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ISOMORPHISMS BETWEEN HARMONIC AND
P-HARMONIC HARDY SPACES ON

RIEMANN SURFACES

J. L. SCHIFF

In this paper we investigate the relationship between the
Hardy space Hq(R) of harmonic functions on a hyperbolic
Riemann surface R, and the Hardy space Pq(R) of solutions of
the equation Δw = Pu, where P î  0, P^O is a C1-density on
R. Under certain conditions these spaces are shown to be
canonically isomorphic, although in general this is not the
case. However, specific subspaces are found which are isomor-
phic and their relationship with other function spaces is
discussed.

1. Introduction. Hardy spaces on Riemann surfaces have
been studied by Heins [2], Schiff [11], in the setting of Φ-bounded
functions by Parreau [8], and in the general context of harmonic spaces
by Lumer-Naim [4], among others. The present work, in the setting of a
hyperbolic Riemann surface R, examines the Hardy space Pq(R) for the
equation Δw = Pu, P g 0, Pψ^ 0, which thus falls within the framework of
[4], Hence, the results contained therein will be applicable to our study
of the isomorphic relations between the harmonic Hardy space Hq(R)
and Pq(R). In general, no such isomorphic relation between Hq(R)
and Pq(R) exists, yet when particular subspaces are considered, an
isomorphism is shown to indeed exist between the specified subspaces.

In the fourth section we investigate the conditions under which the
inclusion relations are strict or not, between the various spaces which
have been introduced. Certain isomorphisms are obtained under new
conditions in the final section.

Some of the results obtained have natural generalizations to har-
monic spaces and to Φ-bounded P-harmonic functions for a convex
increasing Φ, however, these aspects of the theory will not be treated
here.

2. Preliminaries. Let R be a hyperbolic Riemann surface
and P^O, P^O a C]-density on R. We denote by PB(R) (resp.
HB(R)) the space of bounded C2-solutions on JR of the elliptic equation
Δu = Pu(Au=0), and by PB'(R) (resp. HB'(R)) the quasibounded
counterpart. A C2-solution of Δw = Pu is called a P-harmonic func-
tion, and the space of such functions on an open set U of R is denoted by
P(U). H(U) denotes the space of harmonic functions on U. A
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C2-function s is P-superharmonic if and only if As ^ Ps. If 5 is
P-superharmonic, - s is P-subharmonic. Refer to Royden [9] for details
concerning P-harmonic functions.

Associated with R is the Wiener compactification R* of Ry the
Wiener ideal boundary Γ = R * - JR, and the Wiener harmonic boundary
Δ CΓ. We will also make use of the following maximum principle for the
class HBf(R), the functions of which have continuous extensions to Δ.

PROPOSITION 1. Let u E.HB'(R) with

m ^ u ^ M

on Δ. Then m ^ u g M on R.

The reader is referred to Chapter IV of Sario-Nakai [10] for a
comprehensive treatment of the Wiener compactification and the HB'-
maximum principle.

By a regular exhaustion {Ω} of R we mean an exhaustion of R by
relatively compact open subsets Ω of JR such that dfl is analytic.

We proceed to define the Hardy space for Δw = Pu. Let {Ω} be a
regular exhaustion of R and z0E R a fixed point. Denote by μ," the

P-harmonic measure on <9Ω relative to z0 and Ω. Clearly dμ",= 1
JdΩ

for all Ω.

DEFINITION. A function u G Pq(R), 1 ̂  q < <», if for some constant
MiϊO,

| « I U = ( ί |u

for all Ω of a regular exhaustion {Ω} of R.
That the definition of Pq (R) is independent of the choice of z0 or the

particular exhaustion, is a consequence of the following (cf. Lumer-Naim
[4]):

PROPOSITION 2. u E Pq(R), 1 ̂  q < oo, // and on/y f/ | w |fl fta5 a
P-harmonic majorant.

A further result of [4] is quoted here as it will be useful in the sequel.

PROPOSITION 3. Every u E Pq(R) (resp. Hq(R)) is the difference of
two positive P-harmonic (resp. harmonic) functions in Pq(R) (resp.
Hq(R)), 1 ̂ q <GO, and conversely.
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3. Isomorphisms. Let Ω be a regular subregion of R and φ a
continuousfunction on dΩ. We denote by Pφ the function belonging to
P(Ω) Π C(Ω) such that P%\ dίϊ = φ. The harmonic counterpart to Pφ is
denoted by H%.

In this section we assume that 1 ̂  q < oo.
Define a linear operator λP: Hq(R)->Pq(R) by

λPh = Jim P{f.

To show that λF is well-defined, let h E Hq(R). Then h = Aiχ — ΛΪ2,
k(ΞHq(R\ Λ,^0, / = 1,2, by Proposition 3. By the P-harmonic
maximum principle (cf. Royden [9]), {P%} is decreasing and

on Ω. Letting Ω-^JR, Pj| converges to a function PhιEP(R), and
therefore

P? - P?, - P£-> PΛl - Pte = λpΛ G P(Λ).

Moreover,

\λPh \q ̂  2q{\Ph]
q + |P t e |*) ^ 2̂ (Λ? + Λf) ^

for some ft'G H(R). Since the P-subharmonic function \λPh \q has the
P-superharmonic majorant, h\ a standard Perron family argument
shows that |AP/ι |* has a P-harmonic majorant, implying λPh GPq(R).

Note that for h£Hq{R), h >0, APΛ is the greatest P-harmonic
minorant of /i, and consequently /ι — λPh is a P-potential, i.e. a positive
P-superharmonic function whose greatest P-harmonic minorant is zero.

Next, let

A q

P ( R ) = {uE P(R ) : \ u \ q ^ h for s o m e h G H(R)}.

The inequality 11 \p ̂  1 +• 11 \q for 1 g p ^ g < oo implies:

PROPOSITION 4. ΛP(/?) C AP

P(R) C Λ ^ ) .

The previous Perron family considerations also yield:

PROPOSITION 5. PB(R)C Aq

P(R)CPq(R).

We further establish:
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PROPOSITION 6. If u E Aq

P(R), then u = ul-u2,0^ 14 E S&R), ί =

1,2.

Proo/. Since u E Λ P ( J R ) by Proposition 4, \u\ has a P-harmonic
majorant. Denoting by [7+, 17", the least P-harmonic majorant of
u+ = uU0, and κ" = ( - κ ) U 0 resp., it follows that u = W-U~.
Moreover, u E Aq

P(R) implies | w |* ^ Λ £ //(/?) and therefore (w+)fl g ft.
Consequently

(£7+)« (zo) = lim ( ί u + dμ?y S lim ί ( W

+ ) ^ "

=ilim ί hdμl^ h(zo%n^R J an

where the last inequality follows from the fact that h is P-
superharmonίc. Hence U+EAq

P(R). Similarly ί7"EΛ?>(^) and thus
u E Aqp(R), as desired.

The space Λ?>(JR) is related to Hq(R) in the following way.

THEOREM 1. λP(Hq(R)) = Aq

P(R).

Proof. It suffices to show λP(Hq(R)) D Aq

P(R) since the inclusion
λP(Hq(R)) CAq

P(R) is obvious from the definition of λP.
Let 0^uEAq

P(R). Then uq ^ h for some hEH(R), and since
u EΛp(JR), u has a harmonic majorant. Let hu be the least harmonic
majorant of u. Thus for a regular exhaustion {Ω} of i?,

hu = lim
Ω->R

where Λ ? | d Ω = w | 3 Ω , Λ? E H(Ω)ίΊ C(Ω). Therefore

implying (Λ")^ g h on Ω. Letting Ω-^JR yields

on i?, and ΛH EHq{R).
In view of the fact that hu - u is a P-potential, u is the greatest

P-harmonic minorant of hu, i.e. λP/ιu = u.
For an arbitrary u E Aq

P{R\ II = M , - M 2 , O g u . E Λ K l ? ) , i = 1,2,
and we have /ιw = huι - hU2, which proves the theorem.
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We construct a new operator which will turn out to be the inverse of
λP in certain instances.

Let u EPq{R\ u = ux-u2, 0 ^ ux EPq(R), i = 1,2, and consider
the increasing family of harmonic functions {H£}. Set

HUι = lim //£

whenever the limit exists. In this case

Hu

 = H'Uλ — HU2 —> HU1 — HU2 E H(R),

and we define

μPu = lim H ? .

Observe that for u > 0, μF«, when it is defined, is the least harmonic
majorant of u on R.

PROPOSITION 7. Aq

P(R) C domain (μP) and μP: Aq

P(R)->Hq(R).

The proof is analogous to that of Theorem 1.

It is clear that μP is linear on Aq

P(R). Set Mq

P(R) = μP(Aq

P(R)).

THEOREM 2. μP: AP(R)—>Mq

P(R) is an isomorphism with inverse
λP: Mq

P(R)-*AP(R).

Proof. Let u E Aq

P(R). Then u = uλ- u2, 0 g u , G A\{R), ί =
1,2. It follows that μPux E Mq

P(R) and μPut = Ut + pn where # is a
P-potential. Therefore

(λp°μ P )(M l ) = λP(ut +pt)= ut

i = 1,2, and hence A P ° μ P = identity.

μP
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We deduce that μP is injective, hence an isomorphism, and that λP is
surjective. Moreover, it is easily seen that λP is injective and μP° λP =
identity.

4. Examples. In this section we give some examples demon-
strating the proper inclusion relations between various function spaces
that have been considered.

THEOREM 3. There is a Riemann surface R and a density P for
which Mq

P(R)^Hq(R), l^q<oo.

Proof. Take a Riemann surface R E CPB - 0G, that is i? is hyper-
bolic, yet PB(R) = {0} (cf. e.g. Royden [9] for the existence of such a
surface). Then for any positive constant c, we have c E Hq(R). How-
ever, there is no greatest F-harmonic minorant of c other than zero, and
hence λPc = 0.

Since λP is injective on Mq

P(R) by Theorem 2, and λP0 = 0, we
deduce that c E Hq{R)- Mq

P(R).
The jP-harmonic Hardy class Pq(R) is related to other function

spaces by the following string of inclusions (cf. Lumer-Naim [4]):

PROPOSITION 8. PB(R)CAq

P(R)CPq(R)CPB'(R\ for l<q<oo.

By the way of contrast with the harmonic case, observe that in the
preceding example, Mq

P(R) = {0}, and thus HB(R) £ Mq

P(R).
Using a similar proof as for that given in the harmonic case (Schiff

[11]), it can be shown that:

THEOREM 4. // dimPB(R)= n <oo, then

PB(R) = Aq

P(R) = Pq(R) = PB'(R),

for 1 < q < co.

In general this may not be the case. Some further preliminaries at
this juncture are in order.

It has been demonstrated (cf. eg. Nakai [7], also Royden [9]), that
the Banach spaces PB(R) and HB(R) are canonically isomorphic, that
is, there exists a bijective linear isometry T: PB(R)^>HB(R) such that
for u E PB(R), \ u - Tu \ is dominated by a potential, whenever the
following condition is valid:

ί
JR

G(z,ζ)P(ζ)dξdη<™
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Here K is a B -negligible subset of R, that is R * - K is a neighborhood of
Δ (cf. Nakai [7]), G(z, ζ) is the harmonic Green's function on R, and (*)
is assumed to be valid for one (hence for all) z 6Ξ R.

In view of Theorem 4 and the preceding remarks, we conclude:

PROPOSITION 9. // d'imHB = n <^, and condition (*) is valid,
then Hq(R) is canonically isomorphic to Pq(R), Kq<™.

Our next two theorems (nos. 5 and 6) require a result from ideal
boundary theory, which is preceded by an abbreviated discussion of
pertinent material.

The Wiener compactification R * of R is generated by the Wiener
algebra W(R) of bounded, continuous, harmonizable functions on
R. We also have the class of (bounded) Wiener potentials denoted by
W0(R). Refer to Sario-Nakai [10], Chapter IV, for details.

In an analogous vein, associated with the equation Δw = Pu, we have
the Wiener P-compactification R *, generated by the Wiener P-algebra
WP(R). See e.g. Constantinescu-Cornea [1], Tanaka [13] for
details. Denoting the class of Wiener P-potentials by W0P(R), we
obtain (cf. also Maeda [5], Tanaka [12]):

PROPOSITION 10. Under condition (*), W(R) = WP(R), and
W0(R)= W0P(R).

The proof follows from the fact that as we have seen (*) implies
PB(R) is canonically isomorphic to HB(R), which implies hP, the least
harmonic majorant of the elliptic measure is identically one (Lahtinen
[3]), which in turn yields W(R) = WP(R) and WQ(R) - W0P(R) (Tanaka
[12]).

Since W0(R) and W0P(R) completely determine Δ and ΔP (the
Wiener P-harmonic boundary) respectively, we have the following useful
result.

COROLLARY. Under condition (*), ΔP = Δ.

In the sequel we make use of the fact that every continuous
P-potential on R vanishes on ΔP (cf. Constantinescu-Cornea [1]).

THEOREM 5. On the unit disk C/, any density P satisfying condition
(*) yields PB{U)^Aq{U), \<q<™.

Proof. Choose a function h G Hq(U)-HB{U). Let P be a den-
sity satisfying (*), so that ΔP = Δ.

For u = λh EAq(U), h-u is a continuous P-potential, implying
f ι - w | Δ P = 0. Hence Λ | Δ = M | Δ , and by Proposition 1, since
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Hq (R) C HB'(R), h is unbounded on Δ. It follows that u is unbounded
and uEAq(U)-PB(U).

COROLLARY. Mq

P(U) f£HB(U), \<q<™.

Proof. If 0<uEAq

P(U)-PB(U), then h' = μPu E M%U) and

Thus, in general, there is no inclusion relation between HB(R) and
Mq

P{R).
In contradistinction to Theorem 3, (*) is a sufficient condition for

Mq(R) to be identical with Hq(R).

THEOREM 6. λP: Hq(R)-*Λ£(#) w ^n isomorphism, i.e. Mq(R) =
Hq(R), whenever condition (*) w t α/ύί, 1 < q < oo.

Froo/. Suppose λPh = 0 for some h E Hq(R). Since h = hλ- h2,
ft,^0, kEHq(R), i = 1,2, we have λPh, = λPh2. As h.-λA is a
P-potential, and ΔP = Δ, it follows that Λ l|Δ = λPft,|Δ. Hence Λi|Δ =
Λ21Δ, i.e. ft IΔ = 0. Since Hq{R)C HB'(R) for Kq<°o (cf. Lumer-
Naim [4]), the maximum principle for HB'(R) implies /ι = 0 on R, and λP

is injective on Hq(R).
Our final example concerns the inclusion relation Aq

P(R) C Pq (R).

PROPOSITION 11. There is a Riemann surface R and a density P
such that Λ P ( ί?)5P 1 (Λ).

Proof Let R be the punctured unit disk ί/0, and for | z \ = r,
P = P(r) = 1/r2. Then the function u = u(r) = 1/r satisfies Δw = Pw on
£Λ). Moreover, any positive harmonic function h on t70 must be
asymptotic to - a log r, at the origin, for some αE[0,o°) (cf. eg.
Sario-Nakai [10]). Consequently, for any h E H(U0), \u\ = l/r^= /ι on
t/0, i.e. wίί Λp(l/0). However, u E Pι(U0).

Whether there exists a pair (R, P) such that Aq

P(R)^Pq(R) for
1 < q < oo? is as yet unresolved.

5 V Extens ions . In the sequel we assume
The Wiener algebra W(R) has the following extension. Let W(R)

be the class of continuous harmonizable functions f on R such that there
exists a continuous superharmonic function sf with a discrete {sf = o°} and
with | / | ^ 5 ; . Denote by WP(R) the P-harmonic analogue (cf.
Constantinescu-Cornea [1]). Clearly W(R)CW(R) and WP(R) C
Wp(R). Furthermore, define
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and

u \q is

= {fEWP(R):f\AP = O}.

We now establish:

LEMMA. If W(R)=WP(R), then Aq

P(R) = Pq(R% l^q<°o.

Proof. Suppose not, and let u E Pq{R)- A^i?), for some q, 1 ^
q < oo. Then | a \q ̂  υ for some υ E P(R) Since w is also continuous,
positive P-subharmonic, | u |< G WP(R). If moreover, | w |* E
then I w |* ̂  s for some superharmonic function s on /?. Since
subharmonic, iM^^ft for some hEH(R), implying wGΛj(J?), a
contradiction. Thus, |w |«£ < r ( jR) which yields W{R)^ΨP{R\ and
the result follows.

THEOREM 7. // W(R)=WP(R) and W0(R) = W0P(R), then
Hq(R) is isomorphic to Pq(R), Kq < oo.

Proof It is easily seen that the hypothesis implies W(R) = WP(R)
and W0(R) = W0P(R), and consequently, JR * = R p and Δ = ΔP. Under
the condition that Δ = ΔP, Theorem 6 obtains, that is λF: Hq(R)-> Aq

P(R)
is an isomorphism, for 1 < q < oo. The theorem now follows from the
lemma.

THEOREM 8. // W(R)=WP(R) and W0(R)= W0P(R), then
HB'(R) is isomorphic to PB'(R).

Proof For u G PB'(R) C WP{R) = ^ ( J R ) , we have the decompo-
sition

u -

where vEHB'(R) and g G ̂ ( K ) (cf. Sario-Nakai [10]). We define
T: PBf(R)->HB'(R) by Tu = υ. Since Δ - ΔF and u | Δ = Γw|Δ,itisa
simple matter to verify that T is the desired isomorphism.

As we have seen, condition (*) implies W(R)= WP(R), and the
question naturally arises whether or not (*) implies W(R)= WP(R).
That this is not the case is seen as follows.

Let Ra ={0< \z\ < a < 1}, and u = u{r) = (log r)\ with r =
\z\. Then Δw = Pu for P = P(r) = 2/(r log rf. Since u is continuous,
P-harmonizable on i?α, w G WP(Ra). Moreover, if u had a superhar-
monic majorant on Ra, then the subharmonicity of u would imply u had
a harmonic majorant h on /?α. As in Proposition 11, ft would be
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asymptotic to - a log r at z = 0, for a E [0, oo)? which would violate the
fact that h must dominate u. We conclude that u£ W{Ra).

Finally, a simple calculation shows that

f
JR

Pdxdy =

and hence j G(z,ζ)P(ζ)dξdη < oo. Therefore (*) is valid, but

REFERENCES

1. C. Constantinescu and A. Cornea, Compactification of harmonic spaces, Nagoya Math. J., 25

(1965), 1-57.

2. M. Heins, Hardy Classes on Riemann Surfaces, Forschungsinstitut fur Mathematikseries

Berlin-Heidelberg-New York: Springer 1969.

3. A. Lahtinen, On the solutions of Δu = Pu for acceptable densities on open Riemann surfaces,

Ann. Acad. Sci: Fenn. A. I., 515 (1972).

4. L. Lumer-Naim, Hp spaces of harmonic functions, Ann. Inst. Fourier, 17 (1967), 425-469.

5. F. Y. Maeda, Comparison of the classes of Wiener functions, J. Sci. Hiroshima Univ., Ser A. I., 33

(1969), 231-235.

6. M. Nakai, The equation Δu = Pu on the unit disk with almost rotation free P ^ 0, J. Differential

Equations, 11 (1972), 307-320.

7 ? Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.

8. M. Parreau, Sur les moyennes des functions harmoniques et analytiques et la classification des

surfaces de Riemann, Ann. Inst. Fourier, 3 (1951), 103-197.

9. H. L. Royden, The equation Δu — Pu and the classification of open Riemann surfaces, Ann.

Acad. Sci. Fenn., 271 (1959).

10. L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Berlin-Heidelberg-New

York: Springer 1970.

11. J. L. Schiff, Hp-spaces of harmonic functions and the Wiener compactification, Math. Z., 132

(1973), 135-140.

12. H. Tanaka, A remark on Wiener functions for the equation Δu = pu, Sci. Rep. Saitama Univ.,

Ser. A VII, No. 3 (1973), 15-24.

13. , On Wiener compactification of a Riemann surface associated with the equation

Au = Pu, Proc. Japan Acad., 45 (1969), 675-679.

Received September 29, 1975.

UNIVERSITY OF AUCKLAND

UNIVERSITY OF CALIFORNIA, LOS ANGELES

AND

WESTERN WASHINGTON STATE COLLEGE




