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CO-RADICAL EXTENSION OF PI RINGS

MAURICE CHACRON

Throughout this paper JR will denote any associative ring
(without necessarily 1) with a fixed subring A such that for each
element x of R, there is a polynomial gx(t) (depending on x)
having integral coefficients so that the element x - x2 g(x) must
be in A, say, R is a co-radical extension of the ring A, or JR is
co-radical over A. In this paper it is shown that if A is PI (ring
with polynomial identity) then so must be JR.

Prime examples of co-radical extensions are the rings JR which are
co-radical over their centers Z = Z(R) studied by I. N. Herstein, and the
algebras JR over finite fields where A = A (JR) is the subring generated by
both the nilpotent and transcendental elements.

Essential to the paper will be both the techniques used by B.
Felzenswalb, and by Herstein and L. Rowen in the study of the radical
situation, that is, for each x E JR, xn{x)EA, and a recent commutativity
result asserting that for any ring JR the centralizer of the subring A (no PI
assumption) must be precisely the center Z = Z(R) of JR.

Conventions. The center of the ring R is denoted by Z =
Z(JR). The centralizer of the subring A in the ring JR is denoted by
CR(A) (= {α, a E JR, xa = αx, all xeR}). All polynomial gx(t) considered
here are polynomials with integer coefficients.

LEMMA 1. All nilpotent elements of the ring R must be in A (no
assumption on char (R)).

Proof. Given any x E R and any I c ^ l w e claim that we can find a
polynomial with integer coefficients, gk,x(t), so that x - x2k gKx(x)E
A. If k = 1, the assertion is just our basic assumption. If true for fc,
then the assertion is true for k + 1. In fact let xk = x2k gk,x(x)> We can
find gx(t) so that xk-(xkf- gi(xk)E A. Combining these relations we
obtain x - x2<t+1 gk+ltX(x)E A, where gk+ι,x(t) = g*,*(*) giO2* g*,*(0) ftis

now evident that if x is nilpotent, then x E A.

LEMMA 2. Let a, b, x, y E JR with xy = 0 and aAb = 0. Then
ayRxb = 0.

Proof. It is clear that yRx is nil, so, by Lemma 1, must be contained
in A. Thus ayRxb C αA6 = 0, and ayRxb - 0 follows.
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LEMMA 3. Suppose that R is either torsion-free or has characteristic
p, where p is a prime number If R has no nilpotent ideals, then A has no
nilpotent ideals.

Proof. It suffices to show that aAa = 0 with a2 = 0 implies a = 0.
Let x E JR. Since, x - x2 g(jc)E A, a(x - x2g(x))a = 0. Amongst

all nonconstant polynomials h(t) (with integers or integers modulo p
coefficients) satisfying the relation

(ax)rah(x)a = 0, some r ^ 1,

choose one /ι(ί) having least number of nonzero coefficients. Let
h(t) = ro+ rxt + + rkt

k, rk^ 0. We have for some r, (αx)Γα(/ι(jt)- ro)α
= (ax)rah{x)a - (ax)rr0a

2 = 0. By the choice of h(t), r0 = 0. Suppose that
k > 1. For y = (rt + r2jc + + rkx

k~ι)a, {{ax)rax)y = (αx)rαfι(jc)α = 0.
Setting z = (αx)rαx, we get z y = 0. In view of Lemma 2, ayRza = 0,
so, zαyi?zαy = 0; consequently, zay = 0, that is, (αjc)r+1α x
(rx + r ^ + + Γfcjc*"1)*! = 0 . Since ^ = 0, this gives {ax)r^a x
(r2x + + ΓfcX*"1)** = 0. If h^f) = r2t -f + rkx

k~\ but ^ ^ 0, we get
then a polynomial with fewer number of nonzero coefficients, a con-
tradiction. We must conclude that rλ = 0. Repeating eventually k - 2
times, we see that h(t) = rkt

k, rk^ 0, telling us that rfe(αx)r axka = 0, that
is, (ax)r axka = 0. Choose k minimal for the relation (ax)r axka = 0,
some r ^ 1. If fe g 1, then repeating the argument above for z =
(ax)rax, yi = x f c - 1α (zy! = 0), we get zayλ = (αxy^αjc*"1^ a contradiction.
We must conclude that (ax)raxa = 0, some r ^ l . From this ax is
nilpotent, all x E i?.

Since αi? is nil, xαi? is nil. By Lemma 1, jcαi? C A, all x E JR. It
follows that i?αi? C A, whence aRaRa = 0 , so, (α£) 3 = 0. From this
aR = 0, and a - 0 follows. With this the lemma is proved.

Our next lemma deals with the prime case. Here, again, the
assumption on char R is automatically verified. Since any prime ring R
has evidently no nilpotent ideals Lemma 3 yields that A must be also
with no nilpotent ideals, and it is now convenient to get the primeness of
the ring A. This is the

LEMMA 4. If R is prime, then A is also prime.

Proof. Let a,bEA with aAb = 0. We have abAab C aAb = 0,
so, abAab = 0, whence ab = 0.

Let x E A. For some polynomial gx(t)7 x - x2 gx(x)EA, whence
a(x - JC2 gx(x))b = 0. Amongst these nonconstant polynomials with
integer or integers modulo p coefficients, choose one h(t) with the least
number of nonzero coefficients. Let h (t) = r0 + rλt 4- + rkt

k,
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rk/0. We have a(h(x)- ro)b = 0. By the choice of h(x), ro =
0. Suppose that k > 1. Let y = (rt + r2x + + rkx

k~λ)b, and let z =
ax. We have zy = ah(x)b = 0. By Lemma 2, ayRzb = 0. Since 1? is
prime, αy = 0 or zb = 0, which is to say, a(rλ + r2x + -I- rkx

k~ι)b = 0 or
αx/> = 0. If αx/> = 0, then by the choice of h (ί), r0 = η = = rk-λ = 0. If
axb 7^ 0, then a(rλ + r2x + + rkx

kl)b = 0. Because αfe = 0, this gives
a(r2x + + rkx

k~λ)b = 0. By the choice of h(t), rλ = 0. All in all, we
have seen that if k > 1, then r0 = rλ = 0. Repeating enough times we get
that r o = η = = Γk-! = 0, so that h(t)=rkt

k, and hence r f c αx k b=0.
From this axkb = b = 0. Choose k minimum for this relation. If k > 1,
setting z = αx*"1, y, = xb we get z ^ = 0. Repeating the argument above
we see that ayλ = axb = 0 or zλa = axk~ιa — 0. By the choice of k, k = 1
necessarily. This means that axb = 0. Since this holds for all x E R,
a = 0 or 6 = 0 follows. The lemma is proved.

We are now in a position to show our final result.

THEOREM. Let R be a ring with a fixed subring A. If R is
co-radical over A (in the sense that x - x2 g(x) E A for all x E R, where
g(t) is a polynomial with integer coefficients depending on x) and if A
satisfies a polynomial identity of coefficients ±1 of degree d, then R
satisfies a polynomial identity of coefficients ±1 of degree at most d2.

Proof. First we reduce to the case where R has nilpotent
ideals. In fact let N be the sum of all nilpotent ideals of R. Since N is
certainly nil, N C Λ , follows (Lemma 1). Hence N satisfies the polyno-
mial identity in A. If we could prove that the factor ring R/N satisfies
the standard identity of degree rf, we would be then done.

Our second reduction will be to show that if R is a prime ring as in
Theorem, then i? satisfies the standard identity of degree d. The
reduction follows immediately from the well-known fact that if R has no
nilpotent ideals, then R is a subdirect product of prime rings. Summariz-
ing, the theorem reduces to showing that if R is a prime co-radical
extension of a P/-subring A of degree d, then R satisfies the standard
identity of degree d.

By Lemma 4, A is a prime PJ-ring. By a well-known result, A
satisfies the standard identity of degree d. Perform the standard mul-
tilinear polynomial p(tu ί2, * * , U) = [tu , td] on bu b2, , bd, where the
bt 's are in the subring A generated by A and the center Z of R. Since a
typical element b in A is a linear combination of elements in A with
coefficients λ integers or in Z, by the multilinearity of the polynomial
[fi, , i d ] , w e g e t [bι,-',bd] = Σ ι = i ι u . , l d ) λ ι [ a i i , - - , a l d \ , s o , A s a t i s f i e s
the standard identity of degree d. Since R is evidently co-radical over
A, A is prime. This shows that without loss of generality ADZ.

Let B ={6, ba = ab, all a E A } = CR(A). Given any x<ΞR, we
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have JC - jc2 g(jc)EΛ, so, b commutes with χ-x2g(x). By [1,
Theorem 1], b G Z, all b E B. Thus CR(A) = Z. In particular the
center of A is precisely the center Z of R.

Now the center of a prime PI ring is not trivial. Since A is a prime
PI ring, Z is then not trivial. Localize R with respect to Z * = Z - {0}\,
Let R be the ring of fractions of JR, let A be the expansion of A, and let B
be the expansion of CR (A). _ Since we localized with respect to Z, the
center of A, it is known that A is a simple finite dimensional algebra over
its center Z = (Z z~\ z7^ 0, z E Z). (Formanek, Posner). Let x =
x z~x E CR(A), x E JR. It is clear_that x centralizes A, whence x E
CR(A) = Z, which forces x to be in Z. Thus, again, CR(A) = Z. All in
all, A is a central simple finite^ dimensional algebra over the field Z, die
center of the over-algebra_ i?, and_ CR (A) = Z. It follows that R ~
A ® z G ( Λ ) = A (Z)zZ~ A, and i? satisfies the standard identity of
degree d. Hence R C R satisfies the standard identity of degree
ά. With this the theorem is now proved.

To conclude let us observe that the transfer properties in Lemmas 2
and 3 can be reversed and established in the general set up (a la C. Faith)
of algebras R over commutative rings with 1, in which, given any x E R,
x - x2- gx(x)G A, where gx(t) is a polynomial over Φ. But obviously
Theorem is false under this setting. What makes the case Φ = Z, (the
integers) work is, as the reader has already guessed, that for such choice
of Φ we have at our disposal the commutativity fact that if a E JR
commutes with all x - x2 gx(x)> x ranging over JR, then a E Z(R) in, at
least, the prime case. Under the latter assumption, we can certainly
extend Theorem from rings to Φ-rings R.
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