By similar statements as below (139-2), we see that for each y
(142) AJ(ag, me) =0 (y not summed).

Then by using the properties of the terms A, together with (140) and the
admissibility of our arcs we get that (137-3) and (137-4) and (137-5) hold
for p'<p =p. The remainder of (137-5) follows from the admissibility
of our arcs and the definition (20).

Finally we note that the limit

(43)lim k[ = (o (1°) = K*)()Ax; ()] = = (pa (°) = K=Yt (1°)

certainly exists and then by steps similar to the above, but using (138-2),
we get that (137-2) and hence the lemma is proven.

In order to establish the admissibility of the variation 7,, it remains
only to prove that properties (23-1), (23-2) and (23-4) are satisfied. The
property (23-2) follows from Taylor’s Theorem together with the admis-
sibility of our arcs so that

(144) Y(tni(t)=0 on S° a=1,--,m.
The property (23-4) is proven in the following lemma:

LEMMA 9.2. The variation n, satisfies condition (23-4).
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Proof. By the properties" of i, (t) and by (144) we see that for each
a

(145)  p.(DYs(t)ms(t)=0 ’=str=t (a not summed)

so that we will prove the desired result if we prove that

(146) [ dewzomia =o

0

Now, using the functions ¢* of (3), the definition of k, in (69) and the
admissibility of our arcs we see that

147) 0=k} f (b x)de = k| (4 x)de
l‘CI s>

1

=k;! f pgst, x)dt = k| g (tx)dt <k;'ki=k,.
s °
Thus

(148) hg_; k7| e (2 x,)dt = 0.

Now by the properties of i,, we also have for each «
(149) e (DY (t)=0 =t=1t (a not summed)

so that we may add this to (148) and then get by Taylor’s Theorem
150)  0=tim k7' [ g (6 x )t =tim k[ w6 m) - 0 o)l

=tim [ adenidr = [ ppsmia

where ¢ indicates evaluation on the line segment 1, xo(t)+ 6Ax,(t)
0< 6 <1 and where the last equality follows from the uniform con-
vergence of x, to x, and 7, to n,. Thus the lemma is proven.

The last required property for the admissibility of 7, is established in
the following lemma:

"' See the remarks below (4).
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LemMMA 9.3. With f as the functions of (1-1), then the variation m,
with quantities 1(t), a(t) satisfies condition (23-1), that is

(151) 06 (1) = fult)no(t) + fo(t)af(t) ae. on [1°1]
Proof. By Taylor’s Theorem together with our A convention
(152) x,(t) = %o(2) = fu ()Axi(t) + fx ()ApE(t) + R,(t) on [t°1]

where
1

(153) R,(t)sf (1= 0)[fuwAxiAxi +2fox AxiApk + for,c Ap" Ap*1d8
0

i,j=1,--- N, hk=1,---,K
with the arguments of the f partials being at
(154) (1, xo+ 0Ax, po+ 0Ap,).

Now let s be a set on which p, converges uniformly to p,, then
(155) f ‘B—'ég'dt ge,f [Axini| + [Axia| +|Aptat|]dt

where € is a constant which bounds the mixed partials of f in the
integrand of (153) and exists since x, converges uniformly to x, and p,
converges to p, uniformly on s.

By Lemma 5.2 the integrals f a,dt are uniformly (with respect to r)

bounded. Then by using this fact together with: (i) the uniform con-
vergence of x, to x,, and 7, to 7, (ii) the uniform convergence of p, to p,
on s and (iii) the fact that lim,_.€, =0, we see that

(156) lim f B%Q dt =0.

Thus by (139) and (152) we obtain
(157) hg.}f nidt = lx_rgf [fimi+ fiaX]dt.

Now by Theorem 6.2 and 6.3 together with (157) we have
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(as9) [ wide=tim [ aiae=tim [ [fimi+ firatla

= [ fimi + foat )

so that on sets s upon which p, converges uniformly to p,, we have

(159) f Nodt = f [fomd + frrag]dt.

Since p, converges [a.unif.] to p, and (159) holds on each such set where
this convergence is uniform then for any set M

(160) | disar = [ 1fimit fratia

and the Theorem is proven.
Thus by Lemmas 9.1 through 9.3 together with (144) we see that the
variation 7, is admissible.

10. Proof of Theorem 3.1. We are now in position to prove
Theorem 3.1 as follows:

THEOREM 10.1. If the following two inequalities are true, then
Theorem 3.1 is true.

limsup kEr(@) 25 [ Gyl —pb)(ab = ph)dt bk =1, K.

r—o

0 = lim sup k[ — (o (t°) — K*)2(1°)Ax: (1°)]

1 ; .
=5 () = K)o (¢)mg (¢°) i, j=1,---,N
(where the arguments of G ,«» are those of a).

Proof. Referring to inequality (128) and using arguments as used in
the proof of Lemma 8.4, we see that the fifth and sixth terms of (128) are
non positive. Now assuming the truth of the above listed inequalities,
we see that (128) implies that

(161) Jz(ao, 7]0) = 0
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which according to the hypotheses of Theorem 3.1, implies that the
variation n, of (101) is null. According to the formula for p, as listed in
(104), then this quantity is also null so that

(162) | Grtat—pt)(@s —pt)dt =0
but then by (128) again, this implies that

(163) 0 = limsup k;?E(a,),

r—co

which by the nonnegativity of this quantity for large r, implies that

(164) 0 = limsup k;*Er(a,).

r—o

Next by reasoning similar to that used in [1] p. 47, we see that there
is a positive number b* such that for r large enough

(165) EL(Pn pr) g b*EL(Pr _pO’ p' _pO)

Then by (11), we get that for large r,

(166)  k=E;(a)= bk= [ f " E.(P, p)dt
smax ([ @ w1 6 p)lar)|
= bh*k;? U E. (P, — pur p, — po)dt
+ max (ftl fat* (8, x, )dt, f,l | teudd (8, X, p.)| dt)]

ook [ [ L g - L]
bb kr [J;o [L(pr pO) L(Py_po) dt

ernax ([ xds [ 1.6 (x,p)a)|

et k2 kak
= b *k,—zu [L = —1——'1’—'—2—]
b o0 (p pO) L(Pr'_po) dt

+ max <J: e (8, x,)dt, J:: |t (1, X,, p,)]dt)} :
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By Lemma 5.2 together with the fact that the variation 7, is null so that p,
converges uniformly to zero, B5= 0, maxe | n,(¢)]?= 0, and by taking
superior limits of (166), we obtain:

r—o r—o

(167)lim sup k;?Er(a,) = limsup bb*k;? [K(a,, a,)
+ max (ﬁ e (1, x, )dt, fo | a8, x,, Pr)!dt)
+ | B, | + max |n,(t)]2] = bb*>0
[e% )

which is a contradiction, thus proving the theorem and hence also
Theorem 3.1.
We now prove the second of the inequalities listed in Theorem 10.1.

LemMMA 10.1. The following inequality is true

(168) 0= limsup k[ — (n. (£°) — K*)¢g2(t)Ax (%]

r—o

1
=5 (1 (1) = K )P 2ale)nb ()nd (1),
ij=1,--N a=1---m

Proof. According to the last property in (4-1), we see that we need
only consider those indices a such that

(169) (1% = 0.

Then by Taylor’s theorem together with the admissibility of our arcs, we
have that for each such «a

(170) 0= Ag=(e% x.(1°)) = ¢ (1)Ax; (1°)

+% Gr A ()AXI(EY)  ij=1,-N

where /¢, indicates evaluation at an intermediate point on the line
segment  [x(¢°)+ 6Ax,(t°)] 0<6<1. Now by multiplying by
— k(s (t°) — K%), taking superior limits, using the convergence of 7, (t°)
to mo(t°) and the last property in (4-1), we get (168) for each such index a
and hence for the sum of those indices, proving the lemma.

It remains only to prove the first inequality listed in the hypothesis of
Theorem 10.1. By using arguments directly analagous to those used in
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Lemma 11.3 of [1], but with 4, replacing A?, one proves the required
inequality with liminf replacing limsup. Since limsup = liminf, the
required inequality is certainly true. We state this result

LemmA 10.2.  The following inequality is true

171) lim sup k;*Er(a,) é% L G, {af —pt)(at —pb)dt
hk=1,-- K
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