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ISOMORPHISMS BETWEEN HARMONIC AND
P-HARMONIC HARDY SPACES ON
RIEMANN SURFACES

J. L. ScHIFF

In this paper we investigate the relationship between the
Hardy space HY(R) of harmonic functions on a hyperbolic
Riemann surface R, and the Hardy space P9(R) of solutions of
the equation Au = Pu, where P =0, P#0 is a C'-density on
R. Under certain conditions these spaces are shown to be
canonically isomorphic, although in general this is not the
case. However, specific subspaces are found which are isomor-
phic and their relationship with other function spaces is
discussed.

1. Introduction. Hardy spaces on Riemann surfaces have
been studied by Heins [2], Schiff [11], in the setting of ®-bounded
functions by Parreau [8], and in the general context of harmonic spaces
by Lumer-Naim [4], among others. The present work, in the setting of a
hyperbolic Riemann surface R, examines the Hardy space P?(R) for the
equation Au = Pu, P =0, P# 0, which thus falls within the framework of
[4]. Hence, the results contained therein will be applicable to our study
of the isomorphic relations between the harmonic Hardy space H*(R)
and P(R). In general, no such isomorphic relation between H?(R)
and P‘(R) exists, yet when particular subspaces are considered, an
1somorphism is shown to indeed exist between the specified subspaces.

In the fourth section we investigate the conditions under which the
inclusion relations are strict or not, between the various spaces which
have been introduced. Certain isomorphisms are obtained under new
conditions in the final section.

Some of the results obtained have natural generalizations to har-
monic spaces and to ®-bounded P-harmonic functions for a convex
increasing @, however, these aspects of the theory will not be treated
here.

2. Preliminaries. Let R be a hyperbolic Riemann surface
and P=0, P#0 a C'-density on R. We denote by PB(R) (resp.
HB(R)) the space of bounded C*solutions on R of the elliptic equation
Au = Pu(Au =0), and by PB'(R) (resp. HB'(R)) the quasibounded
counterpart. A C’-solution of Au = Pu is called a P-harmonic func-
tion, and the space of such functions on an open set U of R is denoted by
P(U). H(U) denotes the space of harmonic functions on U. A
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C’-function s is P-superharmonic if and only if As=Ps. If s is
P-superharmonic, — s is P-subharmonic. Refer to Royden [9] for details
concerning P-harmonic functions.

Associated with R is the Wiener compactification R* of R, the
Wiener ideal boundary I' = R* — R, and the Wiener harmonic boundary
A CTI'. We will also make use of the following maximum principle for the
class HB'(R), the functions of which have continuous extensions to A.

ProPOSITION 1. Let u € HB'(R) with

A

m=u=M

on A. Then m =u=M on R.

The reader is referred to Chapter IV of Sario-Nakai [10] for a
comprehensive treatment of the Wiener compactification and the HB'-
maximum principle.

By a regular exhaustion {1} of R we mean an exhaustion of R by
relatively compact open subsets ) of R such that 4{) is analytic.

We proceed to define the Hardy space for Au = Pu. Let {Q}} be a
regular exhaustion of R and z,E€ R a fixed point. Denote by u? the

P-harmonic measure on 9} relative to z, and €). Clearly f dut =1
a0
for all €.

DEerNITION. A function u € P/(R), 1 = q <=, if for some constant
M =0,

lulloo = (LQ lu!"du?n)”qé M

for all 0 of a regular exhaustion {Q} of R.
That the definition of P?(R) is independent of the choice of z, or the
particular exhaustion, is a consequence of the following (cf. Lumer-Naim

[4):

PROPOSITION 2. u € P/(R), 1=q <, if and only if |ul® has a
P-harmonic majorant.

A further result of [4] is quoted here as it will be useful in the sequel.
ProrosiTION 3.  Every u € P*(R) (resp. H?(R)) is the difference of

two positive P-harmonic (resp. harmonic) functions in P*(R) (resp.
H4(R)), 1=q <, and conversely.
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3. Isomorphisms. Let()be aregularsubregionof R and ¢ a
continuous function on Q). We denote by P the function belonging to
P(Q)N C(Q) such that P$[dQ = ¢. The harmonic counterpart to P§ is
denoted by HY.

In this section we assume that 1 =g <.

Define a linear operator A,: H*(R)— P?(R) by

Aph = ‘111_{1}12 P,

To show that A, is well-defined, let h € H*(R). Then h = h,~ h,,
h.€ H(R), h,=0, i=1,2, by Proposition 3. By the P-harmonic
maximum principle (cf. Royden [9]), {P}} is decreasing and

0=Pi=h,

on ). Letting Q— R, P} converges to a function P, € P(R), and
therefore

P?zpi),_ ?2_)Ph,_Ph2=AphEP(R).
Moreover,
(AR |* = 2¢(| P |* 4 | Pul?) = 29(hE + hY) = h'
for some h'€ H(R). Since the P-subharmonic function |Ash |* has the
P-superharmonic majorant, h’, a standard Perron family argument
shows that |Axh | has a P-harmonic majorant, implying Ah € P4(R).
Note that for h € H'(R), h >0, Ash is the greatest P-harmonic
minorant of h, and consequently h — Ash is a P-potential, i.e. a positive
P-superharmonic function whose greatest P-harmonic minorant is zero.
Next, let
$(R)={u € P(R): |ul]*=h for some h € H(R)}.
The inequality [t]? =1+ |t]* for 1 =p = q <= implies:
ProrosiTION 4. A3(R) CA3(R) CAKR).
The previous Perron family considerations also yield:

ProrosiTioN 5. PB(R) C A$(R) C P‘(R).

We further establish:
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PrOPOSITION 6. Ifu € A3(R), thenu = u,— u,,0=u, EAYR), i =
1,2.

Proof. Since u € AL(R) by Proposition 4, |u| has a P-harmonic
majorant. Denoting by U*, U, the least P-harmonic majorant of
ut=uU0, and u =(-u)UO0 resp., it follows that u=U"-U".
Moreover, u € A4(R)implies |u | = h € H(R) and therefore (u*)* = h.

Consequently

q
(U (zy) = }gr)lz (f u*duiﬂ) = }gl; o (u*ydu?,

a0

: 9]
< lim f hdp® = h(z,),

where the last inequality follows from the fact that h is P-
superharmonic. Hence U* € A%(R). Similarly U™ € A4(R) and thus
u € A$(R), as desired.

The space A$(R) is related to H*(R) in the following way.

THEOREM 1. A(H(R))= A}(R).

Proof. It suffices to show A,(H*(R)) D A%(R) since the inclusion
Ar(H(R)) C A%(R) is obvious from the definition of A,.

Let 0=u € A%(R). Then u?=h for some h € H(R), and since

u € Ap(R), u has a harmonic majorant. Let h, be the least harmonic
majorant of u. Thus for a regular exhaustion {Q}} of R,

h, = lim h}
Q-R

3N =u|oQ, h*€ HQ)N C(Q). Therefore

where hy
(W) |0 =u?|dQ=h,
implying (h3)* =h on Q. Letting Q— R yields

hi

A

h

on R, and h, € HY(R).

In view of the fact that h, —u is a P-potential, u is the greatest
P-harmonic minorant of h,, i.e. Ash, = u.

For an arbitrary u € A%(R), u=u,—u,, 0=su, EAYR), i =1,2,
and we have h, = h,,— h,,, which proves the theorem.
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We construct a new operator which will turn out to be the inverse of
Ap in certain instances.

Let u € PY(R), u=u,—u,, 0=u, € P'(R), i =1,2, and consider
the increasing family of harmonic functions {Hf}. Set

H, = lim H?

Q—R

whenever the limit exists. In this case

Hl=H, - H.— H,—- H.€ H(R),

and we define

wpl = (lg% HS.
Observe that for u >0, wpu, when it is defined, is the least harmonic
majorant of u on R.
ProposiTioN 7. A%(R) C domain (up) and pp: A$(R)— H(R).
The proof is analogous to that of Theorem 1.
It is clear that u, is linear on A$(R). Set M$(R)= ur(A%(R)).

THEOREM 2. up: A3(R)— M$(R) is an isomorphism with inverse

Proof. Let u€ A$(R). Then u=u,—u,, 0=u €A$(R), i=
1,2. It follows that u,u, € M$(R) and ueu, = u, +p, where p, is a
P-potential. Therefore

(Apope)(u) = Ap(u +p)=u,

i =1,2, and hence A, o, = identity.

Ap
#(R) — AH(R)
e AP SMmp = ld.
A%(R)
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We deduce that u, is injective, hence an isomorphism, and that A, is
surjective. Moreover, it is easily seen that A, is injective and up oA, =
identity.

4. Examples. In this section we give some examples demon-
strating the proper inclusion relations between various function spaces
that have been considered.

THEOREM 3. There is a Riemann surface R and a density P for
which M3(R)ZH‘(R), 1 =q <.

Proof. Take a Riemann surface R € Oy — O, that is R is hyper-
bolic, yet PB(R) = {0} (cf. e.g. Royden [9] for the existence of such a

“surface). Then for any positive constant ¢, we have ¢ € H*(R). How-
ever, there is no greatest P-harmonic minorant of ¢ other than zero, and
hence A,c =0.

Since A, is injective on M$(R) by Theorem 2, and A,0=0, we
deduce that c € H*(R)— M¥R).

The P-harmonic Hardy class P?(R) is related to other function
spaces by the following string of inclusions (cf. Lumer-Naim [4]):

ProrosiTioN 8. PB(R)CA%(R)CP(R)CPB'(R), for 1<q <.

By the way of contrast with the harmonic case, observe that in the
preceding example, M%(R) = {0}, and thus HB(R) £ M#(R).

Using a similar proof as for that given in the harmonic case (Schiff
[11]), it can be shown that:

THEOREM 4. If dim PB(R)=n < x, then
PB(R)=A%(R)= P*(R)= PB'(R),
for 1< g <.

In general this may not be the case. Some further preliminaries at
this juncture are in order.

It has been demonstrated (cf. eg. Nakai [7], also Royden [9]), that
the Banach spaces PB(R) and HB(R) are canonically isomorphic, that
is, there exists a bijective linear isometry T: PB(R)— HB(R) such that
for u € PB(R), |u — Tu| is dominated by a potential, whenever the
following condition is valid:

(*) | Geop@den <= @=¢+rin)
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Here K is a B-negligible subset of R, that is R * — K is a neighborhood of
A (cf. Nakai [7]), G(z, {) is the harmonic Green’s function on R, and (*)
is assumed to be valid for one (hence for all) z € R.

In view of Theorem 4 and the preceding remarks, we conclude:

ProposiTION 9. If dim HB = n <, and condition (*) is valid,
then H'(R) is canonically isomorphic to P*(R), 1 <q <.

Our next two theorems (nos. 5 and 6) require a result from ideal
boundary theory, which is preceded by an abbreviated discussion of
pertinent material. .

The Wiener compactification R* of R is generated by the Wiener
algebra W(R) of bounded, continuous, harmonizable functions on
R. We also have the class of (bounded) Wiener potentials denoted by
Wy(R). Refer to Sario-Nakai [10], Chapter IV, for details.

In an analogous vein, associated with the equation Au = Pu, we have
the Wiener P-compactification R}, generated by the Wiener P-algebra
W:r(R). See e.g. Constantinescu-Cornea [1], Tanaka [13] for
details. Denoting the class of Wiener P-potentials by W;,(R), we
obtain (cf. also Maeda [5], Tanaka [12]):

ProprosITION 10. Under condition (%), W(R)= W,(R), and
Wy(R)= Wi (R).

The proof follows from the fact that as we have seen (*) implies
PB(R) is canonically isomorphic to HB(R ), which implies h,, the least
harmonic majorant of the elliptic measure is identically one (Lahtinen
[3]), which in turn yields W(R) = W,(R) and W,(R) = W(R) (Tanaka
[12]).

Since W,(R) and W,,(R) completely determine A and A, (the
Wiener P-harmonic boundary) respectively, we have the following useful
result.

CoROLLARY. Under condition (*), Ap =A.

In the sequel we make use of the fact that every continuous
P-potential on R vanishes on A, (cf. Constantinescu-Cornea [1]).

THEOREM 5. On the unit disk U, any density P satisfying condition
(*) yields PB(U)ZAY(U), 1<q <.

Proof. Choose a function h € H*(U)— HB(U). Let P be a den-
sity satisfying (*), so that A, = A.

For u = Ah € A*(U), h —u is a continuous P-potential, implying
h—ulAp=0. Hence h|A=ul|A, and by Proposition 1, since
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H‘(R) C HB'(R), h isunbounded on A. It follows that u is unbounded
and u € A°(U)— PB(U).

COROLLARY. W(U)Z HB(U), 1< q <,

Proof. If 0<u € Ay(U)—PB(U), then h'= uu € MU) and
h'Z HB(U).
Thus, in general, there is no inclusion relation between HB(R) and
3(R).
In contradistinction to Theorem 3, (*) is a sufficient condition for
M(R) to be identical with HY(R).

THEOREM 6. Ap: HY(R)— A%(R) is an isomorphism, i.e. M'(R) =
H4%(R), whenever condition (*) is valid, 1 <q <.

Proof. Suppose Ash =0 for some h € H'(R). Since h = h,— h,,
h,z0, h, e HY(R), i =1,2, we have Aph, = Aph,. As h,— Aph, is a
P-potential, and A, = A, it follows that h, |A = Ash, |A. Hence h,|A=
h,|A, i.e. h|A=0. Since H'(R) C HB'(R) for 1< q <o (cf. Lumer-
Naim [4]), the maximum principle for HB'(R) implies h =0 on R, and A,
is injective on HY(R).

Our final example concerns the inclusion relation A3(R) C P?(R).

PROPOSITION 11.  There is a Riemann surface R and a density P
such that Ay,(R)Z P'(R).

Proof. Let R be the punctured unit disk U, and for |z|=r,
P = P(r)=1/r’. Then the function u = u(r)= 1/r satisfies Au = Pu on
U,. Moreover, any positive harmonic function h on U, must be
asymptotic to —alogr, at the origin, for some a €[0,) (cf. eg.
Sario-Nakai [10]). Consequently, for any h € H(U,), |u|=1/rZh on
U, i.e. u& Ap(U,). However, u € P'(U,).

Whether there exists a pair (R, P) such that A}(R)Z P*(R) for
1 <q <, is as yet unresolved.

5. Extensions. In the sequel we assume PB(R) # {0}.

The Wiener algebra W(R) has the following extension. Let W (R)
be the class of continuous harmonizable functions f on R such that there
exists a continuous superharmonic function s; with a discrete {s; = «} and
with |f|=s. Denote by W,(R) the P-harmonic analogue (cf.
Constantinescu-Cornea [1]). Clearly W(R)C #W(R) and W,(R)C
W (R). Furthermore, define

WyR)={f€ W(R): flA=0},
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and
Wor(R)={f € We(R): f|Ar =0}.

We now establish:
LEmMMA. If W/(R)= W»(R), then A4}(R)=Pi(R), 1=g <.

Proof. Suppose not, and let u € P*(R)— A¥R), for some g, 1=
q <». Then |ul’=v for some v € P(R). Since u is also continuous,
positive P-subharmonic, |u|* € W,(R). If moreover, |ul’ € W (R),
then |u|* = s for some superharmonic function s on R. Since |u [ is
subharmonic, |u|* =h for some h € H(R), implying u € A}(R), a
contradiction. Thus, |u|*& W(R) which yields W (R)# W:(R), and
the result follows.

THEOREM 7. If W(R)=W»(R) and WyR)= W,(R), then
H%(R) is isomorphic to P*(R), 1 <q <.

Proof. It is easily seen that the hypothesis implies W(R) = W;(R)
and Wy(R)= W;»(R), and consequently, R*= R} and A =A,. Under
the condition that A = A,, Theorem 6 obtains, thatis A,: H*(R)— A$(R)
is an isomorphism, for 1 <q <. The theorem now follows from the
lemma.

THeorReM 8. If W(R)=Wr(R) and W (R)= W, (R), then
HB'(R) is isomorphic to PB'(R).

Proof. For u € PB'(R) C W>(R)= W(R), we have the decompo-
sition

u=v+g

where v € HB'(R) and g € W(R) (cf. Sario-Nakai [10]). We define
T: PB(R)— HB'(R)by Tu =v. Since A=A, and u|A= Tul|A,itisa
simple matter to verify that T is the desired isomorphism.

As we have seen, condition (*) implies W(R)= W,(R), and the
question naturally arises whether or not (*) implies %W (R)= W:(R).
That this is not the case is seen as follows.

Let R,={0<|z|<a<1}, and u=u(r)=(logr)’, with r=
|z|. Then Au = Pu for P = P(r)=2/(r log r)’. Since u is continuous,
P-harmonizable on R,, u € W»(R,). Moreover, if u had a superhar-
monic majorant on R,, then the subharmonicity of u would imply u had
a harmonic majorant h on R,. As in Proposition 11, h would be
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asymptotic to —a logr at z =0, for a € [0, ), which would violate the
fact that h must dominate u. We conclude that u& #'(R,).
Finally, a simple calculation shows that

— 4
log a

f Pdxdy =
Ra

and hence f G(z,{)P({)dédn <o. Therefore (*) is valid, but
R«
W(R.,)# Wr(R,).
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