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ORDERED GLEASON PARTS

H. S. BEAR

On the points of the domain of a function space we define a
partial ordering which extends naturally to the Gleason parts. A
general maximum principle and Harnack convergence theorem
are proved in terms of the ordering, as well as an integral kernel
representation for Dirichlet spaces. The results are applied to a
space of solutions of the heat equation, and a space of solutions of
the wave equation.

1. Introduction. Gleason parts for function algebras were
introduced in [8]. The concept was extended to function spaces by the
author in [1], and further studied in [2], [3], [5], [6], [7]. In studying
function algebras, or abstract potential theory, one commonly assumes
the existence of just one nontrivial part, mirroring the usual situation in
algebras of analytic functions, or spaces of harmonic functions. For
other function spaces — for example solutions of the heat equation or
wave equation — there are infinitely many parts, and the relationship
between parts becomes important.

In this paper we introduce a partial ordering on the points of the
domain of a function space, and this ordering extends naturally to the
parts. We obtain a strong maximum principle and a Harnack con-
vergence theorem in a completely general setting, in terms of the
ordering of the domain. The integral kernel representation of [5] also
extends to the many-part setting with the appropriate adjustments.

In section four we interpret our results for a space of solutions of the
heat equation, where the nontrivial parts form a simply ordered
set. The integral kernel representation in this case is a simplified and
strengthened version of that given by [4].

Finally, in section five we specialize our results to a space of
solutions of the wave equation. We obtain for these functions a maximum
principle and Harnack convergence theorem as corollaries of the general
results.

The author would like to express his appreciation to Gerald Hile for
many helpful comments on this work.

2. The ordering. Let X be a compact Hausdorff space and B
a linear space of continuous real functions on X. Assume that B
contains the constant functions and separates the points of X. We give
B the sup-norm, and let B* be the dual space, with the w*-
topology. The space X, realized as evaluation functionals, is
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homeomorphic to a subset of the unit ball of JB*, and B is naturally
isomorphic to the space of all w *-continuous linear functionals on
J3*. We henceforth regard X as a subset of J5*. Let T be the closed
convex hull of X in B *, and let Γ be the closure of the extreme points of
Γ. Then T is compact, and Γ C X C Γ. For p G B *, p G T if and only
if u(p)^= max u[Γ] for all u G B. Hence B is isometric to the restric-
tions to Γ or X or T of the continuous functionals on £?*, and we
henceforth regard B as a space of linear functions on T. The set Γ is the
Shilov boundary of B in X or Γ.

DEFINITION. For distinct points p, q of T (and hence for p, q G X),
we write g < p if and only if the segment from q to p in B* extends
beyond p in T.

Hence q < p if and only if p + α (p - q) = r G T for some α > 0. In
this case we say that [q, p] extends by α. (This condition differs from that
of [6], in that it is not symmetric in q and p.) Clearly [q, p] extends by α
if and only if p = [α/(l + α)]q + [1/(1 + α)]r for some r G T. We write
g < p if q < p but not p < q, and p ~ g iί q < p and p < q. We agree
that p < p for all p.

THEOREM 1 (Harnack condition). For q, p E T,q < p if and only if
there is a number M ^ 1 such that u(q)^Mu{p) for all nonnegatiυe
u G B. Specifically, [q,p] extends by a if and only if u(q)^
[(a + l)/a]u(p) for all u^O.

Proof Since T is a compact convex set in B*, and B is the dual of
β*, r G T if and only if u(r)^0 for all nonnegative u G B. Here we
need the fact that constants are in B (cf. [1], [6]). Hence p + a(p - q) =
(1 + α)p - aq G T if and only if (1 + α)w(p)^ au(q) for all w ̂  0.

If q < p, we let M(q,p) be the minimum M such that u(q)^ Mu(p)
for all WΞ^O. Equivalently, M(q, p) = (α + 1)1 a for the maximum α
such that [q, p] extends by α.

COROLLARY 1. If r < q < p, then M(r,p)^M(r,q)M(q,p). If
[r,q] extends by a and [q,p] by β, then [r,p] extends by γ, where

Proof The first statement is clear and the second follows from the
first. A geometric proof of the corollary appears in [6, Lemma 1].

COROLLARY 2. < is transitive, and ~ is an equivalence relation.
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DEFINITION (cf. [1], [6]). The equivalence classes of ~ are the
Gleason parts of T with respect to B. The sets F Π X , for the parts P of
T, are the Gleason parts of X,

The relation < extends in a natural way to the parts of T or
X: Q < P if and only if q < p for some (all) q E Q and p E P. For parts
F and Q, P = Q if and only if P < Q and Q < P.

The following theorem shows that a Harnack convergence theorem
holds generally for function spaces. The classical Harnack convergence
theorem for harmonic functions is the special case in which X - Γ
consists of one part.

THEOREM 2 (Harnack convergence theorem). If un G B and un i=k
un+ί for all n, and {un(p)} converges, then {un(q)} converges for all q < p.

Proof Let υn = un - uu so that vn ^ 0 and {vn(p)} is bounded above
by some K. If q < p, then vn(q)^M(q,p)vn(p)^ KM(q,p) for all
n. Hence {vn(q)}, and {un(q)}, converge.

Every function space of course satisfies a weak maximum principle,
which is just the statement that the Shilov boundary exists. The next
theorem shows that every function space also satisfies a strong maximum
principle. The theorem below specializes to the result of [2] for
one-part spaces.

THEOREM 3 (Maximum principle). // w(p) = maxw, then u(q) =
u(p) for all q < p.

Note. The points p, q of interest will be points of X rather than
T - X, but there is no need to make the distinction in the theorem. It
may of course happen that there is no q in X with q < p.

Proof Observe that max u = max u[T] = max u[X] = max κ[Γ].
Assume that u(p) = maxu, and u(q)< u(p) for some q < p. Then
[q,p] extends to some r E T. Since u is linear on T, u(r)> u(p), a
contradiction.

COROLLARY. Any maximum set is a union of parts.

It is easy to see that the following conditions on p and q are
equivalent:

(i) for all u E B, if u(p) = max w, then u(q)= u{p)\
(ii) for all u E B, if w(p) = minu, then u(q)= u(p);
(iii) for all w EB, if M g θ and κ(p) = 0, then w(q)= w(p).
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We will refer to any of the above as a maximum principle, and say
that p maximizes q. Theorem 3 says that p maximizes q if q < p.

DEFINITION. A representing measure for a point p of T is a positive

Baire probability measure mp on Γ such that w(p)= I udmp for all

u EB.

The following theorem gives a characterization of the ordering q < p
in terms of representing measures.

THEOREM 4. // q < p, then there are representing measures mq and
mp such that mq{E)ίkM{q,p)mp{E) for every measurable set E. If
mq — kmp for an essentially bounded measurable function k, then q < p
and M(q,p)^k ess. sup. f.

Proof. Assume q < p, and let [q, p] extend by α, where a is
maximum. Then M(q,p) = (a +1)1 a, and p = [1/M(q,p)]q +
[1 — \/M(q, p)]r for some r E T. If mq and mr are any representing
measures for q and r, then mp = [ί/M(q,p)]mq + [1 - 1/M(q,p)]mr is a
representing measure for p, since the functions u of B are linear on
T. Clearly mq ^ M(q,p)mp. Conversely, if mq = /cmp, and u ^ 0 , then

w(g)= ukdmp ^ (ess. sup. k)u(p)1 and q < p with

ess. sup. fe.

Notice that we have actually shown that if q < p, then for any
representing measure mq there is a representing measure mp such that

DEFINITION. B is a Dirichlet space if £ | Γ is uniformly dense in
C(Γ).

For a Dirichlet space, the representing measures mp are unique, and
we have the following characterization of the maximum principle ia
terms of the measures. We denote the support of mp by spmp.

THEOREM 5. If B is a Dirichlet space, then p maximizes q if and
only if sp mq C sp mp.

Proof For any u, w(p) = maxw if and only if u is constant on
spmp. If p maximizes q, then u is constant on spmq whenever u is
constant on spmp. Since B | Γ is uniformly dense in C(Γ), this means
that sp mq C sp mp.
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In section four we consider a space of solutions to the heat equation,
and in section five a space of solutions of the wave equation. In both
these examples the ordering q < p is essentially equivalent to the fact
that p maximizes q. This is also true, of course, for any one-part space,
such as a space of harmonic functions on a connected set. The following
example shows that this is not true in general, even for Dirichlet spaces,
without further assumptions.

EXAMPLE. Let Γ = [0, 1], and B = C(Γ). Then T is all positive
probability measures on Γ, and we let X — T. For u E B and p E T,

u(p) = I udp. The topology in T is pointwise convergence on B. Since

B is a Dirichlet space, p maximizes q is equivalent to spq C spp. Clearly
there are measures q and p such that spq C spp, but dq/dp is not
bounded, and hence q < p fails.

Although the above example shows that one can not prove in
general that "p maximizes q" implies q < p, it is not a very satisfying
reflection of the situation one is likely to encounter in a "reaΓ
example. For a space of solutions of a P.D.E., for example, X would be
a compact set in Euclidean space, and a very thin subset of Γ. The
w ̂ -convergence in T would in fact be metrizable in X, and the mapping
p—>mp might well be analytic in one or more of the coordinates of p. It
would be valuable to know when the maximum principle for p and q
does coincide with q < p in view of the many maximum theorems which
hold for solutions of differential equations (see [15]).

3. An integral kernel. For points p, q in the same part P of
T on X we let d(p,q) = logmin{M(p, q), M(q,p)}. Then d is a complete
metric on P, and the d-topology is stronger than the given topology [5; 6;
3 Sec. 9]. In [5] we developed an integral kernel representation for
one-part Dirichlet spaces where the topology on the part is given by
d. The results of [5] do not apply to many-part spaces, since parts are
separated in the d -topology. We now define a new metric D on X - Γ
and obtain the integral representation of [5] in the many-part case when
the given topology coincides with the D-topology.

DEFINITIONS. X(p 0 ) = {q EX: q <pQ}; B+(pQ) = {u E B: u > 0 and

i ι (po)=l} . For p, qEX(p0X let D(p,q) = sup{\u(p)-u(q)\:

u E B+(p(])}. Let 3Γ be the given topology of X relativized to X(p0), and
JD the D-topology on X(po)

In this section it is more natural to consider subsets of X rather than
Γ, and involves no loss of generality. We remark that for spaces of
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parabolic functions (§4) there are maximal points p0 so that X(p0) -

x-τ.
THEOREM 6. D is a complete metric on X(p0), and 3~D is stronger

than J". SΓD = 3~ if and only if B+(p0) is equicontinuous on X(po).

Proof. We think of the points p EX(p0) as functions on B+(p0).
Since u(p)^kM{p,pQ)u(pQ) = M(p,p0) for all u EB+(pQ), the "functions"
pEX(p()) are bounded on B (p0). The metric D is the metric of
uniform convergence of the functions p on the set B+(p0). If {pn} is a
D-Cauchy sequence in X(p0), then clearly there is a bounded function φ
on B+(po) such that u(pn)^> φ(u) uniformly for u E B+(p0). To show
that φ(u)= u(p) for some pEX(p0), we pick a subnet {pnj} which
ίΓ-converges to some p E X ; i.e., u(pnι)-^> u(p) for all u E B. It follows
that φ(u)= u(p) for all w E B+(p0). Hence p is a bounded function on
B+(p0); i.e., u(p)/u(pQ)^M for all w EB + (p 0 ) , hence for all u > 0 , and

P e X(po).
If D(pn,p)—>0, then u(pn)-*u{p) (uniformly) for w E B+(p0), and

hence u(pn)-> u{p) for all u G B. Therefore pn ->p in ίΓ if £>(pn,p)-»0,
and 5"D D ^". The family B+(p0) is D-equicontinμous on X(p0) by
definition of D, and hence is ^-equicontinuous if SΓ = 2ΓD. Conversely,
if B+(p0) is ^-equicontinuous on X(p0), then 9~ convergence implies
D -convergence.

We assume for the rest of this section that X is separable (hence
X - Γ is separable), and that B is a Dirichlet space. Then the represent-
ing measures are unique, and B |Γ is dense in Lx{m) (and these are in fact
exactly the two conditions we use). If p E X(p0), then mp = Kpm, where
m represents pih and 0^Kp ^ M ( p , p0) a.e. (m).

DEFINITION. If B is Dirichlet, and m represents p0, let SΓ* be the
L x(ra) metric topology transferred to X(p0); i.e., let | |p-<?||» =

\\κP-κq\\x.
THEOREM 7. // B is Dirichlet and p, q GX(p0), then | |p-<7||» =

D(pq)

Proof By definition, \\p — q\\x = \\KP - Kq \\x is the sup of the inte-

grals I u(Kp - Kq)dm, where u runs over the unit ball of Lx(m). Since

B is Dirichlet, we can take the sup over the functions u E B with

\u\dm = 1, and moreover, we can consider only functions u in B

which are strictly positive or strictly negative. Hence \\p - q ||x is the sup
of u(p)~u{q) for uEB with ± w E B + ( p 0 ) , or \\p-q\U =
sup{\u(p)- u(q)\: u E B+(p0)} = D(p,q).
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COROLLARY 1. {Kp: p EX(p0)} is a closed set in Lx(m).

Proof. D is complete.

COROLLARY 2. Si = SΓD = 2ΓX on X(p0) if and only if B+(p0) is
equicontinuous on X(po).

Since p —» Kp is in particular a continuous map into Lx{m), there is a
jointly measurable function Q(p,θ) on X(p0)x Γ such that Q(p,-) = Kp

(in Lλ(m)) [4, Lemma 3.10]. Since we have in fact a homeomorphism
p-^Kp into L x(ra), we get the stronger result below (cf. [5, Theorem 4]).

THEOREM 8. If B+(p0) is equicontinuous on X(p0), and X is separa-
ble, and B is Dirichlet, then there is a jointly measurable function Q(p, θ)
on X(po) x Γ such that Q( , θ) is continuous on X(p0) for each θ E Γ,

o) for all (p, Θ)E X(po)xΓ, and u(p) =

ί u(θ)Q(p9 θ)dm(θ) for all u<ΞB, all p E X(p0).

Proof By hypothesis, the topology in X(p0) is given by the Lx(m)
metric \\p - q \\*. Let S be countable dense subset of X(po)- For each
p E S, let O(p, *) be a measurable function defined everywhere on Γ such
that O(p, - )m = mp. Then

and

hold a.e.(m) for all p, q E S. Let E be the countable union of zero
measure sets where the inequalities above fail, and redefine all Q(p, θ) to
be 1 for p E S, θ E E. Now the inequalities above hold for all p, q E S
and all ΘEΓ. For pEX(p0), define Q(p, θ) = lim Q(pn, θ) for any
sequence {pn} in S converging to p. Clearly Q(p,-) is measurable, and
Q(p, - )m represents p. Since Q is continuous in p for each fixed 0, 0 is
jointly measurable.

COROLLARY. M(p, p0) is a continuous function of p on X(p0).

Proof M(p9 po) - sup{O(p, θ): θ E Γ}.

As in [5], we let B denote the closure of B |X(p 0) in the topology of
uniform convergence on compact subsets of X(po) The proofs of the
remaining results of [5] are true in our present setting, and the function
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0 ( , Θ)E B except possibly for a θ in a set of measure zero [5, proof of
Theorem 7]. Hence we have the following.

THEOREM 9. IfXis separable, B is Dirichlet, and B+(pQ) is equicon-
tinuous, then there is a function Q(p,θ) as in Theorem 8 so that
Q( ,p)EBforall ΘEΓ.

The main result of [4] gives an integral kernel representation like the
above for function spaces which are determined by a family of local
integral kernels. For any such space the set B+(p0) will be equicontinu-
ous on X(po) [4, Theorem 1.4], and hence Theorem 9 above will give the
end result of [4] for points in X(p0). The result of [4] holds at all points
of X, and hence without reference to the ordering < . In the present
setting the proofs are simpler, and we naturally obtain more information
about the kernel Q(p,θ).

The classical Herglotz theorem states that: (i) if υ is harmonic on the
unit ball, then there is a positive measure a on the boundary such that

v(p)= P(p, θ)da(θ), where P(p, θ) is the Poisson kernel; and (ii) any

function v given by such an integral is harmonic on the open ball. The
Herglotz theorem extends to general function spaces with the approp-
riate hypotheses.

Let £ft+(p{]) be the limits of positive functions in B in the sense of
uniform convergence on compact subsets of X(p0). The functions in
38+(po) are defined only on X(p0). If B is the space of continuous
functions on X which are harmonic on X - Γ , and p0EX-Γ, then
Sδ+(p0) is the set of all positive harmonic functions on X - Γ. If B is the
space of continuous functions on X which satisfy the heat equation on
X-Γ (for appropriate X — cf. §4), then Sδ+(p0) is the space of all
positive parabolic functions on X — Γ if p0 is a maximal point of X — Γ
with respect to < .

If B+(pQ) is equicontinuous, then part (i) of the Herglotz theorem
holds on X(p0) with our kernel Q(p, θ) in place of the Poisson kernel. If
in addition the kernels O(p, •) are continuous, then part (ii) of the
Herglotz theorem holds.

THEOREM 10. // B+(p{)) is equicontinuous, and a is a positive

measure on Γ, and υ(p)= I Q{p, θ)da(θ), then v ES9+(p0).

Proof (cf. [7, Theorem 6]). Assume without loss that α(Γ) = 1. The
integral can be approximated at any finite number of points of X(po) by a
finite sum of the form
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(1)

where {Γ,} is a partition of Γ. Hence υ is the pointwise limit on X(p0) of
functions F of the form (1). Each such function F is in B+(p0), since
O(po,') = 1. The set of functions (1) is equicontinuous on X(p0), since

\F(p)-F(p')\^ϊ\Q(p,θ,)-Q(p',θ,)\a(Γ,)

The topology in X(p0) is the same as the Lx(m) topology on the kernels
Q(p,'), so \F{p)-F{p')\ <e for all F of the form (1) if | | p - p ' | | . < e ,
and the functions (1) are equicontinuous. The pointwise limit of equicon-
tinuous functions is uniform on compact sets.

THEOREM 11. If B+(p0) is equicontinuous, and the functions Q(p, )
are continuous on Γ for p E X(po), then any function v in S5+(p0) can be

written v(p)= Q{p, θ)da(θ) for some positive measure a.

Proof Assume without loss that v(p0) = 1, and let un —> υ u.c.c. on
X(po), where un E B+(p0). The measures undm are in T, since

= un(p0) =

= | un(θ)dm(θ).

Let α be the w* limit of a subnet undm. Then since Q(p, •) is
continuous,

Q(j>9θ)un,(θ)dm(θ) = f Q(p,θ)da(θ).

4. Solutions of the heat equation. Let φu φ2 be two
continuously differentiate functions on [a, b], with φλ(t)< φ2(t), and let
X = {(JC, ί): <p,(ί) ̂  x ̂  <p2(ί), α ^ ^ f t } . We consider the space Bp of
continuous functions on X which satisfy the heat equation uxx(x,t) =
ut(x, t) in the interior and on the top line: t = b, ψ\{b) < x < φ2(b). We
will call Bp the space of parabolic functions on X.

The Shilov boundary of Bp in X consists of the two curves x = φ, (ί)j
and the bottom segment t = α, φλ(a)^x ^φ2{a) [13, p. 338], and
£|Γ=C(Γ)'[13, p. 354 et. seq.].
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Pini [14] and Hadamard [9] have proved the following Harnack
inequality for the parabolic functions: if (JCI,^), (x2,t2)EX — Γ, then
(JCJ, ίi) < (x2, t2) if ίi = t2, and M (JC, ί; JC2, f2) is uniformly bounded for (JC, ί)
in a compact subset of X(x2, t2). Hence the Gleason parts of X are the
singletons of points in Γ, and the open horizontal segments P(t0) = {(x, t0):
<P\(to)<x <<P2(to)}. The non-singleton parts P(t) are simply ordered by
< : P{U)< P(t2) if U ̂  t2. If p0 is any point of the top segment P{b\

then X(po) = X -Γ, and B+(p0) is equicontinuous. This last follows
from the existence of local integral kernels [10], and the fact that the
functions of B+(p0) are uniformly bounded on compact subsets of X — Γ
(cf. [4, Theorem 1.4]).

Nirenberg [12] has proved various maximum principles for parabolic
partial differential equations and inequalities, including the following
result for Bp. If u E Bp and u (JC0, t0) = max w for some (JC0, t0) & Γ, then u
is constant for t ^ ί(). That is, (JC0, t0) maximizes (x, t) for all ί ^ t0. This
of course follows from the Harnack inequality by Theorem 3.

It follows from the maximum principle that the support of mp, where
p = (JCO, t0), is a subset of Γ(ί0) = ΓΠ {(x, t): t ^ ί(,}. In fact sp mp = Γ(ί0) as
we show next.

THEOREM 12. If p = (*o, ίo), ί^^n sprap = Γ(ί0).

Froo/. If there is an interval in Γ(t())- spmp, then we can find a
continuous function u ^ 0 so that w > 0 at points of Γ(ί()) - sp rap. Hence
u(q)>0 for some g < p, u ^ 0, and «(p) = 0, a contradiction.

The following result now follows from Theorem 9, and the preceding
observations.

THEOREM 13. Let m represent any point (JC0, b) of the top segment
P(b). There is a jointly measurable function Q(x,t; θ) on (X - Γ) x Γ
such that: Q(x,t; )m represents (x,t); Q( , ;0) satisfies the heat
equation for each Θ E Γ ; 0 ^ O ( x , ί ; ί ) ^ Λf (JC, t\ x0, b)\ the set of functions
Q(x,t;-)for(x,t)E.X — Γ is uniformly closed in the bounded functions on
Γ ; Q ( x , t ; θ ) = 0 for θ ^ t ( o b v i o u s n o t a t i o n a l a b u s e ) ; O ( x , ί ) is
continuous for θ — t.

Proof. The last statement follows from the fact that Q(x,t,θ)
converges to Q(x,t(hθ) uniformly in θ as t-^t{h and Q(x, t, θ) = 0 for

The author conjectures that Q(x, t θ) can be taken to be a
continuous function of θ. At any rate the kernel Q(p, ) is continuous
on Γ when X is a rectangular domain [10]. Hence we have the following
analogue of Herglotz Theorem for parabolic functions (cf. [10, p. 373]).
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THEOREM 14. Let X = [ - 1,1] x [0, 1], p0 = (0, 1), and let Γ be the

lower boundary: Γ = {- 1} x [0, 1] U [ - 1,1] x {0} U {1} x [0, 1]. A positive
function v(x, t) on X - Γ satisfies the heat equation vxx = vt if and only if

there is a positive measure aonΓ such thatv(x, t) = I Q(x, t θ)da(θ).

Proof. The result is essentially a specialization of Theorems 10 and
11. The set B+(p0) is equicontinuous [14, p. 428; 4, Theorem 1.4]. The
kernel Q(x, t; •) is continuous on Γ [10]. Each positive solution of the
heat equation on X - Γ = ( - 1, 1) x (0, 1) is the u.c.c. limit of solutions
which are continuous on X. To see this last, observe that v(cx, c\t - 1) +
1) is parabolic on X - Γ, continuous on X for 0 < c < 1, and approaches
v(x, t) as c -» 1.

5. Solutions of the wave equation. Let X be the closed
triangle bounded by the x-axis and the two lines y = ± x + 1. Then
(x, y) e X if and only if y ^ 0 and - 1 ̂  x - y ^ x + y ^ 1. Let Bh be the
space of C 2 functions on X which satisfy the wave equation: uxx(x, y ) -
wyy(x, y) = 0. Then JB̂  consists [11, p. 92] of exactly those functions u
which can be written w(x, y) = \[G(x - y)+ G(x + y)] for some G with
G" continuous on [0, 1].

Since u(x, y ) g m a x G(x) = max w(x, 0), every function uEBh as-
sumes its maximum on Γ = [ - 1, 1] x {0}. Since J3 | Γ is uniformly dense in
C(Γ), no smaller set than Γ will serve as a boundary, and hence Γ is the
Shilov boundary.

The representing measure for p = (JC0, yo), with y0 > 0, is the average
of the point masses at (JC0 ~ y0,0) and (x0 + yo? 0). We will call the points
(x0 ± y0,0) the support points of (x0, yo)

To characterize the relation q < p, we first look at the maximum
principle (p maximizes q), which is a necessary condition. Since p
maximizes q if and only if the support point(s) of q are a subset of the
support points of p, we have the following result.

THEOREM 15. For Bh, (x0, y0) maximizes (x, y) // and only if
(x, y) = (x(), y0) or (x, y) = (x0 - y0,0) or (x, y) = (x0 + y0,0).

Although the above theorem is the natural form of the maximum
principle for Bh in terms of the ordering, the following consequence has a
more satisfying form.

COROLLARY 1. // w(x, y) = maxw for all (x, y) in a horizontal
segment S(yo) = {(x, y ) 6 X : y = y0}, then u is constant for y g y0. //
w(x, y) = maxw on S(y0) with yo = L then u is constant on X.
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Proof, If u(x, y) = max u on 5(y0), then u is constant on all the
support points of points in S(y0). Every point (x, y) with y ^ y0 will
have its support points in this set. If y0 = 2, the support points of points
in S(y0) constitute all of Γ.

By Theorem 15 the only possibilities for (x, y ) < (x0, yo) are (jt0, y0)
itself and its two support points. The point masses at (xo~yo, 0) and
(jc0 + yo? 0) are absolutely continuous with respect to their average, with
Radon-Nikodym derivative bounded by 2. Hence we have the
following.

THEOREM 16. For Bh, q < p = (JC0, yo) if and only if q = p or q is one
of the support points (xQ ± y0,0) of p. If q < p, M(q, p) = 2.

COROLLARY 1 (Harnack convegence theorem). Monotone con-
vergence at (JCO, yo) implies convergence at (x o ±y o ,0).

COROLLARY 2. Let {un} be a monotone sequence of functions in
Bh. If {un(x, y)} converges for all (x,y) in a horizontal segment S(y0),
then {un(x, y)} converges for all (x, y) with y ^ y0. // {un} converges on
S(y0) with yo = L then {un} converges on X. If {un} converges uniformly
on S(y0), then {un} converges uniformly for y ^ y0, or uniformly on all ofX

Proof. If {un} converges on a subset E of Γ, then clearly {un}
converges at every point (x, y) whose support points are in E. Uniform
convergence of a positive sequence (let vn = un — u{) on 5(y0) implies
uniform convergence on the support points of points in S(y0), and hence
uniform convergence on the appgopriate subset of X.
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