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AN INDIRECT SUFFICIENCY PROOF FOR
PROBLEMS WITH BOUNDED STATE VARIABLES

I. BERT RUSSAK

A set of sufficient conditions is obtained for problems
involving constraints of the form ψa(ί, JC) ^ 0 a = 1, , ra. The
method of proof is indirect. It is shown by essentially
strengthening the first and second order necessary results previ-
ously obtained by the author for problems of this type, that a
proper strong relative minimum is obtained.

1. Introduction. Consider the class of arcs

a:xι(t), pk(t\ bσ, t°^t^tι

/ = 1, ,ΛΓ k = l, ;K σ = l, ,r

where1 elements (t, x(t), p(t)) and b lie respectively in open sets R in txp
space and B in b space. The terms xι are called state variables while
the terms p \ bσ are called control variables and control parameters
respectively. We require these arcs to satisfy the constraints

(1-1) i ' ( 0 = / f ( ' , * ( 0 , P ( 0 ) , i = l, , N a.e. in [ί0,*1]

(1-2) φa(t,x(t))^0 α = l , . , m [t°, t1]

( 1 - 3 ) IΎ(a)^0 γ = l , - - - , p ' IΎ(a) = 0 γ = p ' + 1 , , p

( 1 - 4 ) xι(t') = Xu(b) 5 = 0 , 1

(1-5) where IΎ(a) = gy(b) + j LΎ(t,x(t),p(t))dt γ = l, ,p

and are interested in minimizing the functional

(1-6) /0(α) = g0(b) + j ^ Lo(t9x(t),p(t))dt.

Let C be the class of arcs described above with x(t) absolutely
continuous, p(t), f(t,x(t)9p(t)) and Ly(t,x(t),p(t)) γ = 0 , l , ,p in-
tegrable on [ί°, ί1]. It is desired to minimize I0(a) on the class C.

1 Unless otherwise noted, the indices i, k, σ, a will have the respective ranges ί = l, , N ,

k = 1, , K, σ = 1, , r and a = 1, , m.
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220 I. BERT RUSSAK

In [2] and [3] the author establishes first order necessary conditions
for this problem. By essentially strengthening those conditions, and
extending a technique devised originally by Hestenes and used by Pennisi
in [1], a set of sufficient conditions for a proper strong relative minimum
is obtained without the use of field theory and an invariant integral.

2. Assumptions. Using the problem defined above, the func-
tions will be assumed to possess the following continuity properties; the
functions φa will be class C3 while the functions /', X15, gγ, Lγ, Lo, and g0

will be of class C2. Also, an arc will be called admissible if it is in the
class C

Next, define the functions2 φa = φ? + φ">fι a = 1, , m. These
functions act as derivatives of φa along admissible arcs. Also define the
set JRO of points (txp) in R satisfying

(2-1) φa ^ 0

(2-2) φa ^ 0 for all a with φa = 0 or φa ^ 0 for all a with ψa = 0.

We shall be concerned with a particular admissible arc a0

and shall make some assumptions about the arc α0. In order to state
these we first make the following definitions:

The set Sa is the set of t such that φa(t,x0(t)) = 0.
For each ί, the symbol Γ(t) denotes the set of indices a such that

φ'(t,xo(t)) = O.
We will have need to talk of the quantities z,(t), μa(t), λp, K

a where
z,(ί) are of class C\ μ α (0 are absolutely continuous functions with
continuous derivatives μa(0 and Ka, λp (p = 1, , p + N) are constants.

For each ί, the set Δ(ί) is the set of a indices such that μα (t) φ 0.
The functions φa and φa are defined as

(3) r ^ φ Ί [ l + (φa)2f Φa ^ φ a / [ l + (Φa)2f

Our assumptions concerning α0 are as follows:
(i) po(t) is continuous in [f°, ί1].
(ii) For each t the set Γ(ί)-Δ(ί) contains at most one index,
(iii) The matrix (φp«) has rank m along a0.
(iv) There exist the quantities zf (ί), μa(t), Ka, λp.

(p = 1, ,p 4- N) as referred to above, satisfying

2 For a function M(ί, x,p,b) the notations Mx , M p s M6^, Mf will denote first partial derivatives

with respect to the indicated variable. Also repeated indices will be summed.
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(4-1) λ γ ^0 with λ γ =0 if I7(αo)<0 l g γ S p ' ,

K«gO, λp+i = K*ψ}(t°)

μa(tι) = 0 if ψ*(tι)<0

μa(t°)^K« With μa(t°) = K« if φa(t°)<0

and also such that the functions μa(t) are nonincreasing nonnegative
functions which are constant on intervals where3 ψa(t)< 0. Notice that
this last statement means

Using the terms of (iv) define the functions

(5) ^ ) - g 0 ( 6 ) + λygγ(6)4-λp + IX
i 0(6) y = l, ,p

(6-1) H(ί, x7 p, z (t), μ (0) Ξ * .(Of ~ L o - AγLr - μa {t)φa

(6-2)

and the Weierstrass E function for G,

Then the following statements are true:
(va) The arc α0 satisfies the transversality relation

(8) ^ + [z i ( f )^"] ; :S = 0

(where e.g. dΉ means %^{bQ)dbσ) for arbitrary vectors db.
(vb) The relations

(9) zt=-Hx< Ϊ=HZ> Hp>=0

hold along α0. Note that (9) implies that

(10) Gx = 0 Gp* = 0

along no-

1 Henceforth unless otherwise stated, a function M(t,x,p,b) evaluated along α0 at

(ί, xo(t), Po(0> ô) will be denoted by M{t) or if just a function of 6, it will be denoted by M(b0) or just

M.
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(vc) There is a positive constant b and a neighborhood Dx of α0

relative to Ro such that4

(11) Ea(t9x9p,q9z(t)9μ{t))+ μa

and with EΎ as the E function for Lγ, also

(12) EG(t,x,p,q9z(t),μ(t))+ μa(t)ψa(t,x)^b\EΎ(t,x,p9q)\ y = l, ,p

when (ί, x,p) is in JD1? (ί, JC,q) is in JR0 and φa(t,x,p) = 0 if
. The function EL(p,q) is the JE function for the function

(13)

which is the integrand of the length integral. Thus

(14) EL(p,q)

which is the same as

(vi) There is a neighborhood of α0 in tx space and a positive
constant p such that the Lipschitz condition

(16) \f(t,x,p)-f(t,z,q))\<p[\x-z?+\p-q\2f

holds for all points (ί, JC,p) and (t,z,q) in that neighborhood.
We note that the majority of these assumptions about α0 are either

just the necessary conditions for a solution to our problem or the
assumptions used in proving these necessary conditions as shown in [2]
and [3].

In particular, the only assumptions listed which do not come under
those headings5 are:

(a) the existence of μa{t) on Sa sets, and
(b) the assumptions (ii), (vc) and (vi).

4 We shall often omit the argument t when referring to the functions μa(t) and μa(t) of (4).

However we shall always understand the terms μa and μa to refer to those functions.
5 A note soon to appear will modify the results of [3] to include the last stated property in (4-1)

as a necessary condition.
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3. Statement of the main result and definition of an
admissible variation. We next define what we shall mean by an
admissible variation of the arc α0.

A set of functions

(17) δα:δx'(ί), 8pk(t% δbσ, t^t^t1

with δx(t) absolutely continuous and δp(t), δx(t) square integrable on
[ί°, t1] will be called a variation of the arc α0 and for any function
M(t,x,pyb) which possesses first partial derivatives along α0 we call

(18) δM(t) = Mx(t)δxi(t) + Mp*(t)δpk(t) + Mb~(t)δbσ

the variation of M along α0 due to the variation δα.
Next define the functionals of any arc a as:

JΎ(a) = Iy(a% γ = 0 , l , ,p

(19) Jp+ι(a) = x>(tι)-Xn(b) 1

and the variations of these functionals due to the variation δa as:

J'y{aQ, δa) = δgΎ(b0) + £ δLΎ(t)dt γ = 0,1, ,p

(20) j ^βo, δα) = δx'it1) - δXn(b0) 1

Also let γfc be those indices 1 ̂  y ̂ pr for which

(21) J γ ( a 0 ) < 0 γ = γ k.

Then, we know by (4) that

(22) λ Ύ k = 0.

With these definitions in mind, we call a variation admissible if the
following are true:

(23-1) δ i i ( 0 = δ f ( ί ) a.e. on [ί°, t1]

(23-2) δφa(t)^O on Sa
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(23-3) δψ«(tι) = O if μa(tι)ΪO

(23-4) μa(t)8ψa(t) = 0 a.e. on [t°, t1] (a not summed)

(23-5) δφa(t°) = O if μa(t°)ϊKa

(23-6) /;(αo,δα) = O if λ γ ^0 l ^ γ g p '

(23-7) /;(α 0 ?δα)^0 if λ r = 0 γ^γ, l ^ γ ^ p '

(23-8) /;(α0, δα) = 0 p' < p ^ p + 2N.

For each such admissible variation the second variation

(24) Λ K δα) = [(z'(ίf)^V)i:i+ *W + K φ MWrXWδb'δb*

+ Γ [G.vδx'δx7 +2Gxyδxiδpk + Gp»p>δphδpk]dt

i,/ = l, , N σ,τ = l, ,r α = l, ,m Λ, fc = 1, , X,

(where ^, G are the functions of (5) and (6-2) respectively, and Ka are
the constants referred to in assumption (iv)) is well defined.

The Theorem to be proven in this paper is:

THEOREM 3.1. Let α0 be an admissible arc which satisfies assump-
tions (i) through (vi) and suppose that J2(a0,δa)>0 for every non-null
admissible variation. Then there is a neighborhood F of a0 in txb space
such that the inequality I0(a)> Io(ao) holds for every admissible arc a in F
which is different from a0.

It is noted that [2] proves as a second order necessary condition that
/2(fl(b δα) ̂  0 for all such admissible variations δα as described
above6. Thus the hypotheses of the theorem is only a strengthened
necessary condition.

Henceforth unless otherwise stated, our arc α0 will be assumed to
satisfy the conditions (i) through (vi) and we shall not explicitly state this
each time we refer to α0.

4. Convergent sequences of admissible arcs. We pro-
ceed in a manner similar to [1]. Consider a sequence7 {ak} of admissible
arcs which converges uniformly to α0 in txb space.

6 Actually in [2] the condition (23-5) is replaced by δψa (ί°) = 0 if μa (ί°) / 0. However a note to
appear soon will extend that proof to the condition which we use.

7 Subscripts attached to the symbols x, p, b will denote association with an arc with that
subscript. Thus pk(t) is the value of control along an arc ak.
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Using the function L(p) defined in (13) we first define a quantity
which will act as part of the square of a norm in arc space. Let

(25) K(a,a0) - Jj [L(p(t)-po(t))-l)dt

where p, p0 are the respective controls along α, a0. Our first major result
is

THEOREM 4.1. // {ak} is a sequence of admissible arcs which
converges uniformly to a0 in txb space and also satisfies limsupk^I0(ak) ^
I0(a0), then \imk^x K(aky a0) = 0 and there is a subsequence {akr} of {ak}
such that pkr(t) converges to po(t) [a. unif.] on [ί°, t1].

The proof of this theorem will be based on a number of definitions
and lemmas which we proceed to list. The first of these is:

LEMMA 4.1. There exist functions Pk{t,x)k = l, - ,K which are of
class C2 with respect to x, C° in t and satisfy φa(t, x, P{t, x))-φa(t) = 0,
a = 1, , m t°^=t^t\ I x - Jto(OI < ζ for some positive constant ξ. In
addition, Pk(t,xo(t)) = pko(t) on [t^t1].

Proof The proof of this follows from the continuity properties of
φa, the definitions of φa and the use of Lemma 10.1 of [3].

Next with the functions P(t,x) of Lemma 4.1 we shall be able to
break up the functionals of our problem in a convenient manner.

As a first example of this, we consider the functional Jτ(a) defined
by:

(26-1) Ma) = [zt(t')Xu(b)]',Zιo+ go(b) + λygy(b) + £ G(t,x,p)dt.

Notice that by (1-5), (1-6), (6-1), and (6-2) we have (with arguments
along α), that

(26-2) I()(a) = Jτ(a)-λyIy(a)- jo μa(t)φa(t9x,p)dt.

Next, we write:

(27-1) JUa)=[zι(ts)X^bQ)]Γ4+ go(bo) + λygy(bQ)

+ [[zi(t')Xfc]'sZ
lo+gQlr+ λygyb,][bσ - K]

x,P) + [pk-Pk]Gp*(t,x,P)]dt.
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(α) = £ EG(t,x,P,p)dt

= f'o [G(t,x,p)-G(t,x,P)-[pk-Pk]Gp>(t,x,P)]dt

(27-3)B*τ(α) = zι(ts)[Xis(b)- Xis(b0)- X^[bσ - bZ]]s

sV0+go(b) +λygy(b)

- go(bo)- λygγ(b0)- [gor+ KgyA[bσ ~ W]

where: (i) all derivatives with respect to b are at bo; (ϋ) the arguments
x,p, P, b are evaluated along a with P = P(t, x) and (iii) the functions
EG, G are the function of (6-2), (7) where for conciseness of notation we
have deleted the arguments z(t),μ(t) but understand them to still be
present. This convention in writing the arguments of EG, G will be used
throughout this paper.

It is convenient here also to define another functional of an arc α.

(28) Eτ(a)^E*τ(a)+ I μa(t)ψa(t,x)dt

where E% is from (27-2), μa(t) are the derivatives appearing in the
assumption (iv) and the arguments ί, x are on a. With these definitions,
we see that

(29) Jτ(a) = J*τ(a) + B *τ(α) + E*(α)

Next, let V(t, x, p) be any function of class C2. Then we make the
following definitions:

(i) For an arc a set

Γt V(t,x,p)dt

(where the arguments are along a) and
(ii) we shall say that V is Eτ dominated near a0 on Ro if there is a

positive constant c and a neighborhood R{ of α0 relative to Ro such that

(30-1) EG(t,x,p,q) + μa(t)ψa(t,x)^ c \Ev(t, x,p,q)\

whenever ί, x,p is in R{, t,xyq is in ROy and φa(tyx,p) = Oif μa{t)τ^ 0 and
where

( 3 0 - 2 ) Ev(t,x,p,q)^ V(t,x,q)-V(t, x , p)-(pk - qk)Vp>(t,x, p)

We shall further restrict the neighborhood 7?! and constant c if necessary
so that
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(31) Eo(t,x,p,q)+ μa(t)ψa(t,x)^cEL(p -P(t,x), q-P(t,x))

(where EL is the function introduced in (14)) whenever t, x,p is in Ri and
t,x,q is in Ro and φa(t,x,p) = 0 if μa(t)^0. The proof of this is
analagous to [1] Page 30, using our assumption (vc).

We next prove:

LEMMA 4.2. Given β' > 0 then there is a neighborhood 2Fofa0 in txb
space such that

(32) - β' + (1 - e')Eτ(a) < I0(a) - J0(β0)

for each admissible arc a in 9*.

Proof. By the definition of the functions φa we see that along any
admissible arc a

(33) £ μaφ«dt = fo ff [μaφ
a]dt - fo μaψ«dt

with arguments along8 α. Then by (26-2), (29), (28) and (33), we have for
α, an admissable arc that

(34) I0(a) = J*τ(a)+ μa(t°)ψa(t°,x(t°)) + Eτ(a) + B%{a)- λ γ l > )

(where x(ί°), x{tι) are along a).
Then with Δ denoting9 the change in a quantity evaluated from α0 to

α, so that e.g.

(35) ΔJo(α)^ Jo(α)-Jo(αo)

we have

where in (36) we have recognized, because of (4-2) together with the

8 We shall often omit arguments in this fashion whenever the context makes clear what those
arguments are.

9 Henceforth we shall use this notation frequently, thus as another example ΔxΎ(t) will mean
xy(t)-Xo(t) where xy(t) is the value of state on an arc ay.
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definition of £ * in (27-2) and the construction of the functions P of
Lemma 4.1, that £ τ ( α 0 ) = 0 and also, by (27-3), that B£(αo) = O.

Now in (31) set pk = Pk so that

(37)

+ μa(t)ψa(t,x)

which is true for ί, x in some neighborhood §> (in tx space) reduced if
necessary from the projection of Rx of (31) and also for t, x, q in Ro.

Next with p(t) having the value associated with the arc α, set q equal
to p(t) so that we get

(38) \p(t)-P(t,x)\<L(p(t)-P(t,x))

tk c~l[l + EG(t, x9 P(t, x),p(t))+ μa(t)Ψ"(t,x)]

for ί, x in the neighborhood §> of (37), where in (38) we have increased
c~ι to be greater than 1 if it was not already so.

Now consider the integral part of Δ/*(α), that is the terms

(39)

where x, p are x_(t),p(t) of α. Since G satisfies (10), then we can find a
neighborhood $F of α0 in tx space such that

(40) \Gp*(t,x,P(t,x))\<e

for t, x in_#. Then by (38) and (40) we have with S* as the intersection of
§ and § that if a is in 9

(41) ί" (pk-Pk(t,x))Gp*(t,x,P(t,x))dt
J t°

-\tι - t° + Eτ{a)).

Also with 3F small enough we will have

(42) \G(t,x,P(t,x)-G(t)\<e

for t,x in &.

Thus by (41) and (42) we have that for a an admissible arc in SF, then

(43) [ [G(t,x,P(t,x))- G(t) + (pk - Pk(t,x))Gp>(t,x,P(t,x))]dt
J °
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Now except for the quantities AγΔ/γ and Eτ(a), all other terms on the
right hand side of (36) depend solely on txb values and vanish on a0. Then
by considering f as a neighborhood in txb space and making it small
enough, we can make the sum of all of these quantities less than 6 and
then by (43) and (37) achieve for an admissible arc a in &9

(44)

Inequality (44) implies that

Now by the admissibility of a and the nonnegativity of λγ (see (4)), we see
that

(46) - λ γ Δ J γ ( α ) ^ 0

then (46) implies that for a admissible and in &

(47) - €[(1 + c 1 ) ^ 1 ~ t°) + 1] + (1 - ec1)Eτ(a)< M0(a).

Now select e such that

(48) e [ ( l + c~ι){tλ - ί ° ) + 1] < ef a n d e c 1 < e'

so that our lemma is proven.
Now with V(a) as the functional defined below (29) we prove:

LEMMA 4.3. // V(ί, x,p) satisfies

(49) VA

and if V is Eτ dominated near a0 on Ro with constant c, then for each ef>0
there is a neighborhood % of a0 in tx space such that

I V(a)- V(ao)\ < e' + (cι + e')Eτ(a).

Proof Se t

(50) V*{a) =

and

(51) Et(a) = fo Ev(t,x,P(t,x),p)dt
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where all arguments are along a and Ev is the function of (30-2). Then

(52) V(a)= V*(α) + £*v(α)

and

Now by reasoning entirely analagous to that used in obtaining (43),
then for any e > 0 we can find a neighborhood J{ in tx space about α0

such that for any admissible arc a in Sίf we have

(54) | Δ V * ( α ) | < elt1 - t°] + eC'lt1 - t° + Eτ(a)].

Then by the Eτ domination of V near a(h we have by reducing % if
necessary that

(55) |ΔV(β)|Si|ΔV*(β)| + \E%{μ)\

<e[tι- t°] + ecι[tι - t° + Eτ(a)] + c~'ET{a)

= 6(1 + c-χ)[tι - t°] + c-\l + 6)E τ(β).

Now select 6 such that

(56) e(l + c-ι)[tι-t°]<€f and e c ' ^ e '

Then the lemma is proven.
We next prove:

LEMMA 4.4. Let V satisfy the hypotheses of Lemma 43 . Then
given 6 < 0, there exists η > 0 and a neighborhood SE ofaQ in txb space such
that if a is admissible and in 5£ and satisfies

(57) J 0 ( α ) ^

then

(58) | V ( α ) - V ( α o ) | < € .

Proof. Assume the contrary, that is that there is. a sequence {ar} of
admissible arcs which converge to a0 uniformly in txb space such that

(59) Io(ar)-Io(ao)^rι and | V(ar)- V(ao)\ > e.

By Lemma 4.2 given e' > 0, then if r is large enough so that ar is in the
neighborhood & of that lemma, then
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(60) - ef + (1 - e')Eτ(aΓ) < I0(ar) - 70(α0)^ r'\

Also, by Lemma 4.3, for r large enough so that aτ is in the
neighborhood JC of that lemma

(61)1 V{ar)- V(ao)\ < e' + (c-ι+ e')Eτ(ar)< e'+ (c-' + e') ^ *? .

Since this holds for all large r and since e' can be made arbitrarily small,
this gives a contradiction to the second part of (59) thus proving the
Lemma.

With the help of these last three Lemmas, we can prove Theorem 4.1
as follows:

Proof, The integral of K(an α0) defined in (25) involves the function
L(ί, x, p) = L(p - po(t)) - 1. This function is Eτ dominated near α0 on Ro

for the same reasons that (31) was true and furthermore satisfies

(62)

so that L satisfies the hypothesis of Lemma 4.4. Also, we note that

(63) L(t, x, po(O) = L (po(r) - po(ί)) ~ 1 - 0.

Then by Lemma 4.4 we have

(64) l\mK(ana0) = 0

proving the first statement of Theorem 4.L
Now by Holder's Inequality

(65) [JjPr-polA]^ [j'jL(pr-po)-lftL(pr-po)+lfdtJ

[L(pr-p0)+l]dt

where pn p0 mean p evaluated respectively on αr, α0. Then by (64) we see
that pr converges to pQ [mean] which by standard theorems implies the
existence of a subsequence {ark} satisfying the second statement of
Theorem 4.1 and proving the theorem.
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5. Definition of the functions τηn <xn βr. Now suppose
that there is a sequence10 {ar} of admissible arcs converging to a0

uniformly in txb space with I0(ar) ^ /0(α0). Then by Theorem 4.1, we may
replace this seqeunce by a subsequence which we again call {αr} such that
with control pr on αr,

(66) lim pr = p0 [a. unif.] on [ί°, t1].

Also, the quantities

br-b0\, max |Δjcr(ί)|

(67) ft, _ r

J μaψ
a(t,xr)dt, Jo \μaφ

a(t,xnpr)\dt

all converge in bounded manner to zero as r->oo where: (i) ψa, φa are
the functions introduced in (3), (ii) the subscript r, as usual denotes values
on the arc an (iii) for the convergence of the integrals in (67) to zero we
have used the fact that

(68) Γ μaφ
a(t)dt = 0 and P μaψ

a(t)dt =

because of the properties of the functions μa(t).
Thus if we define:

(69) k2

r = K(an β0) + max [ j * μaφ
adt, P | μaφ

a

+ \br-b0\
2+ max

Λ 1

where ψa, φa are evaluated along an then by Theorem 4.1 and the above
statements, we have that

Now define the vector functions

10 Henceforth unless otherwise specified, all references to arcs ar will mean members of

subsequences (as defined in the following pages) of the sequence introduced here.
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(71-1)

and

the second equality for hr following from the above definitions. Then by
(71-2)

(72) j o I ar \
2lhrdt = fo [L(pr - p0)- l]/k2

rdt = K(an ao)/k2

r

which implies by the definition of kr that

(73) β2

r + max | ηr I2 + f ^ A g 1

[ίV] Jt° K

and hence in particular that the integral in (73) is uniformly bounded with
respect to r.

We next prove:

LEMMA 5.1. The integrals of hr(t) are absolutely continuous uni-
formly with respect to r.

Proof This follows because hr(t) differs by 2 from the integrand of
K(an α0) and l i m ^ K(an aQ) = 0.

LEMMA 5.2. The integrals ardt are absolutely continuous uni-
JM

formly with respect to r.

Proof By Holder's Inequality and (73) we have that

(74) I ί ardt 2 ^ ί \ar\
2/hrdt ί hrdt S ί hrdt

I JM JM JM JM

and by Lemma 5.1 this last integral is uniformly absolutely continuous.

6. Existence of the variation η 0 . We next establish a
number of results concerning the convergence of ηn ary βr. With {aτ}
always as the sequence of arcs considered above we prove:

THEOREM 6.1. With βr defined in (71-1) then there exists a vector β0

and a subsequence of arcs {ark} which we again call {ar} such that with
{βr} as the associated values, then βr converges to β0.
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Proof. This follows from the definitions of kr and βr and the
Bolzano Weierstrass Theorem, applied to the original sequence {βr}.

THEOREM 6.2. There exists a function a0 in J£2[t°, tι] and a subse-
quence of arcs {ark} which we again call {ar} such that with {ar} (defined in
(71-1)) as the associated quantities, then for each bounded integrable
function g

f'1 f'1

(75) lim gardt = gaodt
r^°° J/° Jt°

and if s is a set on which pr converges uniformly to p0 and g is square
integrable then

(76) lim I gardt = I gaodt.
r~*°° J s J s

Proof By the uniform boundedness of the integral in (73), there is a
subsequence {ark} which we again call {ar} and a function ά0 in J£2[t°, tι]
such that for every square integrable function g and any measurable set s.

(77) ljmj^=j gάodt.

Now let s be [ί°, ί1] if g is bounded and integrable while if g is only
square integrable, let 5 be a set on which pr converges uniformly to
po Then we can write

(78) I ga4t = V2Jg^=dt + j^ g{Vh- V2) ^ dt

and by Holder's Inequality together with (73)

r\
2dt

5§ ί g\Vhr-V2)2dt.
J s

Since hr(t)^2, we have
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f'1 f'1

(80) 0 ^ 1 (Vhr- Vl)dt ^ o (VΛΓ- V2)(v7i"r+

= Γ (hr-2)dt= Γ [L(p r -p o )-l]Λ = ί:(α as r—»oo

so that

(81) lim (Vhr-V2)dt = 0.
r-.cc Jto

Also since

(82) f (vT r - V2)2dt = ί (Λr - 2)dt - 2V2 ί (Vhr- Vl)dt

then

(83) lim (Vhr-V2)2dt = 0.

Now let g be a bounded integrable function and let s be [ί°, t1] in the
statements, (78) and (79). Then by (79), (83) and the boundedness of g
we see that

(84) lim ί
Vhr

so that by using (77), (78) and defining aQ = VϊάQ we have

(85) lim I gardt = lim V2 | g - ^ = dt = V2\ gάodt = | gαodί
r-*x J s r-oo J s V/lr J s J s

proving the first statement of the Theorem.
In order to prove the second statement let g be in J£2[t°, tι] and let s

be a set on which pr converges to p0 uniformly. Then our statements
(78) and (79) hold also in this case, and on s we have

lim (hr - 2) = 0 uniformly on s

so that (84) and (85) hold also in this case, proving the Theorem.
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Now with {ar} as the sequence of arcs yielded by the previous two
theorems and with ηr(t) defined in (71-1) as the associated quantities, we
next prove:

THEOREM 6.3. There exists a function ηo(t) on [t°, tι] with deriva-
tive ήo(t) in J£2[t°, t1] and a subsequence of arcs [ark] which we again call
{ar} such that ηr(t) converges to ηo(t) uniformly on [ί°, t1]. Furthermore,
if g is a bounded integrable function on [t°, t% we have

f'1 f'1

(86) lim J o grjrdt = J o gήodt

while if g is in ££2[f, tι] and if s is a set on which pr converges to p0

uniformly, then

(87) lim f gήrdt = I gήodt
r^x Js Js

where ήr is the derivative of ηr.

Proof We note that

(88) ήr(t)=[Xr(t)-X0(t)]/K =

Now by assumption (vi), we have

(89) \

so that

(90) |

Then by dividing (90) by hr and integrating and then adding that
inequality to (73) we get

(91) β2 + max | η , \2 + —2 ί' \ήr \
2/hrdt < 1 + ί' |η r \

2lhrdt.
[Λί1] P Jt° Jt°

Also by the definitions of kr and hr we see that

(92)

so that
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(93) f \ηr\
2/hrdt ^ [ f ' - ί 0 ]

J t°

and then by (91), the first integral there is uniformly bounded with
respect to r, that is

(94) I I r\r \
2/hrdt ^ Γ uniformly with respect to r.

Then by using an argument similar to that used in the previous Theorem,
there exists a function ήo(t) on J£2[tQ, tι] such that the conclusions of the
present theorem which concern the function ή0 are true.

In order now to prove the remaining item of our Theorem, set

(95) ηΌ(t) = Xt

b

0-βZ + f ή o d t t°^t^tι i = l , , N

where Xι° are the functions of (1-4), β() is the vector of Theorem 6.1, and
Xιb" are evaluated on a0.

By Holder's Inequality together with (94) we have for any measura-
ble set M

(96) i f \ήr\dtϊ ^ ί \ήr\
2/hrdt ί Kdt

LJM J JM JM

^ [ \ήr\
2/hrdt • ί hrdt^Γ ί hrdt.

J t° JM JM

Then by the uniform absolute continuity of the integrals oί.hr (Lemma
5.1) we see that the functions

(97) ηι

r(t)=k;ιΔxι

r(t°)+ Γ Vrdt t° ̂  t ^ tι

are absolutely continuous uniformly with respect to r.
Also by (86) which we've already proven,

(98) lim f ήrdt = [ ήadt

Furthermore by Theorem 4.3 and the admissibility of our arcs we have
that

(99) lim Δx'(ί°)//cr = lim >hΓ
} β°=Xf»βZ.
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Thus by (97) through (99), the definition (95) and the uniform absolute
continuity of ηι

r(t) we see that

(100) lim TJKO = ηι

0(t) uniformly on [t°, tx]
r—*oo

thus proving the theorem.

We have thus proven that if we define η 0 as the variation

(101) η0: ηo(t) ao(t) βo f ^ t ^ t 1

and ηr as the vector functions

(102) rjr: τ,Γ(ί) ar(t) βr f ^ t ^ t 1

then ηr converges to η0 in the sense that

βr converges to β0

ηr(t) converges uniformly to ηo(t)

ar(t) converges [a. unif.] to ao(t) .

7. Additional properties of the variation 170. Now,
using the functions P(ί, x) of Lemma 4.1, we recall that by our conven-
tion Pk(t) = Pk(t, xo(t)) = po(t) the value of the control on αo For
convenience, let us denote this as Pk(t). Thus Pk(t) = po(t). Next denote
by Pr(t) the values of P along the arc (αr), i.e.,

(103) P\t) = Pk(ί, xr(t)) k = 1, , K t^t^t1

and also define the vector functions

(104) Pr(t) - P^)-Po{t) p o ( ί ) s pχ}^Xo(t))ηi(ty

Then we state the following results which are proven in an analagous
manner tto Lemmas 8.1 through 8.4 of [1] except that derivatives of state
functions are replaced by controls.

LEMMA 7.1. The following relations are true:

(105-1) φa (ί, xn Pr) = φa(t, Jto, Po) a = 1, , m

(where φa are the functions introduced above (2))
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(105-2) lim Pr(t) = P0(t) = po(t) uniformly on [t°, t1]

(105-3) lim pr(t) = po(t) uniformly on [t°, t1].

If Nk(t) are continuous functions which converge uniformly to Nk(t)
on [t°,tι] and if g is square integrable then

(106-1) lim ί Nk(ak-pk)dt = ί Nk

0(ak

0-pk)dt
r~*°° Js Js

for every measurable set s in [ί°, ί1] and

(106-2) lim ί g(ak-pk)dt= ί g(ak-p£)dt
Γ~>0° J s J s

for every measurable set s in [t°, t1] upon which pr(t) converges uniformly
to po(t). Furthermore if W{t,xyp) is any function of class C near α0,
then

(107) lim k-τ

ι[W{t, xn Pr)- W(ty JC0, PO)] = ^ η ί + Wp*pk

0

uniformly on [t°, t1].
Finally with the functions φa of (105-1) we have

(108) φϊηh + φ*p*pl = 0 α = 1, , m f^t ^t\

Now using the functions P(t, x) of Lemma 4.1 we extend to any
measurable set s in [t°, t1], the technique used to break up functionals in
(50) as follows:

Let T(t,x,p) be a function of class C near α0 and a an arc and
define

(109-1) Ύ^s)

(109-2) T*(α, 5) = j (T(t, x, P)

(109-3) E*r(a,s) = j s Er(t>x,P,p)dt.

Also, for a variation η of the arc α0
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η:η(t) a(t) β

define

(109-4) γχ^s)

where: (i) all values of x, p, P in (109-1) through (109-3) are along the arc
α, (ii) the function Er in (109-3) is the Weierstrass E function for V, and
(iii) the arguments of Ύx^ Vp" in (109-4) are from a0. Then as in (52) we
see that

(110) T(α, s) = V*(a, s) + E%{a, s).

and, in analagous manner to Lemma 9.1 of [1] we have

LEMMA 7.2. If V(t,x,p) is of class C near α0, then

(111) lim k;ι[T*(ans)-V*(a(hs)] = rι(η(hs).

8. Evaluation of second order terms. Our ultimate pur-
pose now is to prove the admissibility of the variation η0 defined in (101)
and constructed in Theorems 4.3 through 5.1. As a first step in this
procedure, we evaluate certain second order terms.

Continuing with our sequence {αr}, then dividing (36) by k], evalua-
ting the expression on this sequence, moving most of the terms to the left
side and taking superior limits, we obtain

(112) limsup k;2[- ΔJ%ar)- μa(

-Himsup /c72[-β^(αΛ)] + limsuρ k;2λΎAL(ar)
r—κχ> r—*°o

+ lim sup K2μa(tι)Aψa(t\ xr(tι)^\im sup k;2Eτ{ar).

In order to establish the admissibility of η0, we shall have to deal
with the separate terms of (112). The first term to come under consider-
ation is the integral part of ΔJ*(ar) which we denote by the symbol
A,J*τ(ar). Thus

(113-1) A,J*τ(ar) - j o [G(t,xnPr)- G(t) + (pk

r - Pk,)Gp>(t,x,,Pr)]dt.
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With ηo(O> <*o(O as quantities associated with the variation η 0 and p,
as the terms of (104) and finally with ωG(i70, α0) denoting the quadratic
form

(113-2)ωG(τjo, α o ) = Gx x<ηioη'o + 2Gx^ηi

oa^+ Gp> p-aoao ^'k = 1 •• • K

where the partial derivatives are formed along a0, we next prove:

LEMMA 8.1.

(114) lim k;2Δ,J*τ(ar) = \ £ [ωG(η0, a0)- G p V ( « $ - P$)(«$- PΪ>)]dt

Proof. By Taylor's Theorem and the definitions of Pn pr

k\

k2

r(ak

r - pk

r

[Gηίηi +2Gx>p*η'4>k

r + GpVp
h,pk,]

+

where :̂ (i) Gx , Gp" are evaluated on the arc α0 and (ii) Gx^, Gx^, Gpy,
Gpγ, G>v a r e a ^ evaluated at intermediate points on the line segment

(t,xo+ΘΔxn Po+ΘΔPr) O < 0 < 1 .

Now using (10) together with Lemma 7.1 and the uniform con-
vergence of xr to x0 and ηr to 170 on [t°, t1] we see by integrating (115) that

(116) lim /c7

•f

where all partial derivatives are evaluated along α0. Combining terms
this becomes
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(117) lim k;%J*τ(ar) = \ [ [Cvηfal + 2Gx ^η^ - Gpγph

op
k

o

+ 2Gp»pφ
h

0a
k

0]dt.

Now adding and subtracting the terms Gpγorh

0a
k

0 in the above integrand
produces (114) and the lemma is proven.

Next, by using the definition of Δ/*(α r) together with Lemma 8.1,
the transversality relation (8) and the relation for λp+ί in (4-1) we get

(118) lim sup k;2[- ΔJ%(ar)- μa(t0)Aψ"(t\xr(t0))]
r—>oc

- lim sup k72[Kaφ°x{t°)X$'Δb~-μa(tηAφ"(t0,xr(ttt))]
r—*χ

1 f
~2 J,, [ωG(τ7o,αo)-GPv(αS - Po)(«o ~ Po)]dt.

As a next step we prove

LEMMA 8.2.

(119) limsup k-r

2[K°rΛt0)X'^bσ

r - μa(t0)Δφa(t°,Xr(t0))]

^ limsjip k;2[-(μa(t0)- Ka)φa

x(t°)Δχ (t0)]

Proof. By Taylor's Theorem and the admissibility of our arcs, we
have

(120-1) X£Δ6Γ= Δ*ί(ί°) - \ XHbΛb7Abτ

r

and

(120-2) Δ<K(ΛXr(t)) = ΦHt)^xi(t) + \

where Xb\^ ψa

x<x' are intermediate values on the line segments
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bo+ΘAbr a n d t°,xo(t°)+ ΘAx,(t°)

Then by using (120) and combining terms, we have that

(121)

- \ K"φa

x{tϋ)X$hAb%Afrr - \ μa{f)φa

x>χlAx\{?)Ax\{?).

Now by the admissibility of our arcs, the terms,

(122) Ax\{?) AX\b,)

(where AX'°(br) means Xi0(br) - Xm(b0)) are equal, so that we may add to
and subtract from (121) the respective quantities

(123) ±Kαφ"x.x,Ax'r(t0)Ax<(t°) and \ K"φ%ΛXi0(br)AX'°(br)

(where ψ° x, here means evaluation at the same point as for that term in
(121)) to get

KW{t°)X$>&b~r - μα(t0)Aψ"(t°,x,(t0))= -(μα(to)-K°)ψ°x(to)Aχ (t°)

(124) - i WAWX'foAKW - \ K"φ%AX °(br)AX'°(br)

- \ {μα{f)-K")hΛx\{f)AxΆf).

Now, dividing by k2

n taking superior limits and using the definition of β0

yields (119) proving the lemma.
The next term of (112) which we consider is the one involving

Bτ(αr). We prove:

LEMMA 8.3.

(125) lim k;2B*τ(αr) = \ [(z,(r')*»V)::J+ g w + Kgy^Λβlβl

Proof. By Taylor's Theorem and (27-3) we have

(126) B*τ(αr)-i [(z (t')XSvYί:
ιo+§<,„*+ λΎgymτ)Ab°Ab: σ,r = !,•••,K
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where X*V, gObσvn gγhσbT indicate intermediate values on the line segment
bQ+ΘΔbr O < 0 < 1 . By dividing by k2

n taking limits and using the
definition of Bo in (101) we obtain (125).

Now by using (118) and (112) together with Lemmas 8.2 and 8.3 we
obtain

(127) - | [(z'(i ')X*V);:J+ g ( W +

1 f'1
- - J [ωG(η0,a0)- Gpγ(ah

0 - pho)(ak

o - pk

0)]dt

+ lim sup k;2[ - (μ^tη-K^φHn^xiit0)]
r—*oc

+ lim sup k~2XyMy{ar) + lim sup k;2μa(tι)Aψa(t\ xr(t1))

^.lim sup k~2Eτ(ar).

Referring to (24) and (5) for the definition of /2(α0, rjo) and ̂  we see
that (127) gives

(128) -Ij2(a0,η0) + ±f'o Gp^(ah

o-ph

o)(ak

Q-pk

o)dt

+ lim sup k;2[ - ( μ α ( ί 0 ) - iCα)^?<ί°)Δxj(

+ lim sup fc72AγΔJγ(αΓ) + limsup k-2μa{

^ lim sup k~2Eτ{ar).

Using the inequality (128) we now obtain an important relation which will
aid us in proving the admissibility of the variation η0.

LEMMA 8.4.

(129) lim k;Έτ(ar) = 0.
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Proof. The first three terms in (128) are bounded quantities. Also
by the last item in (4-1) we have that

(130) μa(t°)^K« and μa(t°) = Ka if ψa(t°)<0.

Then by (130) together with the admissibility of our arcs which implies
that for r large enough

(131) ψ;<ί°)Δjc}(ί°)^0 if Φa(t°) = O

we have for each a that

- (μa(t°)~ Kα)ιK<ί°)Δx;('°)^0 (« not summed).

Then by summing, multiplying by k~2 and taking the superior limit we get

(132) lim sup k72[ - (μa (ί°) - K")^;<ί°)Δjcί(ί0)] Si 0.
r—» oo

Furthermore by the definition (4-1) of the terms λγ together with the
admissibility of our arcs we see also that

(133) lim sup /c72AγΔ/7(αr)^0
r—>oo

and by the properties of μa{t) as listed in (4) and again the admissibility
of our arcs, also that

(134) Hmsup k?

Thus all terms on the left hand side of (128) are either bounded or non
positive. Putting this statement together with the nonnegativity of
Eτ(ar) (which follows for large enough r by (11)), then we get that

(135) lim sup k~2Eτ(ar) is finite

thus proving (129) and the lemma.
By using Lemma 8.4 together with the break-up of functionals as in

(109), we are now able to prove the analogue of Lemma 9.4 of [1] which
we just state, since the proof is directly analagous to that used in [1].

LEMMA 8.5. // T(t, JC, p) is of class C near a0 and is Eτ dominated
near a0 then
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(136) lim k71[r(βπs)-y(αo,s)]= ^(ijcί).

by using (129) together with other observations obtained from (128), we are
now in position to establish most of the requirements for admissibility of the
variation η0.

9. Admissibility of the variation η 0 .

LEMMA 9.1. The variation η0 of (101) satisfies the conditions
(23-3), (23-5), (23-6), (23-7), (23-8), which are respectively

(137-1) ΨHt1)Vo(t1) = O if μ*(rV0

(137-2) ΦHt°)vUto) = O if μa(t°)ϊK°

(137-3) /;(α09τ?0) = 0 if λγϊ0 l g γ ^ p '

(137-4) / K η o ^ O if A7=0

(137-5) /;(α0, rio) = 0 p'<p^p

where yk are the indices of (22).

Proof. According to the statements used in proving Lemma 8.4
concerning the boundedness or the signs of terms in (128) we see in
particular that

(138-1) lim sup k~2 μa(tι)Δψa {t\ xr(t1)) is finite
r—> oo

(138-2) lim sup k;2[ - (μo(f°) - K«)(K<ro)Δx•('")] is finite
r—*»

and

(138-3) limsup fe72ArΔ/r(αr) is finite.
Γ—>3O

Now by an application of Taylor's Theorem together with the
convergence of ηr to η0 we see that for each a

(139-l)lim k;ιμa(tί)Δψa(t\xr(t1)) = μa(t1)φa

x(tι)r)!)(tι) (a not summed).

Thus this limit exists for each a. By summing on α, we have that the
sum of the limits exists and that by (138-1) this sum must vanish, that is

(139-2)
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However by reasoning as used in obtaining (134), for each a index the
product of the terms on the left side of (139-1) and hence also on the right
side, is nonpositive. Putting this statement together with (139-2) estab-
lishes (137-1).

Next, we see by (15) that, LΎ is Eτ dominated near a0 so that by using
Lemma 8.5 with V = Ly we see that for each γ

(140) lim kr

ιλyMy{ar) = λγ

= λγ/γ(α0, T/O) (r not summed)

where the last equality follows from (20). Thus this limit exists, for each
γ. By summing on γ and using (139-3) we see that the sum of the limits
exists and must vanish, that is

(141) 0 = lim k 'λyMyiar) = A^βo, Vo)
r—>oo

By similar statements as below (139-2), we see that for each γ

(142) λγ/ ίαo, τjo) = 0 (γ not summed).

Then by using the properties of the terms λγ together with (140) and the
admissibility of our arcs we get that (137-3) and (137-4) and (137-5) hold
for p' < p ^ p. The remainder of (137-5) follows from the admissibility
of our arcs and the definition (20).

Finally we note that the limit

(143)lim k^-ίμ. ί ί 0 )-JSΓ )^;<ί°)Δjcί(ί0)] = - (μa(t0)-Ka)ψ"x(t0)ηi>(t°)

certainly exists and then by steps similar to the above, but using (138-2),
we get that (137-2) and hence the lemma is proven.

In order to establish the admissibility of the variation η0, it remains
only to prove that properties (23-1), (23-2) and (23-4) are satisfied. The
property (23-2) follows from Taylor's Theorem together with the admis-
sibility of our arcs so that

(144) ιK<ί)τ/o(0 = 0 o n S° α = l, ,m.

The property (23-4) is proven in the following lemma:

LEMMA 9.2. The variation η0 satisfies condition (23-4).
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Proof. By the properties11 of μa (t) and by (144) we see that for each

a

(145) μα(f)<K (Oηo(O = O ί ^ ί g ί 1 (a not summed)

so that we will prove the desired result if we prove that

(146) ζ μΛ0ΨHt)vUt)dt=0.

Now, using the functions φa of (3), the definition of kτ in (69) and the
admissibility of our arcs we see that

(147) 0 g k;1 f μaψ
a(t,Xr)dt = k;1 j ^ μaψ°(t,xr)dt

= k;1 j μφtu χr)dt = fc;1 f'o μaψ
a(t, xr)dt g kτιk2

r

Thus

(148) lim k;1 Γ μaψ
a(t, xr)dt = 0.

Now by the properties of μay we also have for each a

(149) μa(t)ψa(0 = 0 f^t^t1 (a not summed)

so that we may add this to (148) and then get by Taylor's Theorem

(150) 0 = lim k;1 j o μaψ«(t,xr)dt = lim k~x £ μa[ψ«(t,xr)-ψa(t)]dt

= Mm J^ μJϊηKOdt = j ' o μaψ
a

x{t)Vo(t)dt

where ψ% indicates evaluation on the line segment t, jco(f)+ ΘΔxr(t)
0 < θ < 1 and where the last equality follows from the uniform con-
vergence of xr to JCO and ηr to η0. Thus the lemma is proven.

The last required property for the admissibility of η0 is established in
the following lemma:

11 See the remarks below (4).
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LEMMA 9.3. With f as the functions of (1-1), then the variation η0

with quantities 7jo(O> #o(O satisfies condition (23-1), that is

(151) ήέ(O = / i<ίhi(O + /XO«δ(O a.e. on [ί°, ί1]

Proof. By Taylor's Theorem together with our Δ convention

(152) x r (O-io(O = Λ'(OΔxί(O + /pfc(OΔpϊ(O + Λ ( O on [ίV 1]

where

(153) jRr(ί) - f1 (1 - β)[/xVΔjcίΔxί +2/ xyΔxJΔpϊ + foΔpkΛpk

r]dθ
J

/,/ = I , ,JV; Λ,fc = i, ,jκ:

with the arguments of the / partials being at

(154) (f,jto+0Δxr, po+ΘΔpr).

Now let s be a set on which pr converges uniformly to p0, then

(155)

where er is a constant which bounds the mixed partials of / in the
integrand of (153) and exists since xr converges uniformly to x0 and pr

converges to p0 uniformly on s.

By Lemma 5.2 the integrals ardt are uniformly (with respect to r)
J s

bounded. Then by using this fact together with: (i) the uniform con-
vergence of xr to x0, and ηr to η0, (ϋ) the uniform convergence of pr to p0

on s and (iii) the fact that limr_*» er = 0, we see that

(156) lim ί ^f& dt = 0.

Thus by (139) and (152) we obtain

(157) lim ί ή'dt = lim f [f^'-hfya^dt.
Γ-»QO J s Γ-+0O J s

Now by Theorem 6.2 and 6.3 together with (157) we have
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(158) ί ήί>dt = lim f τjtfί = lim ί [f'χlη'r +fl

P*ak

r]dt
Js r~*°° Js r~*°° Js

so that on sets s upon which p, converges uniformly to p0, we have

(159) f ήldt= ί [/i/iϊί+/>ί]Λ.
J s J s

Since pr converges [a.unif.] to p0 and (159) holds on each such set where
this convergence is uniform then for any set M

(160) ί iϊJA= ί
JM JM

and the Theorem is proven.
Thus by Lemmas 9.1 through 9.3 together with (144) we see that the

variation η 0 is admissible.

10. Proof of Theorem 3.1. We are now in position to prove
Theorem 3.1 as follows:

THEOREM 10.1. // the following two inequalities are true, then
Theorem 3.1 is true.

lim sup k;2Eτ(ar) ^ H Gp^(ak

0 - pk

0)(ah

0 - ph

0)dt ft, k = 1, , K.
r-+cc £ J t°

0 g lim sup k;2[- (μa(t0)- K^ψϊit^Δxΐit0)]

-\(μa(n-κ")φ"Mnvuto)vUt°) i,j = h ;

(where the arguments of Gp*p* are those of α0).

Proof. Referring to inequality (128) and using arguments as used in
the proof of Lemma 8.4, we see that the fifth and sixth terms of (128) are
non positive. Now assuming the truth of the above listed inequalities,
we see that (128) implies that

(161) /2(αo,τjo)^O
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which according to the hypotheses of Theorem 3.1, implies that the
variation 170 of (101) is null. According to the formula for p0 as listed in
(104), then this quantity is also null so that

(162) £ G,v(α$ " pS)(α$ - Pί)A = 0

but then by (128) again, this implies that

(163) 0 ^ lim sup k;2Eτ(ar),

which by the nonnegativity of this quantity for large r, implies that

(164) 0 = lim sup k;Έτ(ar).
r-*oo

Next by reasoning similar to that used in [1] p. 47, we see that there
is a positive number b* such that for r large enough

(165) EL(Pnpr) ^b*EL{Pr-p0, pr -p0).

Then by (11), we get that for large r,

(166) k;2Eτ(ar) iϊ bk;2 y EL(P»p,)dt

+ max ( J μaφ
a(t, xr)dt, J | μaφ

a(t, xnpr)\dtj j

^ bb*k 2 [ I ' EL(Pr - po, pr - po)dt

+ max ( J μaφ"(t, x,)dt, J \μaφ
a{t,xnp,)\d?J j

\μaφ"(t,xr,p,)\dt)}

max ( | o ^ ψ - (t, x,)dt, j o | μα<£α (ί, x,, p,
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By Lemma 5.2 together with the fact that the variation η0 is null so that pr

converges uniformly to zero, βl = 0, max f fvj|τ/o(ί)|2 = O, a n ( ^ by
superior limits of (166), we obtain:

(167)limsup k;2Eτ(ar) ^ limsup bb*k;2 \κ(ana0)

J μaψ
a(t,xr)dt, J \μaφ

a(t,xn

M 0 l l = bb*>0

which is a contradiction, thus proving the theorem and hence also
Theorem 3.1.

We now prove the second of the inequalities listed in Theorem 10.1.

LEMMA 10.1. The following inequality is true

(168) 0 ^ limsup k;2[- (μa(t0)- X:β)^.(ί0)Δjtί(ί0)]

ij = 1, -,N a = l," ,m.

Proof. According to the last property in (4-1), we see that we need
only consider those indices ά such that

(169) ψ*(t°) = O.

Then by Taylor's theorem together with the admissibility of our arcs, we
have that for each such ά

(170) 0

where ψά

x<x> indicates evaluation at an intermediate point on the line
segment [xo(t°)+ ΘΔxr(t0)] O < 0 < 1 . Now by multiplying by
- k~2(μά(t0)- Kά), taking superior limits, using the convergence of ηr(t°)

to ηo(t°) and the last property in (4-1), we get (168) for each such index a
and hence for the sum of those indices, proving the lemma.

It remains only to prove the first inequality listed in the hypothesis of
Theorem 10.1. By using arguments directly analagous to those used in
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Lemma 11.3 of [1], but with μa replacing λβ, one proves the required
inequality with liminf replacing limsup. Since lim sup § lim inf, the
required inequality is certainly true. We state this result

LEMMA 10.2. The following inequality is true

(171) limsup k-2Eτ{ar)^\^ G p V («S -Pho)(ako ~pl)dt
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