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SUBGROUPS OF FINITE INDEX
IN PROFINITE GROUPS

MICHAEL P. ANDERSON

A profinite group is called strongly complete if every
subgroup of finite index is open and of type (AF) if it has only
finitely many subgroups of any fixed index. In this paper it is
shown that a topologically finitely generated abelian by
pro-nilpotent profinite group is strongly complete, and that a
pro-solvable profinite group is strongly complete if is of type
(AF).

In [6] it is shown that every strongly complete group is of type
(AF). The proof of the converse of this result for pro-solvable groups
rests on two facts. The first is that any finite quotient of a pro-solvable
profinite group is solvable. The second is that any measurable subgroup
of finite index in a profinite group is open. In particular, any verbal
subgroup of finite index is open.

Lazard ([4], Chap. III, 3.) has shown that every pro-p-group which
admits a p-adic analytic structure is strongly complete and Serre [8] has
extended this result to all topologically finitely generated pro-p-groups.
The proof given here that topologically finitely generated abelian by
pro-nilpotent groups are strongly complete combines Serre’s technique
with a similar technique used to prove the result for metabelian profinite
groups. All these proofs rest on the fact that the commutator subgroup
of the group in question is closed.

The paper is concluded with some examples and a remark on the
relationship of the problems considered here with some problems in the
theory of finite groups.

I would like to thank Prof. Walter Feit and Prof. Roger Howe for
discussions on this work. I would also like to thank the referee for
suggesting that Theorem 3 be strengthened to include Serre’s result and
for forwarding the letter of Serre to me.

1. Abstract properties of profinite groups. Let G bea
profinite group. We will denote the order of G (cf. [7]) by 0o(G). If x
is an element of G we define the exponent of x to be the order of the
closed subgroup of G generated by x.

Let G be the completion of the abstract group G for the topology
having as neighborhood basis of the identity the subgroups of finite
index. There is a natural homomorphism G — G. Since G is universal
for continuous homomorphisms of the discrete group G to profinite
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groups, we have a natural continuous homomorphism G — G where G
is given its initial profinite topology. The reader may easily verify the
following result.

PROPOSITION 1. There is an exact sequence of profinite groups and
continuous homomorphisms (e)— K — G — G — (e). Moreover the ca-
nonical homomorphism G — G splits this sequence and is continuous if
and only if K = e i.e. G is strongly complete.

In view of the above proposition it makes sense to ask if an abstract
group is strongly complete.

We now verify that an extension of two strongly complete groups is
strongly complete. The same result holds for groups of type (AF).

PrOPOSITION 2. Let (¢)— G'— G — G"—(e) be an exact se-
quence of groups. If G’ and G" are strongly complete, then G is strongly
complete. If G is a strongly complete profinite group and G' is a closed
subgroup, then G" is strongly complete.

Proof. The homomorphisms G'— G’ and G"— G" are isomorph-
isms by assumption. Thus by [1] Proposition 2 the injective map G — G
must be surjective and so an isomorphism. A similar argument proves
the second assertion.

Let G and G’ be profinite groups such that G is strongly complete,
and let h: G — G'be a homomorphism. The inverse image of any open
subgroup of G’ under h is of finite index in G. Since G is strongly
complete, this subgroup must be open and thus h must be
continuous. We have proven.

ProposITION 3. Let G and G' be profinite groups such that G is
strongly complete. Then any homomorphism G — G' is continuous.

CoROLLARY. Let G be strongly complete and M a countable residu -
ally finite group (e.g. the group of integral points of a matrix group over a
number field). Then any homomorphism G — M has finite image.

Proof. Since M is residually finite, the image of G — M is the same
as the image of G— M. By Proposition 3, G — M is continuous and
thus has closed image. Since M is countable, the image is at most a
countable set. Thus the image is a finite set.

The next theorem shows that the order of a profinite group is an
invariant of the underlying abstract group.

THEOREM 1. Let G be a profinite group and G' C G a subgroup of
finite index. Then [G: G'] divides o(G) and thus o(G)= o(G).
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Proof. 1t suffices to check the first statement for G’ a normal
subgroup of finite index. Let p be a prime dividing the order of the
finite group G/G’, and let x be an element of G/G’ such that x is of
exponent p. If y is an element of G projecting to x, then, since
topologically finitely generated profinite abelian groups are strongly
complete, p divides the exponent of y and thus divides o(G). If 0(G) is
divisible by an infinite power of p, we are done. If the maximal power of
p dividing o(G) is p" with n finite, we can find an open subgroup
U C G such that (p,o(U))=1. But then by the above argument,
(p,[U: UNG’'])=1 and thus p" divides [G: U].

REMARK. One should perhaps compare the above result with the
fact that a compact group is connected if and only if it is divisible. In
this regard note also that the above argument shows that an element x in
G is contained in a Sylow p-subgroup of G if and only if it is n-divisible
for all (n,p)=1.

CoROLLARY. Let G be a profinite group such that for all primes p the
Sylow p-subgroups of G are finite. Then G is strongly complete.

The next result will give the criterion used in the following section to
determine when subgroups of finite index in pro-solvable profinite groups
are open. We let u denote the normalized Haar measure on the
compact group G. We refer to [5] for the definition of a verbal
subgroup.

ProproSITION 4. Let G be a profinite group and G' a verbal subgroup
of G. Then G' is open in G if and only if it is of finite index.

Proof. Any open subgroup in G is of finite index, so it suffices to
check that if G’ is of finite index, then it is open. G’ is a countable
union of closed subsets of G. Thus G’ is a Borel set and in particular is
measurable. If G'is of finite index, u(G’) > 0 because G is covered by
a finite number of translates of G’. But then G’ must contain an open
subgroup of G (cf. [2] pg. 296) and thus must itself be open.

If G is a profinite group, we let Hom (G, Z/nZ) denote the set of
homomorphisms from G to the cyclic group of order n and
Hom...(G, Z/nZ) denote the subset of continuous homomorphisms.

PropOSITION 5. Let G be a profinite group such that the set
Hom(G, Z/nZ) is finite. Then Hom..(G, Z/nZ)=Hom(G, Z/nZ) i.e.

every homomophism is continuous.

Proof. Let G’ be the verbal subgroup of G generated by the words
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[X, Y]=X"Y"'XY and X". Then G’ is the intersection of the kernels
of all the homomorphisms from G to Z/nZ. By assumption G’ is of
finite index in G, and thus by Proposition 4, G' is open in G. Thus the
result follows.

2. Pro-solvable profinite groups. We say that a profinite
group is pro-solvable if it is the inverse limit of finite solvable groups. If
G is a pro-finite group and p is a prime number, we define a Sylow
p-complement in G to be a closed subgroup P’ C G such that p does not
divide o(P') and [G: P'] is a power of p. The following is a straightfor-
ward profinite extension of a theorem of P. Hall (cf. [3] pp. 185-189).

PROPOSITION 6. A profinite group G is pro-solvable if and only if G
has a Sylow p-complement for each prime p. If P is a Sylow p-subgroup
and P’ is a Sylow p-complement, then G = PP’ i.e. every element x in G
admits a unique representation x = yz with y in P and z in P’.

A direct consequence of this is the following proposition.

ProprosiTiION 7. Let G be a pro-solvable group and G'C G a
nom al subgroup of finite index. Then G/G' is a finite solvable group.

Proof. We will verify that G/G' has a Sylow p-complement for
each p. Let P be a Sylow p-subgroup of G and P’ a Sylow p-
complement. Then

[G: G| =[P: PN G'][P": P'NG].

By Theorem 1, [P: P N G'] is a power of p and [P’: P'N G'] is prime to
p. Thus P//P'N G'is a Sylow p-complement in G/G'.

COROLLARY. A profinite group G is pro-solvable if and only if G is
pro-solvable.

We are now ready to prove the following.

THEOREM 2. A pro-solvable profinite group is strongly complete if
and only if it is of type (AF).

Proof. As was pointed out in the introduction, the fact that a
strongly complete group is of type (AF) was shown by Peterson in
[6]. In the case of a pro-solvable group the essential fact is that the
double dual of an infinite dimensional vector space over a finite field is
strictly larger than the dimension of the space. To prove the converse
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implication we use Proposition 5 and Proposition 7 and argue by
induction. Let G' be a normal subgroup of finite index in G. G/G"is
solvable by Proposition 7. If G/G’ is abelian, then G’ is open by
Proposition 5. Now use induction on the length of the derived series of
G/G'.

We. will now prove a theorem giving a sufficient condition for a
group to be strongly complete. After some preliminary conventions,
the proof begins with a lemma on commutators.

Let G be a profinite group and N a closed normal subgroup of
G. For g and g’ elements of G we use the notation

g =g Mod N

to mean that g = g’'n where n is an element of N. We denote the
closure of the commutator group [G, N] in N by [G, N] =[G, N}, and
we define inductively [G, N]i., =[G,[G, N].]. We define [G, N].=

N G, NJ.. Clearly, for any finite group [G, [G, N].] = G, N].. A simple
argument, which will be left to the reader, shows that the same result is
true for any profinite group G.

A profinite group is called pro-nilpotent if it is the inverse limit of
finite nilpotent groups. G is pro-nilpotent if and only if [G, G].=
(e). We say that a profinite group G is abelian by pro-nilpotent if G has
a closed normal abelian subgroup A, such that G/A is pro-nilpotent. G
is abelian by pro-nilpotent if and only if [G, G]. is abelain.

LEmMA. Let G be a profinite group with topological generators
X1, ", X4 and let N be a normal subgroup of G.  Then for any w in[G, N|
and every k = o there exist n,- -+, n, in N such that:

(I w=[x,n] - [xsn] Mod [N,[G, N]i]

2y w=[x,n] - [x;n] Mod [[G, N], [G, N]i]

and there exist m,, - - -, m, in [G, N].. such that

) w=[x,n] - [x4ndl
X [x,,m] - [xs my] Mod [[G, N].,[G, N].].

Proof. We will proceed by induction starting with (1),. For all x
and y in G and n and m in N we have the following commutator
formulas:

©0) [xyl=x""y'xy
(i [xy,n]=[y,n*][x, n]
(@) [xn]=[n""x]
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(iii) [n,x]=[x,n7][[x,n],n""] = [x,n"|Mod [N,[G, N]]
() [n n]ly,n'] = [y, n’l[x,n] Mod [[G, N],[G, N]]
(v) [x,n'}[x,n] = [x,nn'][n’,[x,n]] = [x, nn’] Mod [N, [G, N1].

The x, generate a dense subgroup G’ C G, and the commutator
group [G’, N]is dense in [G, N]. Since the set of elements of the form

[x1,n] - [xs na]w’ with n in N and w’ in [N, [ G, N1]] is closed, it suffices
to prove the result for w in [G’, N] i.e. for finite products of elements of
the form [g’, n] and [n, g'], where g’ is a finite product of elements of the
form x, and x;'. But by (i)-(iii) any basic commutator can be put in the
required form and by (iii)—(v) the elements of the required form
constitute a subgroup. Thus (1), is proven.

Now we will show that (1), implies (1),., and (2),. By hypothesis
any w in [G,N] is of the form [x,, n]---[xsnw’ with w' in

[N,[G, N].]. But [N, [G N]i] is contained in [G,[G, N]i] and thus

taking N to be (G, N]k in (1)1 we see that there exist m; in [G, N], such
that

w' =[x, m]- - [xs, ms] Mod [[G, N]., [G, [G, N]«]]

and thus

w =[x, ni] - [ x4 ng][x0, my] - - - X0, myg] Mod [[G, N1, [G, [G, N1 ]].

For x and y in G, n in N, and m in [G, N], we have the following
commutator formulas:

(1) [x’ n][))7 m] = [y’ m][x’ n] Mod [[G’ N]’ [G7 N]k+1]
(i) [x,n][x,m] =[x,nm]Mod [N, [G, N],.1]
(i) [x,n][x,m] = [x,nm] Mod [[G, N], [G, N].].

By (i) and (ii) we have

w = [x,, nlm]] e [xd, ndmd] Mod [M [G, N]k+l]

and thus (1),., is proven. By (i) and (iii) we have

w =[x, nm,]- - [xs nams] Mod [[G, N1, [G, N].]

and thus (2), is proven.
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We will now demonstrate (3), (2). and (1).. For each k choose n.
in N such that

w =[x, n, ] [xs nax ] Mod [N, [G, N]i].

For each i choose an accumulation point n, of the sequence n,,. Then
for all [ = k we have

w =[xy, ny,] - [xs na ] Mod [N, [G, N]i].

Thus by continuity of the group operations, we have for all k -

w =[x, n] - [x4 ns] Mod [N, [G, N].]-

Therefore w =[x, ny] - - - [xs, na]w’ where w' lies in M, [N, [G, N].] and

thus _in [G,N].. As was remarked previously, [G,[G, N].]=

[G, N].. Thus taking [G, N]. for N in (1), there exist m, in [G, N]. such
that

w' = [x,, my] - [xs ms] Mod [[G, N}, [G, NI.].

Therefore

w =[xy, 0] [Xs na][x1, M) - - [x4, mg] Mod [[G, N]., [G, N].]
which demonstrates (3).

For x and y in G, n in N, and m in [G, N].. we have:

@) [xn]ly,m]=[y,n ][x,n]Mod [[G, N], [G, N].]

(i) [x,n][x,m]=[x,nm]Mod[[G, N], [G, N].].

Therefore

w =[xy, nymy] - - - x4 nams] Mod [[G, N, [G, N1].]

which demonstrates (2).. and thus (1)..
The lemma will be used in the proof of the next theorem through the
following result.

LEMMA'. Let G and N be as above and assume [G,N]. is
abelian. Then [G, N] is closed.
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Proof. By (3), every element of [G, N] is the product of at most 2d
basic commutators [g, n], and thus [G, N] is contained in [G, N].

REMARK. In a preliminary version of this paper the above Lemma
and Lemma’ were demonstrated for G metabelian and N =[G, G]. In
this case [N, [G, N]] = (e) and so everything reduces to (1).. In[8] Serre
proves the above Lemma and Lemma' in the case G a pro-p-group and
N = G _and he remarks that Lemma’ is true for N =[G, G].. In this
case [G, G].. = (e) so that everything reduces to (1).. The idea of Serre’s
proof is essentially the same as above but uses the language of Lie
algebras. Combining (1). with N = G and (1), with N =[G, G}.. ena-
bles us to prove Theorem 3.

We now state the theorem.

THEOREM 3. A topologically finitely generated abelian by pro-
nilpotent group is strongly complete.

Proof. Let G be a topologically finitely generated profinite group
and G’ a normal subgroup of finite index in G. By Proposition 7, G/G'
is solvable. Since any open subgroup of G is topologically finitely
generated and abelian by pro-nilpotnet, by induction on the length of the
derived series of G/G' it suffices to consider G’ such that G/G’ is
abelian. Since topologically finitely generated abelian profinite groups
are strongly complete, it suffices to show that G’ contains the closure of
the commutator subgroup of G. But by hypothesis [G, G]. is abelian,
and thus by Lemma [G, G] is closed.

We now derive a corollary which is a slight improvement of Serre’s
result. We recall that a profinite group is said to be of type (F) if it has
only finitely many open subgroups of any fixed index (cf. [7]). In general
this condition is weaker than being topologically finitely generated but
for pro-p-groups they are equivalent.

COROLLARY. A pro-nilpotent profinite group is strongly complete if
and only if it is of type (F).

Proof. Arguing as before, we may reduce to the case where G'is a
normal subgroup of prime index in G. G = G, X G, where G, is the
unique Sylow p subgroup of G, and G, is the unique Sylow p comple-
ment of G,. Since G, has order prime to p, G’ contains G,, and it
suffices to show G’ N G, is open in G,. But G, is a pro-p-group of type
(F). Thus G, is topologically finitely generated and the result follows
from Theorem 3.

REMARK. In the above it was seen that the strong completeness of
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finitely generated pro-solvable groups can be deduced from the closed-
ness of their commutator subgroups, and that this reduces to finding a
bound on the number of basic commutators one must multiply to get an
element of the commutator subgroup. In a certain sense, the converse is
also true. For instance, all topologically finitely generated pro-solvable
profinite groups are strongly complete if and only if for each prime p and
each positive integer d there exists an integer b such that for any finite
solvable group G with a generating set of d elements any element of the
verbal subgroup [G, G]G? is of the form [x,, y,] - - - [xs, y5]2? for some x;
¥» z in G. This is an easy consequence of Proposition 4. Bounding the
length of the derived sequence gives a similar result for solvable
pro-finite groups.

We conclude with three examples.

(1) LetZ, =1limZ/,nZ be the additive group of p-adic integers and
F.[[Z,]] =limF,[Z/,nZ] the continuous group ring of Z, over the finite
field F, where [ is some rational prime. Then Z, acts continuously on
F,[[Z,]] with its profinite topology, and so we have a continuous
semi-direct product

(e)—=F/[[Z,]] > G—=Z,—e).

G is a two generator metabelian group and thus is strongly
complete. F,[[Z,]] is an infinite /-torsion abelian group and thus is not
strongly complete. Thus the profinite completion of the above exact
sequence is not exact (compare with [1] Proposition 4).

(2) For p a prime and d a positive integer, let G,, be the quotient
of the free pro-p-group on d generators by its second derived
group. We have [G,,, G,,] = A'(Z,)". By dimension considerations we
see that in order for the map

(Gap X Gy )b - [Gd,w Gd.p]
(xw yi) P2 [xi’ YI]

to be surjective we must have 2db = d(d — 1)/2i.e. b = (d — 1)/4. Now let
d, be an unbounded sequence of positive integers and define G =
II,G,,, where p, denotes the nth prime. Then G is a nilpotent group of
type (F) and thus is strongly complete. The commutator subgroup of G
is not closed. This may either be seen directly or by arguing as in the
proof of Proposition 4. Note also that II, G, , has a nonclosed com-
mutator subgroup.

(3) Let ! and p be primes and d a positive integer. We define
G,,q to be the semi-direct product of F; with the augmentation ideal
Irieyy = Ker (F/[F3]— F,). Then the order of G,,, is p*“~" and any normal
subgroup of G,,, has index divisible by p. One verifies by induction on
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d that there exist elements of the group [F{, Isq] which are products of
no fewer than d basic commutators.

Now fix [/ and let d, be an unbounded sequence of positive
integers. Let G =11,G,, ., where p, is the nth prime different from
. Then G is the semi-direct product of A =11, Fi with B =1, Iga. If
G’ is a normal subgroup of G of index m such that (p,,m)=1 for all
n = N, then G’ contains Il,-.x G ,,4.- Thus G is of type (F). One verifies
as in example (2) that [A, B] is not closed in A. Since G/[A, B]=
B X (A/[A, B]), there exist discontinuous homomorphisms
G —F,. Thus G is a metabelian profinite group of type (F) which is not
strongly complete.
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