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ON PARTIAL ISOMETRIES
WITH NO ISOMETRIC PART

JAMES GUYKER

P. R. Halmos and L. J. Wallen characterized partial
isometries all of whose positive integral powers are partial
isometries on Hilbert space as unique direct sums of unitary
operators, pure isometries, pure co-isometries and truncated
shifts, with each type of summand occurring at most once. In the
present paper, this structure is extended to partial isometries T
with no isometric part whose first N +1 powers are partial
isometries. Moreover, if T=3@ T, P V, it is shown that every
projection P commuting with T is of the form P=3@ P, P Q
where P, and Q are projections commuting with 7, and V
respectively. The canonical model of L. de Branges and J.
Rovnyak is used to explicitly describe the structure of the
reducing subspaces of T in terms of the characteristic
operator-function of 7*, from which this result follows. A direct
proof is also obtained using a general reducing subspace structure
theorem for arbitrary contractions with no isometric part.

1. Preliminaries. Let € be a complex, separable Hilbert
space. The space #*(€) is the Hilbert space of analytic, square-
integrable functions f(z) defined on the open unit disk with values in €
such that the set

I= {%Kﬂ]f(re“’ﬂzdﬂ: O<r<1}

where |-| is the norm in %, is bounded, with the norm given by
If(z)IF=sup L If f(z) is in ¥*(€), then there is a square-summable
sequence {a,: n =0,1,2,-- -} of vectors in € such that for each |z| <1,
f(z)=Z2a,z" in the metric of €, and moreover [[f(z)[F=2]a,[.

A function B(z) defined on the open unit disk whose values are
operators on € will be called analytic if there is a sequence
{B,:n=0,1,2,---} of operators on € such that for every |z|<],
B(z) =% B,z", where the series converges in the strong operator topology
for each fixed z. An analytic function B(z) is bounded if there exists a
constant M such that | B(w)|= M for every |[w|<1. If B(z)is analytic
and bounded, and B(z) =X B,z ", then for every f(z) =2 a,z" in ¥*(¥),
the Cauchy product B(z)f(z) = Z(Z;-¢ Bea,-)z" isin #*(€) and defines
a bounded operator, which will be denoted by Tp, on #*(€). Finally, we
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recall that a bounded, analytic function B(z) is an inner function if Ty is a
partial isometry on #*(6).

If E is a subset of a Hilbert space #, then CL(E)and V E will denote
the closure and closed span of E respectively. For subspaces M and N of
,if M L N, then M @ N will denote the orthogonal direct sum of M and
N;if N CM, then M © N will be the orthogonal complement of N in M.

The proofs of the following results may be found in [1] or [2].

Let B(z) be an analytic function that is bounded by M =1. The
de Branges-Rovnyak space #(B) is the Hilbert space of functions f(z) in
H*(%) such that the set

T ={{lf(z)+ B(2)g(2)IF — llg(2)I": g(z) € **(€)}

is bounded, with the norm given by |f(z)[z=supJ. Since the
zero-function is in #*(€), it follows that || f(z)||s = ||f(z)||for every f(z)in
#(B), so that #(B) is continuously embedded in #*(€). The space #(B)
is isometrically embedded in #?*(€) if and only if B(z) is inner, in which
case #(B) (range Tz) = #*(€). For a subset E of #(B), the notation
CL;(E) and V3E will be used to emphasize that the corresponding
operations are taken in the metric of F#(B).
The function

K(w, z) = 1-B(z)B(w)

1—2zw
where for each |w | <1, B(w) s the adjoint of B(w)on &, is a reproducing

kernel function for #(B): for each vector ¢ in € and for each |w| <1,
K(w,z)c is in #(B), and if f(z) is any element of ¥#(B), then

(f(W),C> = <f(Z),K(W,Z)C>B.
If f(z) is in #(B), then (f(z)—f(0))/z is in #(B) and

A contraction T on a Hilbert space & is said to have no isometric part
if there is no nonzero vector f in J such that | T"f| = || f|| for every
n=12,---. Let T be an arbitrary contraction with no isometric
part. Then T is unitarily equivalent to the backward shift operator

R(0): f(z)— (2 =1O)

z

IO-1O) < 1) o)



ON PARTIAL ISOMETRIES WITH NO ISOMETRIC PART 421

acting on a space ¥ (B), for some coefficient space € and some analytic
function B(z) which is bounded by 1. Furthermore, the difference
quotient identity holds in the space % (B): | R(0)f(2)|} = ||f(z)|s— | f(0)
for every f(z) in #(B). The function B(z) is called the characteristic
operator-function of T*.

The operator R(0)* on #(B) is related to R(0) on 3 (B*) where
B*(z)=2B,z" if B(z)=2B,z" and B, is the adjoint of B, on %.
Associated with the space % (B) is a space which is useful in studying R (0)
on #(B) when the difference quotient identity fails to hold in #(B): the
space 9 (B) is the Hilbert space of pairs (f(z), g(z)) in #(B)X #(B*)
such  that if g(z)=3a,z" then h,(z)=2z"f(z)—B(z)X
(apz"'+a;z"*+---+a,,) belongs to ¥ (B) for every n =1,2,---, and
the set

K ={|h.2)Ip+ |acf + |af+ -+ |aua]: n=1,2,---}

is bounded, with the norm given by ||(f(z), g(z))|%=sup K.
If (f(z),g(z)) is in 9(B), then

(u(z),v(2)) = (R(0)f(2), 28 (z) — B*(2)f(0))

is in @(B) and |[(u(z),v(2))[5= ||(f(z),g(‘z))||§,>— [f(0)]>. The difference
quotient operator on 2 (B) is the bounded linear transformation

D: (f(z), 8(2))— (u(z), v(z))

whose adjoint is given by D *(f(z), g(z)) = (zf(z) — B(z)g(0), R(0)g(z))
and satisfies || D*(f(z), g(2))Iz = |(f(z), g(z))|a—g(0)} for every
(f(z),8(2)) in D(B).

2. Reducing Subspaces of R (0). We recall that a (closed)
subspace M of a Hilbert space # reduces a bounded operator T on # if M
is invariant under both T and T*. The structure of the reducing
subspaces of the backward shift on #(B) whenever B(z) is a constant
operator-function is well-known [3, Lemma 3.2], [9, Theorem 1]: if
B(z)= B(0) and | B(0)| =1, then the only reducing subspaces of R(0) on
#H(B)= Vg {RO)*"¥:n=0,1,2,---}, where ¥ is the kernel of R(0), are
the slices M = Vg {R(0)*'S: n=0,1,2,---} where S is an arbitrary
subspace of J. Furthermore, #(B)©O M = V{RO)*"(¥ ©S): n=
0,1,2,---}. Inthis section, which is a continuation of [6] and [7], it is shown
that this structure is essentially preserved under general conditions on
B(z). We first establish two auxiliary results.

LEMMA 2.1. Let #(B) in #*(€) be a de Branges—Rovnyak space
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with  reproducing  kernel  function K(w,z). Then ¥ (B)=
Ve {R(0)*"K(0,z)¢:n=0,1,2,-- -} and the following are equivalent for a
subspace M of #(B).

(1) M=Vs{R(0)*"K(0,2)S:n=0,1,2, -} forsome subspace S of
€ which is invariant under A; = B;B; for all i,j=0,1,2,---.

(2) M = %(B)N N forsome subspace N of #*(€) which reduces both
T, and 1—TT% on #*(€).

In this case,

HBYOM =y {RO)"K(0,2)(€OS): n=0,12,)
= %#(B)N (¥*(€)ON).

Proof. We first observe that #(B) N N = CLg(1— TRT3)N for any
reducing subspace N of 1— TpT5. This follows since 1— TzT3 is
continuous as an operator from #*(€) into #(B), and (f(z),(1-
TsTH) f(z))s = | f(2)|} forevery f(z)in #(B)[1, Theorem4]. Also note
that

il

H#(B)= CLys(1~ TeT3) #(B)= CLs (1~ TsT3) #*(%)

CLs(1 - TsTHN P CLs (1 - T TH)(H*(€)ON)
since for any f(z) in N and g(z) in H*(€)E N,
(1= TeT3)f(2),(1 - TsT3)g(z))s =1~ TsT3)f(2),8(2)) = 0.

(1) implies (2). Suppose that M = Vz{R(0)*"K(0,z)S: n=
0,1,2,---} for some subspace S of € such that B,B-,SC_;S for all
Lj=0,1,2,---.Let N=V{T?S: n=0,1,2,---}. Clearly N reduces T,
on #H*(€). Moreover, since (1— T3T%)S = K(0,z)S, and for n =1,
(1- TeTHT:S =z(1—-TsTH T'S — B(z)B,S, it follows that N re-
duces 1—TzT%H on #°*(€). Hence by the above remarks,

#(B)NN

I

vi{l-TsTHT:S: n=0,1,2, -}
B

I

v {RO)*"K(0,2)S: n=0,1,2,-++} = M.
B

Similarly, since *(€)ON=V{T:(€OS): n=0,1,2,---}, we
have that
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H(B)OM = ¥#(B)O CL,(1- T,TE)N
= CLs(1- T3T3)(#*(€)ON)

I

v {R(0)*"K(©0,z)(¢©S):n=0,1,2,---}.

(2) implies (1). Suppose that M = #(B) N N where N is a subspace
of #*(€) with reduces both T, and 1 — TzT% on #*(€). There exists a
unique subspace S of € such that N= Vv {T;S: n=0,1,2,---} and
H(E)ON=V{T:(€OS): n=0,1,2,---}. Therefore,

M = CLy(1- T,THN = v {(1- T,TE)T:S: n =0,1,2, -}
B
= v {R(0)*"K(0,2)S: n=0,1,2, - -}
B

and similarly for #(B)© M. By the structure of N and the abave
identities for (1 — Tz T3)T:S, it follows that S is invariant under A; = B, B,
for all i,j=0,1,2,---.

We recall that an operator T on a Hilbert space # is a partial isometry
if || Tf|| = |||l for every vector f in % which is orthogonal to the kernel of T
(or equivalently, if T =TT*T) [8].

LEmMMA 2.2. Let D be the difference quotient operator on the
de Branges—Rovnyak space 2 (B). Then By, B, -, By are partial
isometries on the coefficient space € if and only if D, D?---, D™ are
partial isometries on 9 (B), in which case BB, = B.B; =0 for all i and j
such that i# j and either 0=Si =N or0=j=N.

Proof. For f(z)in #*(€) let f,(0) denote the coefficient of z" in the
Taylor’s series expansion of f. Then by the defining equations of D, we
have for (f(z),g(z)) in 9(B) and any positive integer k,

(D*D**D*)(f(z),8(2))= D*(f(2), 8(2)) ~ (Fi(z), G (2))
where for jk =1,
8'(z) = g(z), g'(2) = 28’ (z) = B*(2)f;-:(0),
fAz) = R0)'f(2), f'(z) = zf"(z) — B(2)g,-(0),
(h%(z) = R(0Y'g"(2), h'(z) = zh'"(z) = B*(2)f}-:(0)),
R = 5 ROy BEZBD 01 0), and

Gi(2)= 3, (80)+ B*()ft (02"
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Suppose that By, By, - - -, By are partial isometries on 6. For every
vector ¢ in € which is orthogonal to the kernel of B, for fixed , 0=j = N,
we have that

lez[B(z)c| = |Bjc[* + ; |Bicl? = [c[ + ; | Bic[?

so that Bc =0 for all i#j. Since i and j were arbitrarily chosen, it
follows that B;B; = 0 for all i and j such that i # j and 0 = j = N. Since the
operator-function B*(z)=XB,z" is also analytic and bounded by 1
where B, is a partial isometry for n = 0,1, - - -, N, we have that EiB,- =(for
all i # j such that 0 =j = N. Therefore fork =1,2,---, N+ 1, F,(z)=0in
the above identity, and the nth coefficient of G,(z) becomes

. ’; Bifi-n-1,(0) + ,Zo B,B;B;fi-n-1:;(0)=0

for n=0,1,---,k — 1, since E, is a partial isometry for j =0,1,---, N.
Hence, D*D**D* = D* for k =1,2,---,N+1.

Conversely, suppose that D is a partial isometry on 9 (B). Therefore,
G,(z)=0= — B,f(0)+ B*(z)B,B,f(0) for every f(z) in #(B). If c is
any vector orthogonal to f(0) for every f(z)in #(B), then K(0, z)c = 0.1t
follows that B,= B, B, B,.

Suppose that D, D? --- D~*' are partial isometries on 2(B). By
induction, we may assume that By, By, - - -, By, are partial isometries on €
and consequently B;B, = B,B, = 0 for all i # j where either 0=i = N —1
or 0=j = N —1. By the above identity, Gy.(z) =0, and therefore the
coefficient of z" in the expansion of Gy.,(z) vanishes, i.e.,

N N _ _ _ _
0= - ZO Bif;(0) + > B,B,Bif;(0) = — Bufu(0)+ ByByByfu(0)
=

j=0

for every f(z)in #(B). 1If c¢ is any vector orthogonal to fy(0) for every
f(z) in #(B), then

R(0)*™K(0,z)c =0=z - R(0)*"'K(0,z)c — B(z)Bxc
and consequently ¢ — 3V, B,B;c =0. It follows that By = ByByBy.
THEOREM 2.1. Let #(B) in #*(€) be a de Branges—Rovnyak space

with reproducing kernel function K(w, z). Every subspace of #(B) of the
form

Vv {R(0)*"K(0,2)S: n=0,1,2,-- -}
B
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where S is a subspace of € which is invariant under A, = B,B, for all
,j=0,1,2,---, is reducing for the backward shift R(0) on ¥(B).
Conversely, if either B(0) is a partial isometry on € or the difference quotient
identity holds in #(B), then these subspaces are the only reducing subspaces
of R(0) on #(B).

Proof. The subspaces of the given form reduce R (0) by Lemma 2.1.

Conversely, let M reduce R(0) on #(B) where B(0) is a partial
isometryon €. By Lemma2.2, D is a partial isometry on ¥(B). Foran
arbitrary element (f(z), g(z)) in @(B), if (a(z), b(z)) is the projection of
(f(z),g(z)) onto the kernel of D, then a(z)=a(0) and b(z)=
(B*(z)— B*(0))/z a(0); and if (c(z), d(z)) is the projection of (f(z), g(z))
onto the range of D * then ¢ (0) = 0. Therefore the kernel of D is the set of
vectors of the form (f(0), (B*(z)— B*(0))/z)f(0)) for f(z) in #(B). It
follows that f(0)isin % (B)and| f(0)||s = || f(0)| forevery f(z)in #(B).

Let f(z) be in M. If f(0)=g(z)+ h(z) with g(z) in M and h(z)
orthogonal to M, then 0= R(0)g(z)+ R(0)h(z) and consequently
h(z)= h(0) since M reduces R(0). Therefore,

Ih ()l = R (0), f(0) — g(2))s = (h(0), f(0)— g (0))
=(h(z),f(z)~g(2))s =0,

and f(0)=g\(z) is in M.

Let S={f(0): f(z)e M}. Then M = Vz{R(0)*"K(0,2)S: n=
0,1,2,---} and since R(0)*"K(0,z)S = zR(0)*"'K(0,z)S — B(z)B.S
for n =1, it follows that B,B,S CS for every i,j=0,1,2,---.

Next, suppose that M reduces R(0) on #(B) and that the difference
quotient identity holds. Let N=V{T:M: n=0,1,2,---}. Clearly N
reduces T, on #*(€). Toshow N reduces 1 — Ty T}, we first prove that
M = CLyz(1— TsT%)M. But since 2,-, R(0)*"(1 — R(0)*R (0))R (0)" con-
verges weakly to 1 — Tz T} in #(B) and M is closed under weak limits, we
have that CLgz(1— TsT3)M C M. It follows from [1, Theorem 4] that
CLs(1 - TsT5)M = M.

Since M CN, we have that

CLs(1—TeT3)M =M CCLg(1 - TsT3)N.
Let f(z)bein #(B)© M. Then f(z)isin #(B)© CLz(1 — TxT%)N since
for any g(z) in M and for any nonnegative integer n,
(f(2),(1 = T5T3)Tig(2)s = (f(2), Tig(2))

= (RO)f(z),(1- TsT%)g(z))s
=0.
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Since f(z) was arbitrary, we therefore conclude that M=
CLs(1— TsT3)N C N, and the desired form of M now follows from
Lemma 2.1.

When the dimension of the coefficient space € isone and B(z)isnot a
constant, the range of 1 — R(0)R (0)* is one-dimensional and therefore the
only possible nontrival reducing subspaces of R (0) on #(B) are the closed
span of the polynomials in #(B) and its orthogonal complement
(necessarily, the polynomials must be orthogonal to (B(z)— B(0))/z in
#(B)). However, according to Theorem 2.1, these possibilities fail to exist
under any of the following conditions on B(z).

COROLLARY 2.1. Let #(B) be a de Branges—Rovnyak space and
suppose the dimension of the coefficient space is one. If either B(z) is a
polynomial, B(0) = 0, or the difference quotient identity holds in % (B), then
R(0) on #(B) has no nontrivial reducing subspaces.

We recall that if T is a contraction on a Hilbert space #, then there
exists a unique minimal co-isometry V acting on a Hilbert space ¥
containing # such that T is the restriction of V to # [11, Theorem
4.1]. The space # is said to be hyperinvariant for V if  is invariant for
every operator that commutes with V. The contraction T belongs to the
class Co. If lim,_..|| T"f|| = 0 for every vector f of ¥ [11].

THEOREM 2.2. Suppose that T is a C,-contraction on a Hilbert space
K, and that ¥ is hyperinvariant for the minimal co-isometric extension of
T. Thenthereducing subspaces of T are exactly of the form M = v {T*"S:
n=0,1,2,---} whereSisanarbitrary subspace of €, the closure of the range
of 1-T*T. In this case, HOM =V {T*(€5S): n=0,1,2,---}.

Proof. By the canonical model of de Branges and Rovnyak, T is
unitarily equivalent to the backward shift R (0) on #(B) where B(z)is an
inner function and the space #(B) is hyperinvariant for 7% on
#*(€). Hence by [11, p. 199] and [4, Theorem 5], B(z) is a scalar inner
function. Therefore, since A, = B, B, is a scalar multiple of the identity for
all i,j=0,1,2,---, Theorem 2.2 follows from Theorem 2.1.

Theorem 2.1 has a direct counterpart for an arbitrary C,-contraction
in terms of its minimal co-isometric extension. The proof of Theorem 2.1
may be modified to verify the following.

THEOREM 2.3. Suppose that T is a C,-contraction on a Hilbert space
H with minimal co-isometric extension V on X containing #. Let Py be the
orthogonal projection of ¥ onto ¥, and let € be the kernel of V. The
following are equivalent for a subspace M of *.
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(1) M reduces T on .

(2) M = ¥ N N, for some subspace N of X which reduces both V and
Py on JX.

B) M=V{T*Pye(1—V*V)PyS: n=0,1,2,---}, for some unique
subspace S of € which is invariant under A; = (1= V*V)V'P, V* Py for all
L,j=0,1,2,---.

In this case,

HKOM=%N(HKON)
= V{T*Py(1- V*V)P, (4O S): n=0,1,2,---}.

3. Power partial isometries. We recall that an operator T
on Hilbert space is a power partial isometry if T* is a partial isometry for
every k =1,2,---.P.R.Halmosand L. J. Wallen in [10] characterized in a
unique manner an arbitrary power partial isometry as a direct sum of
unitary operators, pure isometries, pure co-isometries, and truncated
shifts, with each type of summand occurring at most once. The following
result enables us to generalize this structure to partial isometries T with no
isometric part such that T* is a partial isometry for every k =
,2,---,N+1.

THEOREM 3.1. Let B(z)=2 B,z" be analytic and bounded by 1
where B, is a partial isometry on the coefficient space € forn =0,1,---, N.

Let 6, be the range of B, fork =1,2,---, N and let €x., = N{_ker B,. A
subspace M of #(B) reduces R(0) on #(B) if and only if

M = v{( S @Sk)z": n=0,1,-~-,N}

k=n+1

B v{RO)*" Sy n=N+1,N+2,---}
B

for some subspace S, of 6. fork =1,2,---, N+ 1 such that B; }§,~ Sne1 € Snai
forall i,j=N+1,N+2,---. In this case,

N+1

H(BYOM = v {( > ®@0Ss)) n=0,1,--~,N}

k=n+1

D V{RO)*"(Enei©OSns): n=N+1,N+2,---}.
B

Proof. Suppose that M reduces R(0)on #(B). ByLemma2.2and
Theorem 2.1, a direct computation shows that
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M=v {[g(l—BkEk)s]z": n=0,1,--~,N}
) v {R(0)*"K(0,z)S: n=N+1,N+2,---}

where S is a subspace of € which is invariant under A, = B; B, for all
i,j=N+1,N+2,--- and under A, = B;B, for all i =0,1,- -, N. Since
S=BBS®(-BB)S for k=0,1,---,N, we have that S=
¥ (1 - B.B,)S @ =¥-o® By B S. Therefore, [I;(1— B,B,)S = =1, P S,
for n=0,1,---,N, and R(0)*"K(0,z)S=R(0)*"Sy., for n=
N+1,N+2,---, where S, C %, for k=1,2,---,N+1 and BB Sy..C
Svi for all 4, j=N+1,N+2,---. ~ _
Since €S =BB,(€0S)®(1-BB)(®OS) and BB, ¢ =
B.B.S®BB.(€©S) for k =0,1,---,N, and

Gt = [N] (1-B.B)% = ﬁ (1-B.B.)S ® IN] (1-B.B)(€OS)
= SN+1®(<6NH@SN+I)7

the form of #(B)© M is obtained similarly.

_Conversely, if M is of the above form, let § =2/ @ S,. Then
B;B;SCS for every i,j=0,1,2,---, and

M=v {[k[:IO(l—BkBk)s]z": n-—-o,l,---,N]_
&) v {R(0)*"K(0,z)S: n=N+1,N+2,---}

= v {R(0)*"K(0,z)S: n=0,1,2,---}.
B

Therefore M reduces R(0) by Theorem 2.1.

The operator R(0) on the following #(B)-space is the canonical
model for an arbitrary power partial isometry with no isometric part.

CoroLLARY 3.1. Let B(z)=2B,z" formally where {B,:n=
0,1,2, - - }isasequence of partial isometries on the Hilbert space € such that
B.B; = B,B; =0 foralliand jsuchthati# j. Let €, be the range of B, for
k=0,1,2,---, and let 6..= N,z ker B.. Then B(z) defines an analytic
inner function, and a subspace M of 3 (B) reduces R (0) on ¥ (B) if and only
if
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M=2@<Sw@ D @Sk>z"

kzn+1

for some subspace S, of €. for k =0,1,2,---,%. In this case,
HB)OM =326 [(%,@ S.) b k;ﬂ P (6. O Sk)] z"

Proof. Letc bein € andlet ¢, be the orthogonal projection of ¢ onto
the initial space of B, for n =0,1,2,---. Then for |w| <1,

|[B(w)c’=Z[B.c[[w["=2]c.PIw[" =Z]c. [ =[]

Therefore B(z) is analytic and |[B(w)| =1 for each |w|<1. The
reducing subspace structure of R(0) on #(B) follows from Theorem
3.1. Inparticular, #(B)is contained in #*(€)isometrically so that B(z)
is inner.

THEOREM 3.2. Let T be a partial isometry on a Hilbert space ¥ such
that T, T%,---, TN"' are partial isometries, and suppose that T has no
isometric part. Let

€. = (ker T Nker T*)O (ker T Nker T**™") for k=1,2,---,N,

and let €y., = N}, (ker T Nran T*). A subspace M of ¥ reduces T if and
only if

N N+1
M= T*"( S e;sk)@ VAT*Sy:n=N+1N+2,-}
n=0 k=n+1

for some subspace Si of €, fork =1,2,---, N + 1, such that Sy., is invariant
under (1—=T*T)T'T* for all i,j=N+1,N+2,---. In this case,

xoM=-3a1( 3 &®es)

k=n+1

B VIT*" (v O Sva): n=N+1,N+2,---}.

Proof. By the canonical model of de Branges and Rovnyak, T is
unitarily equivalent to R(0) on #(B) in which the difference quotient
identity holds. Since

(1= RO)*RO)f(2), f(z s = (K(0,2)f(0), f(z))s

for every f(z) in #(B), it follows by polarization that (1-
R(0)*R(0))f(z)= K (0, z)f(0) for every f(z) in #(B). Since
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1= RO)*RO) = 3 R(O)" (1~ RO)*RO)ROY

and 1- R(0)**R(0)* is the projection onto the kernel of R(0)* for
k=1,2,---,N+1, it follows by induction that .B,f,(0)=0
(n=0,1,---,N) for every f(z)=2f,(0)z" in #(B). Hence if D is the
difference quotient operator on 2 (B), then |[D**D*(f(z),g(z))|ls =
ID“(f(z), g(z))lls (k =1,2,-++, N +1) for every (f(z), g(z)) in @(B).
Therefore by Lemma 2.2, B,, B, -+, By are partial isometries on the
coefficient space €. The structure of the reducing subspaces of T now
follows from Theorem 3.1 and the following identities where f(z) is an
arbitrary element of #(B) and A, = B;B;:

(1= R(0)*R(0)K(0,2)f(0)= K(0,2)f(0)~ K(0,2) Awf(0)
(1= R(0)*R(0)R(0YK(0,2)f(0) = K(0, z)Awf(0)

for i=1,2,---
(1= R(0)*R(0)R(0)"K(0, z) f(0) = K(0, z)A,,f(0)
for j=1,2,---

(1= RO)*R(0)R(0)™(1 =~ R(O)R(0)*)R(0)*'K(0, z)f(0)
= K(0,2)A;f(0) for ij=1,2,---.

In the next section, a direct proof of the above theorem is obtained.

THEOREM 3.3. Let T be a partial isometry on a Hilbert space # and
suppose that T has no isometric part. Then T?, T --- T"*' are partial
isometries if and only if T=T.T,.H---PTvPBV where T, is a
truncated shift of index j and V is a partial isometry with no isometric part
such that VV*=1Ion V{V*" ker V: n=0,1,---, N —1}. Moreover, the
representation so expressed is unique, and every projection P which
commutes with T is of the form P = P, P, - - - B Py P Q where P, and
Q are projections which commute with T, and V respectively (j =
1,2,---,N).

Proof. Necessity follows by rewriting the decomposition of # in
Theorem 3.2 as

% = <€1 @ V {(62, T*(gz}@ cee @ V {%f% T*(gN, Tty T*N_I%N}
P Vv{T*€x,;: n=0,1,---}.
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To prove sufficiency, note that V'V* = [ on the kernel of V forevery
j=1,2,---, N. Therefore by Theorem 2 in [5], it follows that V"’ is a partial
isometry for every j=1,2,---,N+1.

Uniqueness of the above representation and the form of projections
commuting with T follow from the explicit nature of the decomposition in
Theorem 3.2.

CoroLLARY 3.2 (Halmos—Wallen). An operator T on a Hilbert
space X is a power partial isometry if and only if T=
CErBT)PULDH U. @D U where T, is a truncated shift of index j for every
j=1,2,---, U, is a unilateral shift, and U is unitary. Moreover, the
representation so expressed is unique.

Proof. Suppose that T" is a partial isometry for every n =1,2,---.
Since

ker(1=T*T")={f€H:|T"fl| = [lfI} = X Oker T"
for n=1,2,---, it follows that

{fed: Tf-0(n—>w)}=vVvikerT":n=1,2,---}
and hence that M, ={f€ #: T"f >0 (n— )} reduces T. Similarly,
M,={f€ ¥: T*'f—0(n—>x)and| T"f||=||f||(n = 1,2, - )} reduces T,
and # =M, P M, P M; where

M,={fed: T fll=fl =T*fll (n=1,2,---)}

Therefore, T |y, is a power partial isometry with no isometric part, T |y, is a
unilateral shift, M;reduces T and T |, is unitary [11, Theorem 3.2]. The
form of T now follows from Theorem 3.3.

4. A direct proof of Theorem 3.2. We begin by establish-
ing two auxiliary results, the first of which is similar to [10, Lemma 2|.

LeEmma 4.1, If Tis a contraction on a Hilbert space ¥ such that T"*'!
is a partial isometry for some nonnegative integer N, then (1—
T*T)T T*N = TNT*¥(1 - T*T).

Proof. The contraction E = T*T""'T*" is idempotent and there-
fore Hermitian.

LEMMA 4.2. Suppose that T, T?, - - -, TN"' are partial isometries on a
Hilbert space 7. Let
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€. = (ker T Nker T**)O (ker T Nker T**™") for k=1,2,---,N,

and let €x., = NV (ker T Nran T*). Then ker T = (XD €.) D €1, and
a subspace S of ker T is invariant under T*T** for every k = 1,2,--+, N if
and only if S=CEYPD S)D Snv+1 for some subspace* S, of €. for
k=1,2,---N+1. In this case, T'T*S, =S, for all n<k
(k=1,2,--N+1; n=1,2,---,N).

Proof. By Lemma 4.1, the kernel of T is invariant under T*T** for
all k =1,2,---, N. Therefore,

ker T = (ker T Nker T**)@P (ker T Nran T*)

for all k =1,2,---, N and consequently ker T = (YD 6:) D G-

Suppose T*T**SCS (k=1,2,---,N) for some subspace S of
ker T. LetS, =(SNkerT*)O(S Nker T** ") fork =1,2,---, N and
let Sv.. = MY(S Nran T*). As above, S = (E¥D Si) P Sy, and, since S
is invariant under T*T** we have that

ker T Nker T* =[S Nker T**|@P[(ker TS S)Nker T**]

for every k=1,2,---,N.

Fixk (1=k = N)andlet f bein S,. Then fisinker T Nker T** and f
is orthogonal to both S Nker T**"" and (ker T © S) N ker T**'. There-
fore fisin %,. Since f and k were arbitrary, it follows that S, C 4, forevery
k=1,2,---,N. Clearly, Sy., C %n:-

Conversely, suppose that S = (2 Si) D Sn+ for some subspace S,
of €. (k =1,2,---, N +1). Since the kernel of T is invariant under T*T**
we have as above

ker T** =[ker T Nker T* P [(# ©ker T)Nker T**]

for every k =1,2,---, N. Therefore S, is contained in the range of T*™'
and consequently S isinvariant under T*T** forevery k =1,2,- -+, N.

Alternate proof of Theorem 3.2. Let T be a partial isometry with no
isometric part such that T T°,-- -, T"*! are partial isometries, and let M
reduce T. By[6] M = v {T*"S:n=0,1,2,---}where S is a subspace of
the kernel of T which is invariant under A, = (1- T*T)T'T* for all
,j=0,1,2,---.ByLemma4.1and 4.2, S = (ZYP Si) P Sy, where S, isa
subspace of €, for k =1,2,---, N +1 such that A;Sy.; C Sx.; for all
Lj=N+1,N+2,---, and
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N
M=>®T"S®V{T*S:n=N+1,N+2,---}
n=0

N N+1
-3¢ :r*~< D @sk)@ VAT*Sy:in=N+1,N+2,---}.
n=0 k=n+1

The form of # © M 1is obtained similarly since

kerTOS = (ZN D (%, @&)) B (€ne1 © Sni)

and by [6]
HOM=Vv{T*(kerTOS): n=0,1,2,---}.

Conversely, if M is of the-above form, let S = (2P Si) P Sv-1. By
Lemmas 4.1 and 4.2, S is invariant under (1—- T*T)T'T* for every
Lj=0,1,2,---,and M = V{T*'S: n=0,1,2,---}. Therefore by [6] M
reduces T.
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