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HOMOMORPHISMS OF GROUP ALGEBRAS

WITH NORM LESS THAN V2

N. J. KALTON AND G. V. W O O D

We show that two locally compact abelian groups Gx and G2

are isomorphic if there exists an algebra isomorphism T of
L\Gλ) onto L\G2) with | | Γ | | < V2. This constant is best
possible. The same result is proved for locally compact con-
nected groups, but for the general locally compact group, the
result is proved under the hypothesis | |T | |< 1.246. Similar
results are given for the algebras C{G) and L~(G) when G is
compact. In the abelian case, we giveji representation theorem
for isomorphisms satisfying ||T|| < λ/2.

1. Introduction. In [13], Wendel proved that, for locally
compact groups G] and G2, if T is an algebra isomorphism of L\G\) onto
L\G2) with || T\\ ^ 1, then Gλ and G2 are isomorphic. Similar results for
M(G), CC(G) and LP(G) have been proved in [3], [5], [6], [7], [11], [12],
[14] and [15]. For abelian groups, better results are known. In [8], it is
shown that two locally compact abelian groups Gx and G2 are isomorphic
if there exists an algebra isomorphism T of L\GX) onto L\G2) with
|| Γ|| < \λ/5, and in view of a result of Saeki in [9], this can be improved to
the condition | |Γ| | < \{\ + V2), (see [8] 4.6.3 (c)). Saeki's later paper
[10] makes it possible to extend the result even further to the condition

<Ϊ(1 + VΪ7).
We prove the result for abelian groups with the condition || Γ|| < V2

and this is the best possible constant, as Example 1 shows. In fact we
characterize all algebra isomorphisms T of L\GX) onto L\G2) with
| |T | |< V2 as follows:

Case 1. If 0 < || Γ|| < i(l + V3), then T has the form

(Tf)(x)=ψ(x)f(s(x))

where s: G2-^> Gx is a topological isomorphism and ψ E G2 In this case
T is an isometry.

Case 2. If 1(1 + V3) ̂  || Γ|| < V2, then T has the form
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where s: G2-^> Gλ is a topological isomorphism, φ, φ E G2 with φ of odd
order n, and M G G I is an element of order 2. In this case | |Γ | | =
V2cos τr/4/t.

Again £(l + λ/3) is the best possible constant as Example 2
shows. It is interesting to note that the isomorphisms given in case (2)
above correspond to the idempotents characterized by Saeki in
[10]. We give similar results for homomorphisms. In [8] Chapter 4,
algebra homomorphisms of L\GX) into M(G2) are represented by means
of piecewise affine maps from a subset of G2 to Gu (see [8] p. 78 for
definitions). Our proofs do not however use this representation. We
prove the result first for discrete groups by a computational argument,
and then use this to prove the general result. An advantage of our
method is that it generalises to give corresponding results in the
nonabelian case. We show that if Gλ and G2 are locally compact
connected groups and_T is an algebra isomorphism of L\Gλ) onto
L\G2) with | |Γ | |<V2, then Gx and G2 are isomorphic. Without
connectedness, we can prove the result under the condition | jT | |<λ 0

where λ0 is the root of a cubic equation (λ0 ~ 1*247). In these cases we
cannot describe the form of the isomorphism, nor do we know whether
these constants are best possible. There are corresponding results in
each case for isomorphisms of the convolution algebras M{G), LX(G)
and C(G) (in the latter cases we assume G compact).

The idea for the paper came from the generalization of the Banach-
Stone theorem due to Cambern [2] and Amir [1] which states that, for
compact Hausdorff spaces X and Y, if T: C{X)-+ C(Y) is a linear
isomorphism with || Γ|||| T~λ\\ < 2, then X and Y are homeomorphic. In
the event, we were able to bypass this result because the extra condition
we have when X and Y are groups, that T is a convolution algebra
isomorphism enables us to find the map from X to Y directly and under
the weaker hypothesis of | |T | |< V2.

NOTATION. AS usual, C{G\ ί/(G), LX(G) and M(G) will denote
the continuous functions, the integrable functions, the bounded measur-
able functions, and the bounded measures respectively on a locally
compact group G. To avoid confusion we will write h(G) in place of
L\G) when G is discrete. We will use /, g, etc. to denote elements of
U{G) or L\G) and JC, y, z, u, etc. to denote elements of the group G or
the corresponding elements of /i(G). G will denote the dual group of G
if G is abelian, and / the Fourier transform of / G L\G). If 5 is a
homomorphism of Gλ into G2, then s will denote the induced
homomorphism of G2 into Gλ.

We begin with some examples from finite groups. Let Zn denote
the cyclic group of order n.
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EXAMPLE 1. The group algebras of Z4 and Z2 x Z2 are isomorphic
under the map defined by

where x is a generator of Z4 and y, z are generators of Z2 x Z2. As a
map of Ji(Z4) (=L1(Z4)) into lι(Z2xZ2) (or C(Z4) into C(Z2xZ2))

V

EXAMPLE 2. There is an isomorphism of /i(Z6) (or C(Z6)) into itself
which is not induced directly by a group isomorphism. If x is a
generator of Z6 define T by

Then || Γ || =4(1 + Λ/3) which is less than \/2.

EXAMPLE 3. There is an algebra embedding of /i(Z2) in /i(Z4) of
small norm which is not induced by a group map. If x generates Z2 and
y generates Z4, define T by

Tx = u i - 0 y + i y 2 + Ui + 0y3

Then Tx2 = \e +1(1 + i)y +1(1 - i)y3 which is an idempotent in
lλ{Z<). Also| |Γ| | = | ( l V

EXAMPLE 4. There exists an algebra epimorphism of /i(Z6) onto
/^Z2 x Z2) which is induced by a group homomorphism which is not an
epimorphism. Let x generate Z6, y and z generate Z2 x Z2, and define T
by

i

= | y -
r i

Γ x = | y J

Then Γx2= -ie-(/V3/2)yz and 7 V = - y , and T is clearly an
epimorphism, but there is no epimorphism of Z6 onto Z2 x Z2. In this

| | | | K V
The dual map T* is a monomorphism of C(Z2 x Z2) into C(Z6) which

is not induced by an epimorphism, (see Theorem 3.5).

2. Discrete abelian groups. In this section we shall study
algebra homomorphisms Γ: h(Gι)-> lι(G2) which preserve the
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identity. Although we shall restrict attention to the abelian case, our
first result is true for any pair of groups Gλ and G2, and we shall use it
later in §4. We shall denote the identities of Gλ and G2 by eλ and e2

respectively.

PROPOSITION 2.1. Let Gλ and G2 be any two groups and suppose
T: lx(Gλ)^> l\(G2) is a bounded algebra homomorphism such that Tex =
e2. Then if x E Gx and Tx = ΣΓ=i aιyι where y, £zG2 are distinct, then
there exists /, such that | α, | ^ || T||~\ // || T| | < V2, then j is unique.

Proof. Let Tx"1 = ΣΓ=i Ay Γ1 + ΣΓ=i γ,z, where the (z, ) are distinct and
disjoint from (yΓ1). Then e2 = Tx * Tx'1 and so identifying the coefficient
of e2 we obtain ΣΓ=i aβ, = 1. Hence

so that sup|α, | ^ HΓJI"1. Since a{ -»0, there exists / such that \a, \ ^

Suppose | | T | | < V 2 , and k is another index such that |«fc| =
|| Γll"1. Then || Tx \\ ^ | αy | 4- | ak \ ̂  2 || T\\~λ ^ V2, which is a contradic-
tion.

On lx{G), there is an involution defined by (Σα,x,)* = Σα,xΓ ! We
shall also define the /2-norm by HΣα.Jt, ||2 = V(S | α,-12) (where the (jct) are
distinct).

PROPOSITION 2.2. Suppose Gλ and G2 are abelian groups and
T: lι(Gx)—> lι(G2) is a bounded algebra homomorphism such that Tex =
e2. Then T is a *-map and for x E Gu || Tx \\2 = 1.

Proof. Let χ be any character on G2. Then χ induces a multi-
plicative linear functional χ: U{G2)-^ C. χ °T is multiplicative on h(Gλ),
and hence for / E U(Gλ)

This is true for any χ E G2 and hence Tf* = (Tf)* (since lx(G2) is
semi-simple).

Now e2 = Tx * T x 1 = Tx * (Tx)*. Hence if Tx = Σf=, α,y,, we have,
identifying the coefficient of e2

l = X\a,f = \\Tx\\l



HOMOMORPHΪSMS OF GROUP ALGEBRAS 443

For the next three lemmas, we assume that Gx and G2 are abelian
and T: lx{Gι)^>l[(G2) is an algebra homomorphism such that Tex = e2

and | |T | | < V2. We define, for x G G,, ί ( x ) E G2 by

where \a | g || T| | ι and t(x)j£ y, for any /. ί is then a well-defined map
by Proposition 2.1. It follows from the fact that T is a *-map that
t(x~ι) = (f (JC))"1. However, in general, ί is not a homomorphism. The
next two lemmas investigate the consequences of t(x2) being equal or not
equal to (t(x)f.

LEMMA 2.3. Let x E Gλ and t(x2) = (t(x))2. Suppose Tx =
at{x) + f and Tx2 = βt(x2) + g where f and g contain no terms in t(x) and
t(x2) respectively. Then \\g\\ * (2/ | |Γ | | 2 ) | |/ | | .

Proof. By multiplication

Tx2 = a2t(x)2 + 2at(x)* f + f * f.

We consider two cases:

(a) If

then

For lSθg2', let φ(θ) = 3θ-θ\ then since φ"{θ)= -2, φ is concave
and so

for l s β s ί .

Hence 3 0 - θ 2 ^ 2

(since <p(l) = 2, and φ(2i) - 2(3.2"1- V 2 ) > 2 ) . Thus since 1 ^
Λ/2, and letting θ = | T | | i

(b) Next suppose | α | < | |Γ||^ (note that this implies that | | T | | >
1). For convenience we shall let k = || T\\~K Then / * / will contain a
term in t(xf of magnitude at least \β \ - \a | 2 ^ k2 - \a | 2 > 0 . Hence
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and, as \\f\\μo, \\g\\/\\f\\ ^ 1/ | | / | | ( k 2 - ( \ a \ - \\f\\yy. If w e define

ψ(θ)=θ-W-(\a\-θ)2),
then

φ'(θ)=θ-2(\a\2-k2)-1^0 for 0 >0.

Hence as | | / | | ^ |

11 & 11 > 1 (\c2 — Π\rv\ —

11/11 = fc-2-|α|(fc ( 2 | α |

where k2< \a \ < k. If we write γ = k~2- \a |

γ

and k~2-k<γ<k-2-k2.

If Ψ(θ)= θ'ι(k2-(k-2

then Ψ'(θ) = θ~2(k~* — k2) — 4

and so ψ"(θ) ̂  0 for θ ̂  0. Therefore i/> is concave and so for k ~2 - k <
y<k~2-k2

ψ(y)^min(ψ(k-2-k),ψ(k-2-k2)).

Now

since 2~iμ<k < 1.
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Similarly

ψ(k-2-k*) = (2k2- k'2)2)

= 2V

since 2 fc 4 - l>0 and fc6-2fc4+ 1 = (1 - fc2)(l + k2- fe4)>0.
Thus

ll/ll

LEMMA 2.4. Suppose ί(x)V ί(x2). Then

Γx = αί(x) + j8ί(x)w+/

M = ί(jc2)ί(jc)~2E G2 hα5 order 2, / E lx{G2) does not contain terms
in t(x) or ί(x)w, and

(0
(ϋ)

(iii)

(iv)

\aβ + άβ\ < 0.017

"\ \β\
< 0.60.

Proof. Writing u = f(x2)f(x) 2 we can expand Tx in the form
at(x) + βt(x)u + f. We have immediately

(1)

(2)

using Proposition 2.2. In addition the coefficient of t(x2)= t(xfu in
(Γx)2 is at least flΓlΓ1 and so
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(3) 2|α/8| + | | / | | i ί£ | |Γ | | -

since if / = ΣyeG,γ(y)y, then the coefficient of t(xfu is

2aβ + Σ y{y)y(t(χfuy->)
y < = G 2

and \ΣyeG2y(y)y(t(xfuy-{)\ g | |/ | | | by Cauchy's inequality.

First we note that from (1) and (3)

so that

(4) | α | - | 0 l < 0.55

Now let A = I a \ + \ β \. Then from (1) and (3)

and as

| | / | | 2 g | | 7 x | | - A < V 2 - Λ ,

we have

i.e. 3 A 2 - 4 V 2 A + 4 > 1 + — =

V2

or / A 2 V 2 y > l
A_2V2y>

3 / 3V2 9

Therefore either

Λ > 2 V 2 + ! / / 3

3 3 V \V2

I (1-41) + I (1-05) =1-29
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or

A <
2V2 1

< I (1-42)- I (1-04) = -60.

Since A > \a | > 0-70, we have A > 1-29. Thus we have estab-
lished (i).

For (ii) note that | |/| | |< || T\\- 1-29< 1-42- 1-29 = 0-13 from (2).
Next, we note that since T is a *-map

Txι = άt(x)~ι + βt(xyιu~ι + /*.

Multiplying by Tx, we consider the coefficient of u~\ which must be
zero. If u1^ e2, we obtain that

0 70|/5 I ^ 0-13|/8 I + 0-02

from which we conclude \β\ = 0-04.
However \a\ + \β\ > 1-29 and \a\-\β\ < 0-55 so that \β\ > 0-37

and so we have a contradiction. Hence u2 = e2. Again identifying
coefficients of u

Finally

άβ
+
aβ

\β\

άβ

\a

άβ

\β\
+

άβ
cl

\β\

aβ

\β\

^ 0-55 + ^ y < 0-60.

LEMMA 2.5. The set {t(x2)t(x)~2: x E Gx} contains at most one
element u^ e2.

Proof. Suppose t(x2)t(x)'2= u^ e2 and t(y2)t(y)~2 - v^ e2 with
v ̂  u. Then write

Tx =

Ty = a2t(y) + β2t(y)v + y2t(y)u + 82t(y)uv + g
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where the terms are disjoint (γi, γ2, δi and δ2 may be zero). By our
assumptions, t{x)t(y), t(x)t(y)u, t(x)t(y)v, t(x)t(y)uυ are distinct (note
that u and v have order 2 by the preceding lemma). The sum of all
terms in the product

(jιt(x)υ + δxt(x)uv +f)*(y2t(y)u + δ2t(y)uv + g)

may be estimated by (0 13)2 < 0-017. Hence by considering each of the
four elements above, we obtain

\a1δ2+βφ2+διa2\ -0-017

\θt2

0-017

R e γ 2
a i

Reδj ΪMA
βφ2

Now

\a2 Ift
<0.60

by Lemma 2.4, and we can estimate each term similarly.

Hence

||Γxy || δ ( |α,| + | 0 , | ) ( | α 2 | + | 0 2 | ) - O 6O(|γ,| + | γ 2 | + |δ, |
-0-017

g ( l 29)2-0-60(0-26)-0-017

> 1-66-0-16-0-02-1-48

which is a contradiction, since || Γxy || < \ίl.
We now come to the basic theorem.

|δ 2 | )
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THEOREM 2.6. Let Gλ and G2 be abelian groups with identities eλ

and e2, and let T: /i(Gi)—> U(G2) be an algebra homomorphism such that
Teλ = e2. Suppose || Γ | l< V2; then if

(a) || Γ|| < HI + V3), T takes the form

Tx = φ(x)s(x)

where φ E Gι and s: Gλ->G2 is a homomorphism, and then T is an
isometry

or (b) || r | | ^ HI + ^ X τ takes the form

Tx = φ(x)m + <P(X))S(X) + ±(1 - φ(x))s(x)u)

where φ, φ E Gλ and <p has odd order, s: Gλ-> G2 is a homomorphism and
u E G2 is an element of order 2. In this case || T\\ = V2 cos π/4n, vv/ierβ n
is the order of ψ. In both cases, if T is a monomorphism, then s is a
monomorphism, and if T is an isomorphism then so is s.

COROLLARY 2.7. // there is an algebra isomorphism T:
U(Gλ)-> lλ(G2) with | |Γ | |<V2, then Gλ and G2 are isomorphic.

REMARK. Example 1 shows that V2 is the best possible constant in
the Theorem and its Corollary. Example 2 shows that \(\ + V3) is best
possible for (a). Example 4 shows that in case (b) T can be an
epimorphism while s is not an epimorphism.

Proof of Theorem 2.6. Let e2 denote the identity character on
G2. Then e2

o T is a nonzero character ψ on Gλ (since Teλ = e2). If we
define S: /i(Gi)-» lι(Gx) by Sx = φ~1(x)x then S is algebra automor-
phism, and so by considering TS in place of T we may reduce the problem
to supposing e2°T = eλ.

Using the notation of the preceding lemmas, suppose first that
t(xf=t(x2) for all x E G,. Then by Lemma 2.3 if

Tx = at(x) + f

then Tx2" = βt(xfn + g

where || g || ^ (2/1| Γ ||2)n || /1|. Since 2 > || T ||2, we conclude that / = 0 and
hence Tx = at(x) where a = a(x). Since e2

o Γ = eu a = 1, i.e. Tx =
ί(x) and ί is a homomorphism. We thus obtain the result of (a).

Next suppose {t(x)'2t(x2): x E G} = {e2, u} where u is an element of
order 2. Let H-{e2,u), and let ττ:G2—> G2/ff be the quotient
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map. Denote by P: /i(G2)—» U{G2IH) the induced algebra epimor-
phism, and consider PT: /,(G,)-> h(G2/H). As | |PT | | g | |Γ | |< V2, we
can appeal to the preceding lemmas. Let ΐ: Gλ->G2IH be the map
defined before Lemma 2.3. The mass of Tx concentrated in the coset
ϊ{x) is at least | |T||-\ and hence as 2||ΓH"1 > | |T| |, it follows that
πt(x)= ϊ{x). Thus ϊ(x2)= πt(x2)= ϊ(x)2 since u E H, and so by the
preceding paragraph

PTx = ϊ(x)

and ΐ: G]—>G2IH is a homomorphism.
Thus for x E Gι

where / = (e2- u)*Σ" yj,, and there is precisely one y, in each coset of
H. Then ||/|| = 2 Σ | γ , | < | | Γ | | - l and hence ||/||| = 2Σ|γ, p <
I( | |Γ | |-1) 2 . However

so that

Now suppose

Then

2+\\m=i

TX2 = r ^ t(X

2)
Θ(X2) , 2, ̂  l - f l ( j r ) ,r ^ t(X

2) + f—1- t(X

2
t(X

2)u + g.

11*11 £

a n d s i n c e / = \ ( e 2 - u ) * f

θ(x)
t(x)+

ί-^t(x)u

= κ
where K - 1 + 2V(2||Γ|| - || Γ | | 2 )- | |Γ | | > 1 since | |Γ| |<8/5.
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Thus it follows that || Tx2" || ^ Kn \\f\\, and hence that / = 0, i.e. T has
the form

By multiplying out, it is easy to see that

θ(xy)=±θ(x)θ(y)

and hence that θ2 is a character on G,. Since || Γ|| < λ/2, | θ(x)±i
6 > 0 for all x G d and some e >0. Hence 02 has odd order, n,
say. Define φ - (#2)(n+1)/2; then φ is also a character of order n, since
(n,(n + l)/2)=l. Now <p(x) = 0"+1(x) = ±θ(x), and hence by defining
s(x)= t(x) or ί(x)w we may express T in the form

Since φ is a character it follows easily that 5 is a homomorphism. The

norm of T is then

p
EGi

= max cos
\ I

kπ
sin —

n

Γ [klT 77
= max V2 sin ( h -r

= V2cos ^- .
An

If n = 3

Γ 77 1 + V3
V2 cos -Γ- = — - z — .

An 2

If T is a monomorphism in case (b) (case (a) is trivial), let Λί C G2 be
the set such that s(M) = e2. Then Tm E lin(e2, M) for m G M, and so M
has at most two members. If M^{eλ}, there exists v EM and u2 =

ei. Hence φ(υ)= + 1 since φ is of odd order and so Tv = ψ(v)e2,
contradicting the fact that T is a monomorphism.

If T is an isomorphism, let N = s(Gι). If u£ N then there must
exist x G Gλ such that s(x)u = u and 1 - φ(x)^ 0. But then s(x)= e{

and by the result for monomorphisms, x = e1? φ(jc)= 1. Thus uEN
and so Γx G /i(s(G,)) for x G G,. Thus siGJ = G2 since T is onto.
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3. General case. We now use the results for discrete groups
to establish the corresponding theorems for locally compact abelian
groups.

First consider homomorphisms from L\Gλ) into M(G2). If / is
such a homomorphism, then T possesses a unique extension
f: M (Gi)—» M(G2) which is continuous on bounded sets from the strong
operator topology (of M(Gλ) operating on LX(GX)) to the weak*-topology
(of M(G2) = C0(G2)*) (see [4] Theorem 4.1.1 and Remark afterwards).
We also observe that in the strong-operator topology, the unit ball of
M(Gi) is the closed absolutely convex cover of the Dirac measures
{δx: x E Gi} (see [4] Lemma 1.1.3). Hence f is uniquely determined by
its behaviour on the atomic measures, which we identify with U(Gλ).

THEOREM 3.1. Let G1 and G2 be locally compact abelian groups and
T: L\Gλ)-+M{G2) be an algebra homomorphism such that | |Γ | |< V2
and fδeι = 8e2. Then

(i) if || Γ|| < i(l + V3), then \\T\\=1 and T takes the form

(χ(ΞG2)

where φ ELGX and s: Gλ^G2 is a continuous homomorphism;
(ii) if || Γ|| ̂  i(l + V3), then T takes the form

if x(u) = ι

= f(s(χ)ψφ) if χ(u)=-ί

where φ9 ψ E Gu φ is of odd order n, s: Gλ->G2 is a continuous
homomorphism, and u E G2 is an element of order 2. Then | |T| | =
V2cosπ/4n.

Proof Let P: M(G 2 )^/i(G 2 ) be the natural projection; P is an
algebra homomorphism. Consider PT: /i(Gi)-^ /i(G2). Clearly || T|| =
|| Γ|| and ||P_|| = 1, and so | |PΓ || < λ/2. By Theorem 2.6, either

(i) PT8X = ψ(x)8s(x)

or (ii) PTδx = ψ(x)[1

2(l + φ(x))δΦ)^
1

2(l-φ(x))8s{x)u].
Consider case (i). Then

fδx = ψ(x)δs{x)+μ

where μ is nonatomic, and ||μ | |< \/2— 1.

where v is nonatomic and
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\v\\^\\2ψ(x)δ,(x)*μ\\-\\μ*μ

^(2-\\μ\\)\\μ\\

By iteration we obtain a contradiction (cf. 2.6) unless μ = 0, since
3 - V 2 > l .

Thus

fδx = ψ(x)δs(JC).

On the Dirac measures, both the strong-operator and weak*-
topologies agree with the group topologies, so that s and ψ are
continuous. The form of Γ now follows from the remarks preceding the
Theorem, and replacing ψ by ψ~\

For case (ii) we compose with the quotient Q: M(G2)-+ M(GJH)
where H = {e2, u} is a subgroup of G2. Then

P'Qfδx = ψ(x)8mix)

where P' is the natural map P': M(G2/H)-> lx(GJH)9 and π is the
quotient map TΓ: G2-> G2///. As above ψ and πs are continuous and

Ofδx = ψ(x)δπs{x).
Thus

Tδx = Pfδx + μ

where μ is nonatomic and satisfies μ = | ( δ e 2 - δ u ) * μ . Then

fδx2 = PTδxi -f 1/

where ẑ  is nonatomic and satisfies

v = ψ ( x ) [ ( l + φ(x))μ * δ s ( x ) 4- (1 - φ ( x ) ) μ * δs{x)u] + μ*μ

= 2ψ(x)φ(x)μ * δ s ( x ) + μ * μ.

Thus

a n d argu ing as b e f o r e μ = 0, i .e.
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Now

fδx = φ(xψ2(l^ ψ(x))δsix) + ̂ l- φ(x))8six)u]

where ψ is continuous. To prove φ continuous, since φ has finite order,
it is sufficient to establish that {x: φ(x)= 1} is closed. Suppose JC« —> JC
and φ(xa)= 1. Then

fδXa = ψ(xa)δs(Xa)

so that

fδ x = ψ(χ)δz

where s(xa)-*z. Hence φ(x)= ± 1 ; but φ has odd order so that
φ(x)= 1 and φ is continuous. It follows that s is also continuous.
The general form of T follows as above, again replacing ψ by ψ~ι.

The proof above clearly shows that a homomorphism T of M(Gi)
into M(G2) with | | Γ | | < v 2 and Tδeι = δe2 has the form on atomic
measures given by either

(1) Γδx = ψ(x)δs(x), or
(2) Tδx = ψ(xψ2(l + φ(x))δsix) + ϊ(l- φ(x))δs(x)u]

with ψ, <p, s and u as before.
However we cannot deduce that s is continuous or the form of T on

the nonatomic measures. For example, (see [8], 3.4.1) let G be a
compact infinite group and let Gd be the same group with the discrete
topology. Then the algebra homomorphism P: M(G)-> h(G) =
M(Gd) as in the proof of the theorem has the above form, but the identity
map is not continuous.

COROLLARY 3.2. Suppose T is an algebra isomorphism of Lι{Gx)
ontoL\G2) [resp: M(Gγ) ontoM{G2)} with \\T\\< V2. Then G, and G2

are isomorphic.

Proof. By [8] 4.6.4 it is sufficient to prove the result in^ the
IΛcase. In this case T is also an isomorphism and satisfies Γδei =
δe2. By Theorem 3.1 and Theorem 2.6 there is an isomorphism
s: Gλ-^ G2 and s is continuous.

Since T~ι is onto L\Gλ), T~ι has a unique extension to M(G2)
(without any continuity requirements). Thus T1 is the unique exten-
sion and is hence continuous for the strong operator and weak*-
topologies on bounded sets.

The form of T is either
(1) fδx = ψ(x)δΦ)

or (2) fδx = ψ(xψ2(l + φ(x))δs{x)^
ι

2(l-φ(x))δsix)u].
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Thus either
(1) T-% = φ\sι(x))δsΛx)

or (2) T-'δ^ψ-'is'ix))
x [ϊ(l + φ'\s-\x))δtΛx)H(l ~ φ-\s-ι(*))δs-«(„)].

[Note that φ(s 1 ( " ) ) = 1 since u2 = e2 and φ is of odd order.]
The continuity of s~ι follows as in Theorem 3.1.

Theorem 3.1 is false if Γδei ^ δe2 (see Example 3). However with a
stronger condition on the norm, we have the following result, essentially
due to Saeki [9] (see [8] 4.6.3.).

THEOREM 3.3. Let Gλ and G2 be locally compact abelian groups and
T an algebra homomorphism of Lι{Gλ) into M(G2) with | | T | | <
\{\ + λ/2). Then || Γ| | = 1 and T has the factorization

L\GX)^ M(G2/H2)^ M(G2)

where H2 is a compact^ subgroup of G2, s is a continuous homomorphism of
Gx into G2/H2, ψ E Gu p E H2j

and π: C0(G2)-> C0(G2/H2) is defined by

= ί
JH2

Proof. Let f be the extension of T to M{Gλ) as in Theorem
3.1. Then fδeι is an idempotent in M(G2) with || fδeι\\ < i(l + V2). By
Saeki [9], || TSβi || = 1 and Tδei = ρmH2 where H2 is a compact subgroup of
G2 and p E H2jL (see [4] Theorem 2.1.4). Since pmH2 is the identity for
the image of Γ, T must factor through M(G2/H2).

Let V(G)-^ M(G2/H2)^> M(G2) be the factorization with π de-

fined as in the statement of the theorem. Then Sδe] = δ̂ , where ξx is the

identity of G2/H2, and since || π * || = 1, || S || < i (1 + V2). The result now

follows from Theorem 3.1.
Finally in this section, we give the corresponding results for C(G)

and LX(G) with G a compact group.

THEOREM 3.4. Let Gλ and G2 be compact abelian groups and let T
be an algebra homomorphism of C{GX) into C(G2) with Tone-to-one and
\\T\\< λ/2. Then there exists a group homomorphism s of G2 into Gx and
ψ E G2 such that either

(1) || Γ | | = 1 and T has the form
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(Tf)(x)=φ(x)f(s(x))

or (2) | |Γ | | = V2cos π I An for an odd number n > 1 and T has the form

(Tf)(x) = φ(xψ2(l + φ(x))f(s(x)) + h(ί - φ(x))f(s(x)u)]

for some φ E G2 of order n and u E Gu of order 2.

Proof. The characters on a compact abelian group are the only
idempotents of norm less than 2. Thus T maps characters into
characters. It follows that (Tf)(e2) — f{e\) for all / E C(Gi), and as in
[16] Theorem 2, Γ* is a homomorphism of M(G2) into M{Gλ). Since
T*δe2= δei and | |Γ*| | < V2, the result follows from Theorem 3.1.

Note that 5 need not be an epimorphism (Example 4).

COROLLARY 3.5. Suppose Tis an isomorphism ofC(G1) onto C(G2)
with | |Γ | |< V2. Then Gx and G2 are isomorphic.

Proof This follows from Corollary 3.2.
Note that λ/2 is again the best possible constant (Example 1).

THEOREM 3.6. Let Gλ and G2 be compact abelian groups and
T: L™(Gλ)-+ LX(G2) be a one-one algebra homomorphism. Then

(i) « V

Tnx)=φ(x)f(s(x))

where s: G2-> Gλ is a continuous homomorphism and φ E^G2

(ii) // T is an isomorphism onto L°°(G2) and || Γ|| < V2 then Gλ and
G2 are isomorphic.

Proof. As T maps characters to characters, T maps C{GX) to
C(G2). If T is an isomorphism then T: C{GX)-* C(G2) is an isomorph-
ism and case (ii) follows from 3.5. For case (i) we observe by 3.4 that

Tf(x)=φ(x)f(s(x)) fECiGJ

where ψ E G2 and s: G2->GX is a continuous homomorphism. Let
H = kers and consider P: L°°(G2)—>Ln(GJH) the natural projection

Pφ[π(x)]= I φ(xh)dmH(h)
JH

where mH is the Haar measure on H, and π the quotient map.
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Then PT: L^d)-* L"(GJH) is an algebra homomorphism and
= C(G2/H). Hence for g E C(G2/H)y f G L^G,),

PTf*g = PT(f * (PT)ιg) = Pff*g

where

tf(x)=ψ(x)f(s(x)).

It follows that

PTf = Pff

and hence that Tf = ff+k where

f k(xy)dmH(y) = 0 (x G G2).
JH

Now Γ(/*/) = f(/*/) and so

fc + fc*fc =0.

T/ is constant on cosets of H and so tf * fc = 0. Thus fc * fc = 0 and
fc = 0 since G2 is abelian.

4. Non-abelian groups. In the non-abelian case, we cannot
expect results about the form of near isometries. If G is compact, but
not abelian, there exist many isomorphisms of C(G) [or L\G)} onto
itself with norms arbitrarily close to one. An isometry can be perturbed
in different ways by automorphisms of the minimal ideals. However we
can still ask whether isomorphisms of the algebras determine isomor-
phisms of the groups. Again we begin with the discrete case. Let Gt and
G2 be arbitrary groups^ and T: /i(Gi)—» h(G2) be an algebra homomor-
phism with | | Γ | | < V 2 and Te1 = e2. By Proposition 2.1, the map
t: Gι-> G2 is well-defined. But Proposition 2 is false in the non-abelian
case since T need not be a *-map. If we impose a stronger condition on
the norm of T, we get that t is a homomorphism directly.g p y

MA 4.1. // || T\\ < λ0 where λ0 is the largest root of the equation
2 λ - l = 0, then t is a homomorphism.

LEMMA 4

A3 + λ2

Proof. Let Tx = at(x) + f and Γy = j3ί(y)+g where | α | ^
\β I § I/O Γ||, with / and g disjoint from t(x) and t(y) respectively. Then
the modulus of the coefficient of t(x)t(y) in Txy is greater than
kil l 8 1 ~ Il/Hllgll Now if t(x)t(y)^ f(jcy), this must be less than
|| T || - 1/1| T ||. Thus we must have
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δ 2 - I I T I P .

But this is impossible since | | T | | < λ0 and λ0 is the largest root of
λ - l / λ = 2 - A 2 .

Thus t(xy) = t(x)t(y) for all x, y E d and so t is a homomorphism.

Note, λo~ 1-247.
With the condition || Γ|| < V2, we can show that t is not too far from

a homomorphism in the following sense.

LEMMA 4.2. For x E Gu the set {t(y)t(z)\ yz = JC} is finite.

Proof. If Γy = αr(y) + / and Tz = βt(z)+g with | | | | | |
^ 1/||Γ|| and / and g disjoint from ί(y) and t(z) respectively, then

the modulus of the coefficient of t(y)t{z) in Tyz = Tx is greater than

2 - | | T | r as before.

Since this is positive and || Tx || < V2, it follows that the set
{t(y)t(z): yz = x} is finite.

These two lemmas give corresponding results for locally compact
groups. We give only the results for isomorphisms, though clearly there
are slightly more general results.

THEOEREM 4.3. Let Gλ and G2 be locally compact groups and T an
algebra isomorphism of L\G\) onto Lι(G2) with || Γ| | < λ0 where λ0 is the
largest root of the equation λ 3 + λ 2 - 2 A - l = 0, then Gλ and G2 are
isomorphic.

Proof By [4] §4, there is a unique extension f of T from M{Gλ)
onto M(G2) which will also be an isomorphism with || Γ|| < λ0, and which
is continuous on bounded sets as a map from the strong operator
topology into the weak* topology.

Now restricting to the atomic measures on Gλ and using Lemma 4.1,
we have an isomorphism t: G\-* G2. t is continuous by the continuity
of f as in Theorem 3.1, so it remains only to prove that Γ1 is
continuous. Suppose not. Then there exists a compact neighborhood
V of eλ in Gλ such that ί( V) is not a neighborhood of e2. By taking U
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such that UU~ι C V if necessary, we can assume that the measure of
t(V) is zero. Let χv denote the characteristic function of V and mx the
Haar measure on Gx. Then χv E.L\GX) and by [4] Lemma 1.1.2,
{\lmx{V))χv can be approximated in the strong operator topology by
elements in the convex hull of {δx: x E V). Suppose Σ?=1 λ ^ is such an
element. Then for each ί, tδXι = a(xι)δt(Xi)+ vt where \a(x-)\ > 1/||Γ||,

Vi({ί(xί)}) =
Then

f(Σ λ.δj = Σ λ,α(x,)δ((li)+
\ 1 / 1

Now (l/mι(V))Tχv is the w* limit of such elements. Thus
(\lmx(y))Tχv = μ + v where supp(μ) C t(V) and \\v\\ ^ \\T\\ - 1/||T||.

Since t(V) has measure zero, μ is a singular measure. But
TχvEL\G2) and so ||(l/m1(V))T^v|| ^ || ^| | ^ | | Γ | | - 1/|| Γj |. But there
exists a net of such V such that (l/mi(V))^v tends to δeι in the strong
operator topology. Therefore (l/mι(V))Tχv -* δe2 in the w*-topology,
which is a contradiction, since ||(l/m,(V))Tχv\\ ^ || Γ| | - 1/|| T\\ < 1. Hence
Γ 1 is continuous and the result is proved.

COROLLARY 4.4. Let Gλ and G2 be compact groups and T an
algebra isomorphism of C(Gλ) [L°°(Gλ)] onto C(G2) [LX(G2)] with \\T\\<
λ0. Then Gι and G2 are isomorphic.

Proof. By [12] p. 861, it is sufficient to prove the result for T
mapping C{Gλ) onto C(G2). The adjoint map T* is an algebra
isomorphism of M(G2) onto M{GX) which maps L\G2) onto Lλ(G\) ([4]
Theorem 1). The result now follows from 4.3.

THEOREM 4.5. Let Gλ and G2 be locally compact connected groups
and T an algebra isomorphism of Lι(Gλ) onto Lι(G2) with \\T\\<
λ/2. Then Gλ and G2 are isomorphic.

Proof. As in the proof of 4.3, t is a continuous one-to-one map
from Gx onto G2. By Lemma 4.2, for x E G b {t(y)t(z): yz = x] is a
finite set. But it is the image of Gλ under the continuous map
y •"* t(y)t(y~Xχ) Since Gλ is connected, it is a one point set, and since
t{ex) = e2y this point is t(x). Thus t is an isomorphism. The continuity
of Γ 1 follows as in 4.3 since | | T | | - 1/||T|| is still less than one.

COROLLARY 4.6. Let Gλ and G2 be connected compact groups and T
an algebra isomorphism of C(GX) [L"{Gλ)] onto C(G2) [L°°(G2)] with
| | T | | < V 2 . Then Gλ and G2 are isomorphic.



460 N. J. KALTON AND G. V. WOOD

REFERENCES

1. D. Amir, On isomorphisms of continuous function spaces, Israel J. Math., 3 (1965), 205-210.

2. M. Cambern, A generalised Banach-Stone theorem, Proc. Amer. Math. Soc, 17 (1966), 396-400.

3. R. E. Edwards, Bφositwe and isometric isomorphisms of some convolution algebras, Canad. J.

Math., 17 (1965), 839-846.

4. F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math., 15 (1965),

1187-1219.

5. B. E. Johnson, Isometric isomorphisms of measure algebras, Proc. Amer. Math. Soc, 15 (1964),

186-188.

6. S. K. Parrott, Isometric multipliers, Pacific J. Math., 25 (1968), 159-166.

7. R. Rigelhof, Norm -decreasing homomorphisms of group algebras, Trans. Amer. Math. Soc, 136

(1969), 361-372.

8. W. Rudin, Fourier Analysis on Groups, Interscience (New York) 1960.

9. S. Saeki, On norms of idempotent measures, Proc. Amer. Math. Soc, 19 (1968), 600-602.

10. , On norms of idempotent measures II, Proc Amer. Math. Soc, 19 (1968), 367-371.

11. R. S. Strichartz, Isometric isomorphisms of measure algebras, Pacific J. Math., 15 (1965),

315-317.

12. , Isomorphisms of group algebras, Proc. Amer. Math. Soc, 17 (1966), 858-862.

13. J. G. Wendel, Left centrahzers and isomorphisms of group algebras, Pacific J. Math., 2 (1952),

251-261.

14. G. V. Wood, A note on isomorphisms of group algebras, Proc. Amer. Math. Soc, 25 (1970),

771-775.

15. , Isomorphisms of Lp group algebras, J. London Math. Soc, 4 (1972), 425-428.

16. , Homomorphisms of group algebras, Duke Math. J., 41 (1974), 255-261.

Received June 30, 1975.

DEPARTMENT OF PURE MATHEMATICS

UNIVERSITY COLLEGE OF SWANSEA

SINGLETON PARK

SWANSEA, SA2 8PP




