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ON COTORSION RADICALS

V. S. RAMAMURTHI AND E. A. RUTTER, JR.

Necessary and sufficient conditions are obtained for the
splitting of a hereditary cotorsion radical on the category JίR of
right R -modules. It is shown that for injective cogenerator
rings and orders in semi-simple rings, all hereditary cotorsion
radicals split. Several other questions are also discussed. These
include the relationship between cotorsion radicals for MR and

RM, and the connection between the properties of a projective
module and those of the cotorsion radical it induces.

Introduction. The notion of a cotorsion radical for the category
MR of right modules over a ring R was introduced by Beachy [3], as the
dual to the notion of a torsion radical due to Maranda [8]. A cotorsion
radical for MR is a subfunctor p of the identity functor on MR such that
p2- p and every epimorphism M-+N in MR induces an epimorphism
p(M)->ρ(N). If p is a cotorsion radical, then the class of modules M
for which p(M) - 0 is a torsion radical class; so the study of cotorsion
radicals yields information which is useful in studying TTF theories (e.g.
see Jans [6] and Tepley [12]).

A cotorsion radical p is called hereditary if it is left exact and
splitting if ρ(M) is a direct summand of M for every M in MR. This
paper continues the investigation of the heredity and splitting of cotor-
sion radicals begun in [10]. The quotient ring of any ring R with respect
to any hereditary cotorsion radical on MR is determined. A necessary
and sufficient condition for a hereditary cotorsion radical to split is given
and it is shown that for injective cogenerator rings and orders in
semisimple rings, all hereditary cotorsion radicals split. The relation-
ship between the cotorsion radicals for MR and those for RM is discussed
in the second section. A one-to-one correspondence which preserves
splitting is shown to exist between the hereditary cotorsion radicals for
MR and those for RM. The final section studies the cotorsion radicals
induced by projective modules. The question of heredity of such
radicals is shown to be related to the concepts of perfect injectors and
perfect projectors introduced by Anderson in [1]. Finally some connec-
tions between flat modules and torsion radicals are studied.

Terminology. All rings considered here have identities and all
modules are unitary. Ideal means a two-sided ideal. The injective hull
of a module M will be denoted by J5(M). A ring R is called a left
(respectively right) 1-FGFP ring, if each cyclic flat left (respectively right)
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I?-module is projective. This class of rings is useful because it includes
several well-known types of rings. For instance Noetherian rings and
semiperfect rings are 1-FGFP rings as are orders in semi-simple Artinian
rings. This list can easily be lengthened because subrings of 1-FGFP
rings are 1-FGFP rings [Jondrup [7]]. R is called a right injective
cogenerator ring, if RR is injective and every right R -module is a
submodule of a direct product of copies of RR. A semiperfect ring
(respectively left perfect ring) is a ring all of whose finitely generated
right modules (respectively all of whose right modules) have projective
covers. A ring is said to be primary decomposable if it is a finite direct
sum of left perfect rings each of which has a unique maximal two-sided
ideal.

1. Hereditary cotorsion radicals. A subfunctor p of the
identity functor on MR is called a torsion radical if p is left exact and
ρ(M/ρ(M)) = 0 for each M is MR [Maranda [8]]. p is called a cotorsion
radical, if the dual of the functor 1/ρ: M^> M/ρ(M) on MR, in the dual
category M% is a torsion radical on M R [Beachy [3]]. Beachy has shown
that, for any cotorsion radical p on MR, p(M) = M ρ(R) for every M in
MR and that the correspondence p^ρ(R) is oneone between the
cotorsion radicals on MR and the idempotent ideals of JR. It follows
from [3, Prop. 1.1] that a cotorsion radical is a torsion radical if and only
if it is left exact or equivalently p(M) = M Π ρ(N) for any two modules
M,N£LMR with M C N. Cotorsion radicals with the latter property
have been called hereditary in [Ramamurthi [10]] and the following
characterization obtained.

PROPOSITION 1.1. A cotorsion radical p on MR is hereditary if and
only if R/p(R) is left R-flat.

Let p be a torsion radical. For each right I?-module M define the
module of quotients Mp of M with respect to p by Mp/M = ρ[E(M)/M]
where M = M/p(M). Then Rp can be given a unique ring structure
which extends the ring structure of R and is called the ring of quotients of
R with respect to p. Similarly, there is induced a unique Rp -module
structure on Mp that extends its R -module structure. This process
defines a functor from MR to MRμ. When this functor is naturally
equivalent to ( )®RRP, p is called a perfect torsion radical. If p is a
hereditary cotorsion radical, then as mentioned above, p is also a torsion
radical. The next proposition shows that p is in fact a perfect torsion
radical and the quotient functor it determines is just ( )(g)RR/p(R).

PROPOSITION 1.2. Let p be a hereditary cotorsion radical for
MR. For each M in MR, the module of quotients of M with respect to p is
M/Mp(R).
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Proof Let M = M/p(M) = M/Mp(R) and X = p(E(M))ΠM.
Then p(X) = X since X Cp(E(M)) and p is hereditary. But p(X) = 0
since X C M and p(M) = 0. Thus X = 0 which means_p(£(M)) = 0 as
E(M) is an essential extension of M. _ Hence p[E(M)/M] - 0 because p
is a cotorsion radical. Thus Mp = M.

Let us say that a cotorsion radical p for MR commutes with direct
products, if p(ΠMα) = Πp(Mα) for each family {Mα} of right R -modules.

PROPOSITION 1.3. A cotorsion radical p commutes with direct prod-
ucts if and only if ρ(R) is finitely generated as a left ideal.

Proof Assume p commutes with direct products. Let I = ρ(R)
and consider TίaGIRa where each Ra = R. Since ρ(ΠjRα) = Πρ(i?α), we
have (URa) / = ΠIa where Ia = I for all a EL Hence, the element
{jία}αe/ with xa = a for all a E /, belongs to (URa) / and so is of the form
Σf=i r.fc/ for some η E ΠjRfl and bt E /. It is clear that the bt generate / as
a left ideal. The converse verification is routine.

The next corollary has been obtained, independently, by Azumaya
[2, Theorem 3] who phrased it in terms of TTF classes.

COROLLARY 1.4. A cotorsion radical p is hereditary and commutes
with direct products if and only if p(R) = Re for an idempotent e.

Proof Follows from (1.3) and (1.1) since finitely presented flat
modules are projective [5].

A cotorsion radical p is said to split a module M in MR if ρ(M) is a
direct summand of M. If p splits all M in MR, then p is called a splitting
cotorsion radical.

THEOREM 1.5. The following are equivalent on any hereditary cotor-
sion radical p on MR.

(1) p is a splitting cotorsion radical.
(2) p splits all injective modules in MR.
(3) p commutes with direct products and p(E(S)Y= 0 or E(S) for all

simple modules S in MR.
(4) ρ(R) = Re for a central idempotent e of R.

Proof I φ 4 : Let R = p(R)φK where K is a right ideal of
R. Clearly R = p(R) + RK. Since p is hereditary, p(R)DRK =
p(RK):= RK p(R). Thus p(R) is a ring direct summand of R and so
equals Re for a central idempotent e of R.

4 φ 3 : The first part follows by (1.3). To prove the second part, let
5 be a simple module in MR such that ρ(E(S)) = E(S)- e^ 0. Then
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= E(s) e(&E(S) (l-e). This implies that E(S)-(l-e) = O as
E(S) is an essential extension of S. Thus E(S) = E(S) e = ρ(E(S)).

3 => 2: If M is an injective in MR, then £(p(M))CM Thus
p(E(p(M))) = p(M) as p is hereditary. But M CΠE(Sα) for a family of
simple modules {Sa}aξΞί. So p(M)Cp[UE(Sa)] = Πp(£(S α ))-
ΠβGJE(Sβ) = N where J = {aEl; ρ(E(Sa)) = E(Sa)}. Since N is injec-
tive, E(p(M))CN and further p(N) = N. Hence p{E{p{M))) =
E(p(M)). Thus p(M») = E(p(M)) and so p splits M.

2 => 1: First note that the hypothesis is equivalent to: p(M) = M
implies ρ(E(M)) = E(M) for any M in MR. Now, let {Ma} be a family
of right R-modules with p(Ma) = Ma for each a. Then, as p is
hereditary, p(ΠMα) = (ΠMα) p(i?) is an essential submodule of ΠMα

and hence ΠMαC£(p(ΠMα)j. But, by hypothesis, p(E(p(UMa))) =
E(ρ(UMa)) so that ρ(ΠMα) = ΠM, Thus p commutes with direct
products and hence, by (1.4), D = p(l?) = Re for an idempotent e. Let
K = (I- e)R and consider p(i£) The inclusion morphism
ρ(K)^> E(p(K)) can be extended to a morphism K^> E(p(K)). Now,
f(K)CE(p(K)) K since i Γ = K But, by hypothesis, E(p(K)) =
p(E(p(K)) = E(p(K))'D. Hence f(K)CE(p(K)) D-K = O. Thus
p(X) = 0. As p is hereditary, this means that D Π K = 0 which gives
i? = D 0 iC, a ring direct sum. From this it follows that p is splitting by
[6, Theorem 2.4].

COROLLARY 1.6. Lβί R be a left 1-FGFP ring. Then the following
are equivalent on any hereditary cotorsion radical p on MR. (1) p is
splitting (2) p(E(S)) = 0 or E(S) for any simple module S in MR.

Proof Use (1.1), (1.4) and (1.5).

PROPOSITION 1.7. Let R be (i) a right self-injective cogenerator ring
or (ii) a right or left order in a semi-simple Artin ring, then all hereditary
cotorsion radicals for MR are splitting.

Proof (i) If R is a right self-injective cogenerator ring, then by
Utumi [13], there exist primitive orthogonal idempotents eu , en in R
such that each e,R contains a unique simple submodule S, and a unique
simple factor module F, = eft/ej [where / is the Jacobson radical of R]
such that eiR is the injective hull of S, and the projective cover of F, for
each i. Further, the collections {SJ and {Ft} each provide a complete set
of representatives of the isomorphism classes of simple right R -modules
so that we can assume {S(} = {JR}. Let ρ(eιR) = 0 for / = 1, , k and
ρ(etR)/ 0 for / = k + 1, , n, for a hereditary cotorsion radical p for
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MR. Then p(S ι) = 0 = p(F t) for i = l, ,Jk and p(S,)^0 for i =
fc + 1, •• ,n. Hence {SΊ, ,Sk} = {F1, ,F k} or equivalently
{Sk+1? ,Sn} = {Ffc+1, ,Fn}. Thus for k + l S i ^ n p ( F i ) ^ 0 s o t h a t

ρ(βiR) = eiR as otherwise p(eiR)CeJ and hence there exists an
epimorphism e/Λ/pfaJ?)-* efi/ej implying pfaR/eJ) = ρ(F)) = 0. This
shows that for each / = 1, , n, p(efJR) = ρ(E(5,)) = 0 or
p (*,(£) = JB(Sf). Hence the result follows from (1.6).

(ii) If R is a right or left order in a semi-simple Artin ring, then R,
being a subring of a left 1-FGFP ring, is itself a left 1-FGFP ring [Jondrup
[7]]. Hence, if p is a hereditary cotorsion radical for MR, then, by (1.1),
p(i?) = Re for an idempotent e of R. It is easily shown that e is a
central idempotent, using the fact that JR has no nonzero nilpotent
ideals. Hence p is splitting, by (4) of (1.5).

On the splitting of cotorsion radicals in commutative rings, we have
the following

PROPOSITION 1.8. Let Rbe a commutative ring. Then the following
are equivalent on any cotorsion radical p on MR.

(1) p is splitting
(2) p commutes with direct products
(3) ρ(R) is finitely generated
If, further, each projective ideal in R is finitely generated then the

above are equivalent to
(4) p is hereditary.

Proof. 1 φ 2 φ 3 by (1.3.) 3 φ 1 follows from [6, Theorem 2.4]
since p(R) is idempotent and it is well known that any finitely generated
idempotent ideal in a commutative ring is generated by an
idempotent. The last part of the proposition follows from (1.1) and the
fact that if each projective ideal of a commutative ring is finitely
generated, then each cyclic fiat module over R is projective [Vasconcelos
[14]].

REMARK 1. 1 and 4 of the above proposition need not be equiva-
lent in general. For instance, if R is a commutative von Neumann
regular ring which is not Artin semi-simple, then R has a nonfinitely
generated ideal K. If p is the cotorsion radical defined by ρ(M) = MK
for every R -module M then p is a hereditary cotorsion radical that is not
splitting. This example also shows that the hypothesis 'left 1-FGFP'
cannot be dropped in Corollary (1.6). For any simple module over R is
injective and hence (2) of (1-6) is satisfied but (1) is not true for p.

REMARK 2. It seems worthwhile pointing out that the heredity of a
cotorsion radical and the splitting of a hereditary cotorsion radical are
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completely determined by their behaviour with respect to RR. For, a
cotorsion radical p for MR is hereditary if and only if ρ{M) Γϊ N = p(N)
for all modules M, N in JίR with N CM. However, by (1.1), it is enough
to check this condition for RR since it is well known that, if K is a left
ideal of R, then, the left module R/K is flat if and only if A Π K = AK
for all right ideals A of R. Thus RR is a test module for heredity.
Similarly, if p is a hereditary cotorsion radical for MR, then RR is a test
module for the splitting of p. For, if p(R) is a direct summand of /?R, i.e.
j R = p ( J £ ) 0 J for a right ideal /, then R = p(R) + RI and by the
heredity of p, ρ(i?)Π RI = 0. Thus ρ(jR) is generated by a central
idempotent and p is splitting.

2. Cotorsion radicals for MR and R J ί . Any cotorsion
radical p for ΛίΛ induces a cotorsion radical p° on Rtiί given by
p°(M) = ρ(R)' M for each M in RJ£. The correspondence p-* p° is
one-one between cotorsion radicals for MR and the cotorsion radicals for

RJί. It is clear that if p splits, then p° is hereditary. Conversely, if p°
splits, then p = (ρ°)° is hereditary. The requirement that both p and p°
be hereditary can be quite strong, as the following proposition shows:

PROPOSITION 2.1. Let R be a right and left l-FGFP ring and p be a
hereditary cotorsion radical for MR. Then p splits if and only if ρ° is
hereditary.

Proof. As p is hereditary, ρ(R) = Re for an idempotent e. If ρ° is
also hereditary, then ρ(R) = fR for an idempotent /. Hence p(R) is a
ring direct summand of i? and hence p splits. The converse follows by
(1.1).

COROLLARY 2.2. Let R be a right and left l-FGFP ring. Then, for
any cotorsion radical p on MR, both p and ρ° are hereditary if and only if
both p and ρ° split.

Apart from the above correspondence between arbitrary cotorsion
radicals, a correspondence between the hereditary cotorsion radicals for
MR and those for RM can be obtained for a right and left l-FGFP ring as
follows.

PROPOSITION 2.3. Let R be a right and left l-FGFP ring, then there
exists a one-one correspondence between (i) hereditary cotorsion radicals
for MR (ii) hereditary cotorsion radicals for RM and (iii) idempotents e of R
such that Re is an ideal. This correspondence is such that the correspond-
ing hereditary cotorsion radicals split together and this happens if and only
if the corresponding idempotent is central.
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Proof. If p is a hereditary cotorsion radical for MR, then p(i?) = Re
for an idempotent e. Since (1 - e)R is an ideal which is also idempo-
tent, ρ*(M) = (ί-e)R M for each M in RM defines a hereditary
cotorsion radical for RM. The correspondence p -» p * is clearly one-one
between the hereditary cotorsion radicals for JίR and those for RM. If p
splits, then ρ(R) = fR for an idempotent / which means that e - f is a
central idempotent, so that (1 - e) is also a central idempotent and hence
p*(jR) splits.

COROLLARY 2.4. Lei R be a right and left l-FGFP ring. If all
hereditary cotorsion radicals for MR split, then, for any idempotent e of R,
Re is an ideal if and only if e is a central idempotent.

REMARK. In view of (i) of (1.7), this Corollary generalizes Proposi-
tion (4.4) of Anderson [1] where the same conclusion is derived for
quasi-Frobenius rings.

3. Cotorsion radicals induced by projective modules.
Let P be a projective right R -module. Beachy [3] defined for any M in
MR, PP(M) - TrM(P) = the sum of all the homomorphic images of P in M,
and showed that pP is a cotorsion radical for MR with pP(JR) = TrR(P) =
trace ideal of P in R. Beachy [3, Theorem 1.8] proved that if every
idempotent ideal of JR has a projective cover, all cotorsion radicals for
MR are of the form ρP for projective modules P. Right perfect rings and
semiperfect right Noetherian rings are examples of such rings. We now
point out another class of rings with this property. A ring JR is said to be
right (left) N(Γhereditary if every countably generated right (left) ideal of
jR is projective.

PROPOSITION 3.1. // JR is a right and left ^-hereditary ring (in
particular if R is von Neumann regular), then each cotorsion radical for
MR is of the form ρP for a projective module P in MR.

Proof. By Corollary 5.3 of Bergman [4], each idempotent ideal of
such a ring is the trace ideal of a projective module. Hence if p is a
cotorsion radical for MR, then p(jR) = TrP(R) for some projective right
module P, so that, for any module M in MR, p(M) = M p(l?) =
M - TrR(P) = TrM(P) = pP(M). Thus p = pP.

We indicate now some situations where ρP is hereditary. It is clear
from (1.1) that, if JR is a left l-FGFP ring, then pP is hereditary for a
projective right module P if and only if TrR(P) = Re for an idempotent e
and that if JR is a von Neumann regular ring, then, for every projective
module P, ρP is hereditary. We give a generalization of the latter fact
now. A right JR-module P has been called regular if P is projective and
every homomorphic image of P is flat [Ware [15]].
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PROPOSITION 3.2. // P is a regular module, then pP is hereditary.

Proof, It suffices to show that, for each a in T ( = TrR (P)), there is
x in T such that a = ax. For this implies that R/T is left i?-flat and
hence (1.1) applies. So let aET. Then a=Σ\f{pι) with
f EHorn(P,JR) and p, E P. As P is regular, by Theorem 2.3 of Zel-
manowitz [16], for every p in P, there is ί in T such that p = pt Thus
there is ίj in T with pι=zpιtί and ί2 in T with p2-p2U-
(p2- p2U)t2. Hence p 2 = Pi{tλ + t2- Ut2) and clearly pλ = pi(ίi + t2- tλt2)

and ίj 4 - 1 2 - tλt2E. T. Proceeding thus, we get xET with pt = piX for

i = 1,2,3, , k. Evidently a - ax.

PROPOSITION 3.3. Let R be a right nonsingular ring (i.e. a ring with

zero right singular ideal), and P be a projective right R-module which is
also infective. Then the following are equivalent (1) P is a regular module
(2) ρP is hereditary (3) TrR(P) is a von Neumann regular ring (not
necessarily with identity).

Proof I φ 2 : follows from Proposition 3.2.
2 φ 3: Let T = TrR(P) and aET.
Then aR = ΣfιEHomiP,aR)fi (P) as pP is hereditary. Hence there exists

an epimorphism from a direct sum Q of a finite number of copies of P, to
aR. As Q is injective and aR is nonsingular, the kernel of this
epimorphism has no proper essential extensions and hence is a direct
summand of Q. In other words, aR is injective and so aR = eR for an
idempotent e. Since aR = aT, this gives a = axa for x E T.

3 => 1: Let / be the collection of all idempotents in TrR(P). Then
TrR(P) = ΣeaEIReaR = Σ,TrR(eaR)= TrR(Σj ®eaR) = TrR(Q) where
O — Σ7 0 eaR. Hence P is a homomorphic image of a direct sum of
copies of Q and as Q is a direct sum of the regular modules eaR and
hence a regular module, so is P.

EXAMPLE. Let JR be the ring of 2 x 2 lower triangular matrices over

a field F and let e = L . . i? is a hereditary ring, eR is a finitely

generated, faithful projective module which is also injective and
TrR(eR)= eR. Since ρeR commutes with direct products but e is not a
central idempotent it follows by (1.4), that peR is not hereditary.

For the rest of this section, we fix the following notation: P is a
finitely generated projective right R-module, T = TrR(P), S = End (PR)
and P* = HomR(P, JR). It is known that P* is a finitely generated,
projective left JR-module with T = TrR(P*) and 5 = End*(P*). If p = pP,
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then Pφ = ρ° in the notation of the previous section. Let F be the
functor P (g)R ( - ) : RJt-+ s Jί. Morita has shown that if P is a finitely
generated projective genrator, then F is a category equivalence, preserv-
ing in particular, projective covers and injective envelopes. In [1],
Anderson considered the question: if P were not necessarily a generator,
then under what conditions on P, will F preserve projective covers and
injective envelopes? This question is now shown to be related to the
heredity of the cotorsion radicals p and p°.

PROPOSITION 3.5. F preserves injective envelopes if and only p° is
hereditary.

Proof. By Theorem 2.4 of Anderson [1], F preserves injective
envelopes if and only if x E Tx for every x E Γ. The latter condition is
equivalent to: R/T is right i?-flat, which is, in turn, equivalent to: p° is
hereditary, by the mirror dual of (1.1).

COROLLARY 3.6. Let P be a regular and injective module. Then S
is a self-injective, von Neumann regular ring.

Proof By (3.2), p is hereditary. Hence, by the mirror dual of (3.5)
the functor ( - ) 0 R P * : MR~>MS preserves injectives. As P is injec-
tive, this shows that S — P ®RP* is is self-injective. S is von Neumann
regular, by Theorem 3.6 of Ware [15].

REMARK. This extends Corollary (2.6) of Anderson [1].

We close with a remark on the connection between torsion radicals
and flat modules. Let us say that a torsion radical p on JίR is given by a
flat module if there is a flat left R -module Q such that, for any M E MR,
p(M) = M if and only if M (g)R 0 = 0 . Torsion radicals of this type and
their associated quotient rings were studied by Morita in [9]. In [11]
Shelter and Roberts considered the question: which torsion radicals are
given by flat modules? They have shown that: (i) If R is any ring and p a
torsion radical on MR such that the Gabriel filter associated with p has a
countable base, then p is given by a flat module, (ii) If JR is a
commutative Noetherian ring, then every torsion radical on MR is given
by a flat module. In this connection, we have

PROPOSITION 1.7. (i) If R is any ring and p is a hereditary cotorsion
radical on MR, then p is given by a flat module, (ii) // R is a primary
decomposable ring, then every torsion radical on MR is given by a flat
module.
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Proof, (i) If p is a cotorsion radical on MR, then ρ(M) = M <£>
M®R(R/p(R)) = 0 because p(M) = Mp(R) and M®R(R/p(R))=*
M/M p(R). If p is hereditary, then R/p(R) is left R-flat. So p is given
by the flat module R/ρ(R).

(ii) If R were a primary decomposable ring, then, by Teply [12,
Theorem 3.1 and 3.3] every torsion radical on MR is a hereditary
cotorsion radical. Hence, by (i) every torsion radical on MR is given by a
flat module.
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