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ON PARTIAL ISOMETRIES
WITH NO ISOMETRIC PART

JAMES GUYKER

P. R. Halmos and L. J. Wallen characterized partial
isometries all of whose positive integral powers are partial
isometries on Hubert space as unique direct sums of unitary
operators, pure isometries, pure co-isometries and truncated
shifts, with each type of summand occurring at most once. In the
present paper, this structure is extended to partial isometries T
with no isometric part whose first N + 1 powers are partial
isometries. Moreover, if T = X 0 TJ 0 V, it is shown that every
projection P commuting with T is of the form P = X 0 P} 0 0
where P} and Q are projections commuting with T, and V
respectively. The canonical model of L. de Branges and J.
Rovnyak is used to explicitly describe the structure of the
reducing subspaces of T in terms of the characteristic
operator-function of T*, from which this result follows. A direct
proof is also obtained using a general reducing subspace structure
theorem for arbitrary contractions with no isometric part.

1. Preliminaries. Let ^ be a complex, separable Hubert
space. The space ^2((€) is the Hubert space of analytic, square-
integrable functions f(z) defined on the open unit disk with values in %
such that the set

where | | is the norm in <#, is bounded, with the norm given by
||/(z)||2 = sup I If f{z) is in ^f2(^), then there is a square-summable
sequence {an: n = 0,1,2, } of vectors in <β such that for each | z \ < 1,
f(z) = Xanz

n in the metric of ^, and moreover | |/(z) | | 2 = X\an |2.
A function B(z) defined on the open unit disk whose values are

operators on %> will be called analytic if there is a sequence
{Bn: n = 0,1,2, } of operators on ^ such that for every | z | < l ,
B(z) - Σ Bnz", where the series converges in the strong operator topology
for each fixed z. An analytic function B(z) is bounded if there exists a
constant M such that |B(w) | g M for every | w | < 1. If B(z) is analytic
and bounded, and B (z) = X Bn zn, then for every f(z) = X an z

n in 9e\%),
the Cauchy product B(z)f(z) = ^(Σn

k=0Bkan-k)zn is in X2(^) and defines
a bounded operator, which will be denoted by Tβ, on ffl2^). Finally, we
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recall that a bounded, analytic function B{z) is an inner function if TB is a
partial isonietry on W\%).

If E is a subset of a Hubert space %, then CL(J5) and V E will denote
the closure and closed span of E respectively. For subspaces M and N of
$?, if M1N, then M φ JV will denote the orthogonal direct sum of M and
N; if N C M, then M Q N will be the orthogonal complement of N in M

The proofs of the following results may be found in [1] or [2].
Let B(z) be an analytic function that is bounded by M = 1. The

de Branges-Rovnyak space 3€(B) is the Hubert space of functions f(z) in
dK2^) such that the set

J = {||/(z) + β(z)g(z) | | 2 - \\g(z)f: g (z)e **(«)}

is bounded, with the norm given by | |/(z) | | | = sup J. Since the
zero-function is in %2(<e), it follows that | |/(z)||B ^ || f(z)|| for every /(z) in
^ ( β ) , so that Sίf(JB) is continuously embedded in W\%\ The space W(B)
is isometrically embedded in ffl2^) if and only if B(z) is inner, in which
case X(B)φ (range Γβ) = ^ 2( (g). For a subset E of W{B\ the notation
CLB(E) and VβE will be. used to emphasize that the corresponding
operations are taken in the metric of

The function

v 7 1-zw

where for each | w | < 1, B(w) is the adjoint of B(w) on ^, is a reproducing
kernel function for !%(B): for each vector c in <# and for each | w | < 1,
K{w,z)c is in %(B), and if /(z) is any element of %(B), then

(f(W),c) = (f(z),K(w,z)c)B.

If /(z) is in %(B), then (/(z)- /(0))/z is in ^(B) and

\\m^ml^\\f(z)\\l-

A contraction T on a Hubert space X is said to have no isometric part
if there is no nonzero vector / in $f such that ||Γ"/|| = ||/|| for every
n = l,2, •••. Let T be an arbitrary contraction with no isometric
part. Then T is unitarily equivalent to the backward shift operator
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acting on a space $?(B), for some coefficient space <£ and some analytic
function B(z) which is bounded by 1. Furthermore, the difference
quotient identity holds in the space X(B): | |Λ(0)/(z)|| | = \\f(z)\\2

B- |/(0)|2

for every f{z) in ffl(B). The function B{z) is called the characteristic
operator-function of T*.

The operator JR(O)* on %(B) is related to JR(O) on %(B*) where
B*(z) = XBnz

n if B(z) = XBnz
n and Bn is the adjoint of Bn on «.

Associated with the space ffl(B) is a space which is useful in studying R (0)
on %(B) when the difference quotient identity fails to hold in X(B): the
space 2(B) is the Hubert space of pairs (f(z),g(z)) in ^f(β)x %(B*)
such that if g(z) = Xαnz" then hn(z)= znf(z)~ B(z)x
{aoz

n~ι +a1z
n~2+-- + an-x) belongs to ffl{B) for every n = 1,2, , and

the set

is bounded, with the norm given by ||(/(z), g(z))||| = sup K.
If (f(z%g(z)) is in 2>(£), then

(κ(z), ι>(z)) - (Λ(0)/(z), zg(z)- B*(z)/(0))

is in S(B) and ||(iι(z),ϋ(z))||2

a=||(f(z),g(z))||2,-|/(0)|2. The difference
quotient operator on 3)(B) is the bounded linear transformation

whose adjoint is given by D*(/(z),g(z)) = (z/(z)- B(z)g(0),i?(0)g(z))
and satisfies | |D*(f(z),g(z))|p9=||(f(z),g(z))| |2

a-|g(0)|2 for every
{f{z\g{z)) in

2. Reducing Subspaces of R (0). We recall that a (closed)
subspace M of a Hubert space HC reduces a bounded operator T on 3if if M
is invariant under both T and Γ*. The structure of the reducing
subspaces of the backward shift on $?(£?) whenever B(z) is a constant
operator-function is well-known [3, Lemma 3.2], [9, Theorem 1]: if
B(z) = J3(0) and |B(0)| ^ 1, then the only reducing subspaces of #(0) on
$?(B) = Vβ {R(0)*nX: n = 0,1,2, }, where 9ίΓ is the kernel of R(0), are
the slices M = VB {jR(0)*nS: n = 0,1,2, •••} where S is an arbitrary
subspace of X. Furthermore, W(B)O M = V B{R(0)*n(J{ Q S): n =
0,1,2, }. In this section, which is a continuation of [6] and [7], it is shown
that this structure is essentially preserved under general conditions on
B(z). We first establish two auxiliary results.

LEMMA 2.1. Let ffl(B) in ^\c€) be a de Branges-Rovnyak space
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with reproducing kernel function K(w,z). Then
V B {R (0)*"K(0, z ) « : n = 0,1,2, • } and the following are equivalent for a
subspace M of %(B).

(1) M= VB{R(0)*nK(0,z)S:n = 0,1,2, •••} for some subspace Sof
% which is invariant under Aiy - BjB, for all i, j = 0,1,2, .

(2) M = %(B) Π N for some subspace NofX\%) which reduces both
Tz and ί-TBT*B on

In this case,

v { R ( 0 ) * n K ( 0 , z ) ( < β Q S y . n = 0,1,2, •••}
B

Proof. We first observe that X(B) Γ\N=CLB(1- TBT*B)N for any
reducing subspace N of 1 - TBT%. This follows since 1 - TBT% is
continuous as an operator from <Xϊ(%^) into ffl(B), and (f(z),(1—
T B Γ S ) / ( Z ) > B = || /(z) I2 for every /(z) in ^ ( B ) [ l , Theorem 4]. Also note
that

Sίf(B) = C L B ( 1 - TBT%)W{B)= CLB{\-

= C L B ( 1 - T B Γ S ) J V 0 C L B ( 1 - ΓB

since for any /(z) in N and g(z) in X2(^)QN,

<(1 - TBT5)/(z), (1 - TBTS)g(z))B - {(1 - TBTS)/(z), g(z)> = 0.

(1) /mp/ίes (2). Suppose that M = Vβ {R(0)*nK(0, z)S: n =
0,1,2, •••} for some subspace 5 of % such that JS.β S C S for all
i, j = 0,1,2, . Let N = V {Γ?S: n = 0,1,2, •••}. Clearly JV reduces Tz

on %e\%). Moreover, since (1 - TBT*B)S =_K(0,z)S, and for n ^ 1,
(l-TBT*B)T"zS = z(l-TBT*B)T"z'

ιS-B(z)BnS, it follows that N re-
duces 1 - TBT*B on $f2C<ί). Hence by the above remarks,

ΠN = CLB(1 - ΓBΓI)iV

= v { ( l - T B T I ) Γ ^ 5 : n = 0 , l , 2 , }

= v {R(0)*"ίC(0,z)S: n = 0,l,2, } = M.
β

Similarly, since π\^)QN = V {Γ;(« 0 S ) : n = 0,1,2, }, we
have that
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QM = W(B)QCLB(1-TBT*B)N

= CLB(l- TBT

= v { R ( 0 y " K ( 0 , z H < € Q S y . n = 0 , 1 , 2 , - • • } •
BB

(2) implies (1). Suppose that M = $?(B) Π JV where N is a subspace
of 3T2(<Sί) with reduces both Γ2 and 1 - TBT*B on 5?2(<iί). There exists a
unique subspace S of % such that N = V {T"ZS: n = 0,1,2, •} and

θ $ ) : n = 0 , l , 2 , }. Therefore,

M = CLB(1 - ΓBΓ8)N = v {(1 - TBT%)T:s: n = 0,1,2, }

= v {i?(0)*"K(0,z)S: π = 0 , l , 2 , }

and similarly for f ( B ) 0 M . By the structure of N and the above
identities for (1 - TBT%)Tn

zS, it follows that S is invariant under Λι7 = BιB]

for all i,y =0,l,2, .

We recall that an operator T on a Hubert space X is a partial isometry
if || Γ/1| = ||/1| for every vector / in Sίf which is orthogonal to the kernel of Γ
(or equivalent^, if T= TT*T) [8].

LEMMA 2.2. Lei D 6e the difference quotient operator on the
de Branges-Rovnyak space 2(B). Then BO,BU — ,BN are partial
isometries on the coefficient space % if and only if D,D2, * ,D N + 1 are
partial isometries on 3)(B), in which case BtBj = BiBj = 0 for all i and j
such that i £ j and either O ^ i ^ J V α r O ^ j ^ N .

Proof. For f(z) in ^ 2 ( ^ ) let /n(0) denote the coefficient of zn in the
Taylor's series expansion of /. Then by the defining equations of D, we
have for (/(z), g(z)) in 2(B) and any positive integer k,

where for /, k ^ 1,

g°(z)= g(z), g'(z) = zg'-\z)- B*(z)fM(0),

f(z)=R(0Yf(z), f {z)=zf-\z)-B{z)gUΦ),

(Λ°(z) = R(0fgk(z), h'(z)= zh'~\z)- B*(z)fU0)\

Fk(z)= Σ RφT *(*>-*(°> g ί(0), and
n = 0 2

fc-1

B*(z)/tn-,(O))z".
n=0
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Suppose that Bo, B1? , BN are partial isometries on c€. For every
vector c in % which is orthogonal to the kernel of By for fixed /, 0 ^ / ^ N ,
we have that

so that JBfC =0 for all ΪV/. Since i and / were arbitrarily chosen, it
follows that BiBj = 0 for all i and / such that i ϊ j and 0^/^JV. Since the
operator-function B*(z) = ΣBnz

n is also analytic and bounded by 1
where Bn is a partial isometry for n = 0,1, , N, we have that 2?,!?, = 0 for
all «V / such that O^j^N. Therefore for fc = 1,2, , ΛΓ + 1, Fk (z) = 0 in
the above identity, and the nth coefficient of Gk{z) becomes

. ~ Σ B>Λ-π-i+;(0) + Σ B BjBj^^iO) = 0
7=0 /=0

for n = 0,1, , k - 1, since B} is a partial isometry for / = 0,1, , N.
Hence, DkD*kDk = D k for fc = 1,2, •• ,N + 1.

Conversely, suppose that D iŝ a partial isometry on Q){B). Therefore,
Gλ{z) = 0 = - B0/(0) + β*(z)β0i3o/(0) for every /(z) in 3ίf(B). If c is
any vector orthogonal to /(0) for every /(z) in ^(B), then JK(0, z)c = 0. It
follows that B0 = B0B0B0.

Suppose that D, D2, , D N + 1 are partial isometries on 3)(B). By
induction, we may assume that Bo, Bu , BN_! are partial isometries on ^
and consequently B/By = B,Bj =0 for all iV / where either O ^ i ^ J V - 1
or O ^ / ^ J V - 1 . By the above identity, G^+i(z) = 0, and therefore the
coefficient of zN in the expansion of GM+ί(z) vanishes, i.e.,

0 = - Σ BifiΦ) + Σ BjBjBifiΦ) = " BN/N(0) + BNBNBNfN(0)
0

for every /(z) in ffl(B). If c is any vector orthogonal to /N(0) for every
/(z) in 3ίf(B), then

)c = 0 = z /?(0)*N1ί:(0, z)c - B(z)BNc

and consequently c -Σ^QBJBJC = 0. It follows that BN = BNBNBN.

THEOREM 2.1. Lei $f (B) m ^ 2 ( ^ ) 6e α de Branges-Roυnyak space
with reproducing kernel function K(w, z). Every subspace of ffl(B) of the
form

V {R(0)*nK(0,z)S: n = 0 , l , 2 , }
B
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where S is a subspace of % which is invariant under A,7 = BtBj for all
ί, / = 0,1,2, , is reducing for the backward shift R(0) on ffl(B).
Conversely, if either B (0) is a partial isometry on % or the difference quotient
identity holds in dt€(B), then these subspaces are the only reducing subspaces
of R(0) on

Proof The subspaces of the given form reduce R (0) by Lemma 2.1.
Conversely, let M reduce R(0) on ^(B) where B(0) is a partial

isometry on <€. By Lemma 2.2, D is a partial isometry on Q){B). For an
arbitrary element (/(z), g{z)) in ®(B), if (α(z), b{z)) is the projection of
(f(z),g(z)) onto the kernel of D, then a(z)=a(0) and b(z) =
(J3*(z) - B*(0))/z α(0); and if (c(z), d{z))is the projection of (/(z), g(z))
onto the range of D * then c(0) = 0. Therefore the kernel of D is the set of
vectors of the form (/(0), ((JB*(z)- £*(0))/z)/(0)) for /(z) in W{B). It
follows that /(0) is in 3ί?(B) and ||/(0)||fl = ||/(0)|| for every f(z)in%(B).

Let/(z) be in M. If /(0)= g(z)+ h{z) with g(z) in M and h(z)
orthogonal to M, then 0 = R (0)g (z) + R (0)h (z) and consequently
h(z)=h(0) since M reduces R(0). Therefore,

\\h(z)\\l = (h(0lf(0)-g(z))B=(h(0)J(0)-g(0))

= <Λ(z),/(z)-g(z» B =0,

and f(0)=g(z) is in M.
Let S={/(0):/(z)GM}. Then M = Vβ {J?(0)*"X(0, z)S: n =

0,1,2, •} and since R(0)*n_K(0,z)S = zR(0)*nlK(0,z)S - B(z)BnS
for n ^ l , it follows that B.BjSQS for every /,/ = 0,1,2, .

Next, suppose that M reduces R (0) on df({B) and that the difference
quotient identity holds. Let N= V{Tn

zM: n = 0,1,2, }. Clearly N
reduces Tz on ̂ 2 ( ^ ) . To show N reduces 1 - TB T*B, we first prove that
M = CLB(1 - TBTt)M. But since Σ π δ 0 Λ(0)*"(l - Λ(0)*Λ(0))/?(0)n con-
verges weakly to 1 - TBT£ in $?(β) and M is closed under weak limits, we
have that C L β ( l - TBT%)MQM. It follows from [1, Theorem 4] that
CLB(l-TBTt)M = M.

Since MCN, we have that

CLe(l - TβΓ^)M = M C CLB(1 - TβΓ*)N.

Let /(z) be in ̂ ( £ ) 0 M. Then /(z) is in %(B) 0 CLβ (1 - ΓβTβ)N since
for any g(z) in M atid for any nonnegative integer n,

</(z), (l - rflΠ)τ;g(z)>B = </(z), r;g(z)>

= <Λ(θmz),(l-ΓBΓS)g(z)>B

- 0.
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Since f(z) was arbitrary, we therefore conclude that M =
CLB(\- TBT%)N CJV, and the desired form of M now follows from
Lemma 2.1.

When the dimension of the coefficient space <# is one and B (z) is not a
constant, the range oil- R (O)JR (0)* is one-dimensional and therefore the
only possible nontrival reducing subspaces of R (0) on $f(J?) are the closed
span of the polynomials in 2ΐ(B) and its orthogonal complement
(necessarily, the polynomials must be orthogonal to (B (z) - B (0))/z in
X(B)). However, according to Theorem 2.1, these possibilities fail to exist
under any of the following conditions on B(z).

COROLLARY 2.1. Let ffl(B) be a de Branges-Rovnyak space and
suppose the dimension of the coefficient space is one. If either B(z) is a
polynomial, B(0) = 0, or the difference quotient identity holds in ffl(B), then
JR(0) on ffl(B) has no nontriυial reducing subspaces.

We recall that if T is a contraction on a Hubert space ^, then there
exists a unique minimal co-isometry V acting on a Hubert space %
containing U such that T is the restriction of V to $f [11, Theorem
4.1]. The space ffl is said to be hyperinvariant for V if Sif is invariant for
every operator that commutes with V. The contraction T belongs to the
class Co. If lim^H Tnf\\ = 0 for every vector / of W [11].

THEOREM 2.2. Suppose that T is a Co-contraction on a Hubert space
$f, and that ffl is hyperinvariant for the minimal co-isometric extension of
T. Then the reducing subspaces ofTare exactly ofthe form M = V {T*nS:
n = 0,1,2, } where S is an arbitrary subspace of%, the closure of the range
of l-T*T. In this case, HQM= V { Γ " ( « 0 S ) : n = 0,1,2, • }.

Proof By the canonical model of de Branges and Rovnyak, T is
unitarily equivalent to the backward shift R(0) on ffl(B) where B(z) is an
inner function and the space $f(£) is hyperinvariant for T* on
(X\%). Hence by [11, p. 199] and [4, Theorem 5], B(z) is a scalar inner
function. Therefore, since Aη = B, Bf is a scalar multiple of the identity for
all /, / = 0,1,2, , Theorem 2.2 follows from Theorem 2.1.

Theorem 2.1 has a direct counterpart for an arbitrary Co-contraction
in terms of its minimal co-isometric extension. The proof of Theorem 2.1
may be modified to verify the following.

THEOREM 2.3. Suppose that T is a Co - contraction on a Hubert space
%t with minimal co-isometric extension Von %containing ffl. LetPπ be the
orthogonal projection of 3ί onto $f, and let % be the kernel of V. The
following are equivalent for a subspace M of %f.
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(1) M reduces T on X.
(2) M = $f Π JV, /or some subspace NofJί which reduces both V and

Px on %.
(3) M= V { Γ * n P ^ ( l - V * V ) P ^ 5 : n =0,1,2, --}, for some unique

subspace S of'<€ which is invariant under Aή = ( 1 - V *
i,j = 0,1,2,"-.

In this case,

= V {T*"P*(1 - V* V)P^(<£ Θ S): n = 0,1,2, }.

3. Power partial isometries. We recall that an operator T
on Hubert space is a power partial isometry if Tk is a partial isometry for
every fc = 1,2, . P. R. Halmos and L. J. Wallen in [10] characterized in a
unique manner an arbitrary power partial isometry as a direct sum of
unitary operators, pure isometries, pure co-isometries, and truncated
shifts, with each type of summand occurring at most once. The following
result enables us to generalize this structure to partial isometries T with no
isometric part such that Tk is a partial isometry for every k =
1,2, , N + 1.

THEOREM 3.1. Let B(z) = 2<Bnz
n be analytic and bounded by 1

where Bn is a partial isometry on the coefficient space % for n = 0,1, , N.
Let %k be the range of Bk for k = 1,2, ,Nand let ^ N + 1 = Π ^ o k e r Bk. A
subspace M of jf({B) reduces R(0) on W(B) if and only if

Λf = v f ( Σ Θ ^ W : M = 0 , 1 , , N }

0 v {J?(O)*"SN+1: n = N + l , N + 2, }
B

for some subspace Sk of%fork = 1,2, , JV+ 1 such ί/ιαίB;JB;SN+i C SN+1

for all i, / = N + 1, N -f 2, . In this case,

W(B)QM = v f ( Σ &(%ΘSk))zn: n = 0 , l , ,Λτ)

0 V {R (0)*" (<iίN+! θ SN+ι): n = N + 1, N + 2, }.
B

Proof. Suppose that M reduces R (0) on $?(B). By Lemma 2.2 and
Theorem 2.1, a direct computation shows that
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": n = O , l , ,NJ

{ R ( O ) * n K ( O , z ) S : n = N + l , N + 2, }

where S is a subspace of % which is invariant under Aiy = Bt B, for all
i, / = N + 1, N + 2, -and under A« = B< J3, for all i = 0,1, , AT. Since
5 = BkBkS_(&(1 - BkBk)S for k = 0,1, , N, we have that S =
ΠO

N(1 - BkBk)SφΣ^φBkBkS. Therefore, 115(1 - BkBk)S = Σ j £ ί + 1 0 Sk

for n = 0 , l , ,N, and i?(0)*nK(0, z)5 = i?(0)*"SN+1 for n =
N + l,N + 2, , where S t C % for fc = 1,2, , N + 1 and B,B ;SN + 1C
SN+1 for all i, / = N + 1,_N + 2, .

_Since c€QS^BkBk(
c€QS)φ(ί-BkBk)(<€QS) and BkBk% =

BkBkS 0 β t β t (« θ S) for fc - 0,1, , N, and

U(l-BkBk)<€ = f[(l-BkBk)Sφf\
0 0 0

= Π (l-BkBk)S®\l(l-BkBk)(<eQS)

the form of X(B)QM is obtained similarly.

Conversely, if M is of the above form, let S = Σj£ί0S f c . Then
BiBjS C 5 for every ί, y =0,1,2, ••-, and

": n = 0 , l , ,iv

V {i?(0)*"X(0,z)5: n = N + l , N + 2, •}
B

: n = 0,1,2,

Therefore M reduces i?(0) by Theorem 2.1.

The operator JR(O) on the following ^(JB)-space is the canonical
model for an arbitrary power partial isometry with no isometric part.

COROLLARY 3.1. Let β ( z ) = ΣJ3nz" formally where {Bn: n =
0,1^2, j } is α sequence of partial isometries on the Hubert space % such that
Bi Bj = Bi Bj = 0 for all i and j such thatvέ j . Let %k be the range ofBk for
k = 0,1,2, , and let ̂  = Π ^ k e r Bk. Then B{z) defines an analytic
inner function, and a subspace M of X (B) reduces R (0) on ffl(B) if and only
if
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for some subspace Sk of %k for k = 0,1,2, ,°°. In this case,

Proof, Let c be in % and let cn be the orthogonal projection of c onto
the initial space of Bn for n = 0,1,2, . Then for | w | < 1,

I B (w )c I2 = XIJ5 l l2n < ΣI c I2 <

Therefore β ( z ) is analytic and \B{w)\^=\ for each | w | < l . The
reducing subspace structure of R(0) on ffl(B) follows from Theorem
3.1. In particular, ffl(B) is contained in ^ 2(^)isometrically so that J5(z)
is inner.

THEOREM 3.2. Lei Tbe a partial isometry on a Hubert space ffl such
that T2, T3, , T N + 1 are partial isometries, and suppose that T has no
isometric part Let

% = (ker T Π ker Γ*fc) 0 (ker T Π ker Γ**"1) for fc = 1,2, , N,

and teί «N+1 = Π^= 1 (ker T Π ran T k ) . A subspace M of X reduces T if and
only if

Σ
n=0

M = Σ Θ T - * n Σ Θ Sk φ V {T*"SN+1: n =

for some subspace SkOf^kfork = 1,2, , N + 1, swcfi ίhα/ SN+, is
under (1 - T* T)VT*> for all i, j - N + 1, N + 2, . /n rfπs case,

n=0

Froo/. By the canonical model of de Branges and Rovnyak, T is
unitarily equivalent to R(0) on $f(JB) in which the difference quotient
identity holds. Since

for every /(z) in $?(B), it follows by polarization that ( 1 -
i?(0)*i?(0))/(z) = K(0,z)/(0) for every /(z) in ^ίf(β). Since
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fc-l
\k _1 - R (0)*kR (Of = Σ R ( 0 ) * n (1-R (0)*R (0))R (0 ) n

n=0

and l-R(Q)*kR(0Y is the projection onto the kernel of β(0)k for
fc = l,2, , JV+l , it follows by induction that . jBn/π(O) = O
(n = 0, l, ,Λ0 for every /(z) = Σ/ n (0)zn in %(B). Hence if D is the
difference quotient operator on 2)(B% then | |D*kDk(/(z),g(z))\\Q =
\\Dk(f(z)jg(z))\\a (fc = l,2, , N + l ) for every (/(z),g(z)) in 2(B).
Therefore by Lemma 2.2, BO,BU-- ,BN are partial isometries on the
coefficient space c€. The structure of the reducing subspaces of T now
follows from Theorem 3.1 and the following identities where / ( z ) is an
arbitrary element of ffl(B) and Aιj = BiB]:

(ί-R φ)*R (0))K(0, z)/(0) = K(09z)f(Q) - K(0, z)Aoo/(0)

(1 - R (0)*R (0))R (0yK(0, z)/(0) = X(0, z)Λo/(O)

for i = 1,2, ••

(1 - i?(0)*l?(0))i?(0r>K(0, z)/(0) = tf(0, z)AOy/(O)

for / = 1,2,

i? (0)1? (0)*)R ( 0 ) ^ ^ ( 0 , z

y for i,/ = l,2, .

In the next section, a direct proof of the above theorem is obtained.

THEOREM 3.3. Let T be a partial isometry on a Hubert space %C and
suppose that T has no isometric part. Then T2, T3, , TN + 1 are partial
isometries if and only if T = Tλ 0 Γ 2 0 0 TN φ V where TJ is a
truncated shift of index j and V is a partial isometry with no isometric part
such that VV* = / o n V{V*" ker V: n = 0,1, ,JV- 1}. Moreover, the
representation so expressed is unique, and every projection P which
commutes with T is of the form P = P, 0 P2 0 0 PN 0 Q where Pj and
Q are projections which commute with Ύ] and V respectively (j =
1,2, ,ΛΓ).

Proof. Necessity follows by rewriting the decomposition of 3€ in
Theorem 3.2 as

0 v
V { Γ % + 1 : n = 0 , !,•••}.
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To prove sufficiency, note that V1 V*J = I on the kernel of V for every
/ = 1,2, , N. Therefore by Theorem 2 in [5], it follows that V' is a partial
isometry for every / = 1,2, , N + 1.

Uniqueness of the above representation and the form of projections
commuting with T follow from the explicit nature of the decomposition in
Theorem 3.2.

COROLLARY 3.2 (Halmos-Wallen). An operator T on a Hubert
space X is a power partial isometry if and only if T =
(ΣΓ 0 T}) 0 U% 0 U+ 0 U where T} is a truncated shift of index j for every
j = 1,2, , U+ is a unilateral shift, and U is unitary. Moreover, the
representation so expressed is unique.

Proof. Suppose that Tn is a partial isometry for every n = 1,2, .
Since

ker(1 - T*nTn) = {/ e W: || Tnf\\ = \\f\\} = W 0 ker Tn

for n = 1,2, , it follows that

{fe%: Tnf-+0(n->™)}= V{kerT": n = l,2, }

and hence that M, = {/£$?: Γ"/->0 (n->c»)} reduces T. Similarly,
M2 = {/ G W\ T*"/-+0(n-+ oo)and || Γn/|| = ||/|| (n = 1,2, )}reduces Γ,
and f = M , φ M 2 φ Λ ί 3 where

M3 = {fE%: ||TY|| = 11/11 = ||T*"/|| (n = 1,2, •)}•

Therefore, T |M, is a power partial isometry with no isometric part, T \M2 is a
unilateral shift, M3 reduces T and T \Mλ is unitary [11, Theorem 3.2]. The
form of T now follows from Theorem 3.3.

4. A direct proof of Theorem 3.2. We begin by establish-
ing two auxiliary results, the first of which is similar to [10, Lemma 2J.

LEMMA 4.1. IfT is a contraction on a Hubert space X such that TN+1

is a partial isometry for some nonnegative integer N, then (1 -
r*N _ τπ-Nrn*N/i T- * ηr\

Proof. The contraction E = τ*τN+ιγ*N [s idempotent and there-
fore Hermitian.

LEMMA 4.2. Suppose that T, T2, , TN + 1 are partial isometries on a
Hilbert space %. Let
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% = ( k e r Γ n k e r Γ * f e ) θ ( k e r Γ Π k e r Γ * k - 1 ) for k = 1,2, ,JV,

and let <€„+,= Πj^ker ΓΓiran Tk). Then ker T = (Σf0 <gk)φ ^N+I,
a subspace S of ker Γ is invariant under TkT*k for every k - 1,2, , JV //
and orc/y // S = ( Σ f φ S f e ) 0 SN+1 /or some subspace* Sk of ^k for
fc = 1,2, , N + 1. In fft/s case, TnT*nSk = Sk for all n<k
(fc = l,2, , N + l ; n = l,2, ,JV).

Proo/. By Lemma 4.1, the kernel of T is invariant under TkT*k for
all fc = 1,2, , N. Therefore,

ker Γ = (ker T Π ker Γ * k ) 0 (ker Γ Π ran T k )

for all fe = l , 2 , ,iV and consequently ker T = ( Σ f θ <g k )θ «N+1.
Suppose TkT*kS C S (fc = 1,2, , N ) for some subspace 5 of

ker T. Let 5k - (S Π ker Γ*fc) 0 (S Π ker T * k l ) for fc = 1,2, , N and
let SN+1 = n ? ( S ΓΊ ran T fc). As above, S = ( Σ Γ 0 S f c )0S N + 1 and, since S
is invariant under TkT*k, we have that

ker T Π ker Γ*fe = [5 Π ker Γ*fc] 0 [(ker Γ 0 S) Π ker Γ*k]

for every k = 1,2, , N.
Fix fc (1 ^ fc g ΛΓ) and let / be in Sk. Then / is in ker T Π ker Γ*k and /

is orthogonal to both S Π ker Γ**"1 and (ker TQS)Π ker T*k'\ There-
fore / is in %k. Since / and fc were arbitrary, it follows that Sk C ^fc for every
fc = l,2, ,N. Clearly, S N + 1 C^ N + 1 .

Conversely, suppose that 5 = ( Σ f φ 5 f c ) 0 Sjy+i for some subspace Sk

of ^ k (fc = 1,2, , N + 1). Since the kernel of T is invariant under TkT*k

we have as above

ker Γ*fe - [ker T Π ker Γ*fc ] 0 [(X Q ker Γ) Π ker Γ** ]

for every fc = 1,2, , N. Therefore Sk is contained in the range of Γ*"1

and consequently S is invariant under TkT*k for every fc = 1,2, , N.

Alternate proof of Theorem 3.2. Let T be a partial isometry with no
isometric part such that T2, Γ3, , ΓN + 1 are partial isometries, and let M
reduce T By [6] M = V {T*nS: n = 0,1,2, } where S is a subspace of
the kernel of T which is invariant under Aή = ( 1 - r * Γ ) Γ T * y for all
/, / = 0,1,2, . By Lemma 4.1 and 4.2, S = ( Σ f 0 5 f c ) 0 SN+1 where Sk is a
subspace of <€k for fc = 1,2, , N + 1 such that Λ/y5N+iC 5N+i for all
i,j = N+l,N + 2, , and
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N

= Σ θ T*nSφ V {T*"S: n = N+l,N +

Σ θ W Σ φSk)φ V{T*"5N+1: n
n=0 \k=n+

The form of f 0 M is obtained similarly since

ker Γ θ S = ( Σ θ («* 0 &)) θ ( ^ θ 5"+0

and by [6]

WQM = V{Γ*"(kerΓΘ5): n = 0,1,2, }.

Conversely, if M is of the above form, let S = ( Σ f 0 S f c)φ SN+1. By
Lemmas 4.1 and 4.2, S is invariant under (1 - T*T)T*T*' for every
ΐ, / = 0,1,2, , and M = V {Γ*"5: n = 0,1,2, }. Therefore by [6] M
reduces Γ.
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