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NORM ATTAINING OPERATORS ON L0, 1]
AND THE RADON-NIKODYM PROPERTY

J. J. UHL, JR.

Let Y be a strictly convex Banach space. Then norm
attaining operators mapping L0, 11 to Y are dense in the
space of all linear operators from L![0, 1] to Y if and only
if Y has the Radon-Nikodym property.

Bishop and Phelps [1] have asked the general question—For
which Banach spaces X and Y is the collection of norm attaining
operators from X to Y dense in the space B(X, Y) of all bounded
(linear) operators from X to Y. Lindenstrauss in [8] investigated
this question and related this question to existence of extreme points
and exposed points in the closed unit ball of X. In the course of
his paper Lindenstrauss showed that for some space Y the norm
attaining operators in B(L'[0, 1], Y) are not dense in B(L'[0, 1], Y)
due to the lack of extreme points in the closed unit ball of L'[0, 1].
Left open is the following question: For which Banach spaces Y
are the norm attaining operators dense in B[L'[0, 1], Y)? Based on
Lindenstrauss’s work, one is led to believe that if the closed unit
ball of Y has a rich extreme point or exposed point structure, then
the norm attaining operators may be dense in B(LY0,1], Y). On
the other hand the Radon-Nikodym property is intimately connected
with extreme point structure (Rieffel [12], Maynard [10], Huff [6],
Davis and Phelps [2], Phelps [11], Huff and Morris [7]). So there
is some prima facie evidence to support the belief that the norm
attaining operators are dense in B(L'[0, 1], Y) if and only if Y has
the Radon-Nikodym property. The purpose of this paper is to verify
this for strictly convex Banach spaces Y.

First a few well known results will be collected.

LEMMA A [4,5]. If (2 2, 1) is a finite measure space and
9: Q— Y is p-essentially bounded Bochner integrable function, then

T(f) = Bochner — gfgdy
defines a member T of B(L'(r), Y) with || T]| = esssup || glly.

LEMMA B [3]. Any one of the following statements about Y
implies all the others.

(i) Y has the Radon-Nikodym property.

(ii) If (R, 2, 1) is o finite measure space and G:3—Y is a
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p-continuous countably additive measure of bounded variation, then
there exists a p-Bochner integrable

mg——+ywmmchy:Sg@amrszez.
E

(iii) If p s Lebesgue measure on [0,1], then for each
T e B(L'[0, 1], Y) there is a p-essentially bounded g:[0, 1] — Y with

7(f) = | fodp for all feL(0, 1), Y)

Moreover, if Y has the Radon-Nikodjym property statement (iii)
is true for any finite measure space.

The first theorem is a straight forward observation that is based
on the definition of a measurable function.

THEOREM 1. If Y has the Radon-Nikodjgm property and if
(2, 2, 1) is a finite measure space, then the norm attaining operators
are dense in B(L'(y), Y).

Proof. Let T e B(L'(¢t),Y)and ¢ >0. Then there exists an essen-
tially bounded Bochner integrable g: 2— Y such that T(f) = S fod
2
for all f e L*(¢) and there exists a countably valued function

@——X, h=Xak,, wneX,
EecX¥, WE)>0, ENE =09

for 4+ j, such that esssup|/g — h|l < ¢/2. Define T.:L{¢)— Y
by T.f) = | fhdp, feLig). Then || T — T, < (&f2).

Now T, will be approximated within ¢/2 by an operator which
attains its norm. If T, = 0, there is nothing to prove. Otherwise
B =sup|ly;|| > 0. Choose ¢ such that 8 — |y, [l <é&2 and a>1
such that ¢/4 < (a — 1) ||y, || < ¢/2 and define

() =\, shdpe+ o, o

i

It is easy to verify that || T, — T,|| < ¢/2 and that || T,|| = a |y, || =
|| Tz, /t(E;,)) || Hence T, attains its norm and ||T — T,|| <¢, as
required.

The operator T, constructed in the proof of Theorem 1 has two
important properties. First it attains its norm and second there



NORM ATTAINING OPERATORS ON L'[0, 1] 295

exists Fe3, (E)>0 and y,eY with [y, =T and Ty«fz,) =
S fdpy, for all feLYy). If Y is strictly convex and real, this
E

property is shared by all norm attaining operators in B(L(x), Y).

LEMMA 2. Let (2,3, 1t) be a finite measure space and Y be a
strictly convex Banach space. If T e B{(LYp), Y) attains its norm
then there exists a set K, e X with p(E,) > 0, ge Lo(¢) with |gl =1
on E, and y,€ Y with ||y,|| = || T| such that

T(F 100 =\, Fodie,

for all f e L'(w).
If 'Y 4is a real Banach space, g may be taken as the constant
Junetion 1.

Proof. 1If ||T| =0, there is nothing to prove.

Otherwise, choose f,c L'(#¢) with [|[T(f)|| = || T| and || f,]l = 1.
With the help of the Hahn-Banach theorem, choose y*e Y* with
llyy | =1 and

v () = 1T =11T] .
Next choose h e L~(¢) with |[4|l.. = || T|| such that
() = | fudp
for all fe L'(¢). A simple computation reveals that h = sgaf,|| T

on the support of f,. (Here sgnf, = f,/|f,|.) Let E, be the support
of f,. Thus if fe L'(p),

W) = | FEAITdn.

Next suppose K C E, EecX and ((FE), ({E, — E)> 0. (The rest of
the proof is trivial if F, is an atom of ) Then

y§T<Lsgnfo)=S e || dp =T,

L(E) z, ((E)
X __._.,XEO_E — Leg-x i ! ‘
Ys T<X(E) Sgnf“) = SEO g Tlae=1T0

and

Il

[, o ymiae =1y .

JZe)
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From these equalities, one obtains

[T (Bo) = || T(Yz, 580 f) || = [| T(Xz 580 f3) + T(Az,—z 5gn f3) ||
= | T(xz, sgn f) | + || T(Xz,-= 58D f0) ||
=||T|ME)+ ||TIME — E)=||T| ME,) .

This combined with the fact that Y is strictly convex shows that
T(xzsgnf,) and T(Xz,—zsgnf,) are multiples of each other. Since
T(xz, 580 f)) = T(xz520 fo) + T(Xz,-2 580 fo), T(Xzsgn f;) is a scalar
multiple of T(yz sgnf); i.e., T(Xzsgnf)) = YT(xz, sgnf,) for some
scalar Y. On the other hand

T (E) = ys T(xzs8n fo) = Yy (Xg, sgn fo) = 7 || T || 4(E0) 5
thus ¥ = w(E)/((E,). Therefore if EcC E, and ((E) > 0,

T(xz sgn f,) _ T(Xx, sgn f,) —
L(E) 1(Ey)

Now suppose fe L'(y) is a simple function. Let ¢ > 0 and choose
a simple function @ € L*(¢) such that |[sgn f, — ¢||l.. <e. (Here sgnf,
is the complex conjugate of sgn f,.) Then T(f) = T(fsgn f, sgn f,) and
IT(f) — T(fesgn f)ll = [| Tl sgnfosgnf, — Psgnfill, <ell T p2.
Now select sets 4, ---, A, €23 such that

Yo .

f= gaixa,. and @ = ;Bi%;ﬁi .
Then

T(Y 4, N E,sgn So)
HA; N Ey)

= laiﬁiﬂ(Ai N E)y, = SE fedyry, .

1

AN E)

T(fo sgn foXz,) = :‘;1 a5,

?

Letting ¢ go to zero reveals that
T(1z) = |, F588 fidp, .

Since simple functions are dense in L*(t), the equality
T(fs) = |, f3ER fudw,

obtains for all fe L'(¢). This proves the first statement.

To prove the second statement, note that if Y is real, then
sgn f, takes on only the values +1 or —1. If sgnf,=1 on a set
of positive measure F, in the support of f,, take E, = E and proceed
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as above. If sgnjf, = —1 almost everywhere in the support of f,,
multiply f, and y¥ by —1 and proceed as in the last sentence.

With the help of Lemma 2, the main result becomes nothing
but a straightforward exhaustion argument.

THEOREM 3. Let Y be a strictly convex Banach space. If the
norm attaining members of B(L'[0, 1], Y) are dense in B(L'[0, 1], Y),
then Y has the Radon-Nikodjm property.

Proof. Let Te B(LY0, 1], Y) and ¢ > 0 be given. Define a class
of Lebesgue measurable sets .# by agreeing that EFe_# if there
exists an essentially bounded Bochner integrable g(=g(Z, ¢)): [0, 1]—Y
such that

|71 = | fode) < o1l £z

Note that if A is Lebesgue measurable and A c EFe_#Z then

|7 - | soE, 9| = | T(rans) ~ | (Froode
=\l 7ats I = ¢ L Fall

Therefore, if Fe_#, every measurable subset of E belongs to _#.
Now let « = sup {{(E): Ec _#'} and let (&,) C .# be a sequence such
that lim, #(F,)=a. Write A,=FE, A,=E,—FE, ---, A,=E,—U'-'E..
Then the A,s are disjoint, Uy, 4, = Ui, E, and p(Us. 4,) = «a.
A,CE,and E,c _# A,c _# and there exists a sequence of essentially
bounded functions g¢,:[0,1]— Y, n=1,2, ---, such that for all
Feryo, 1],

|72 - SAnfg,,de =

Acecordingly,

I sode| < 1 TGLI I+ el PLa = T+ 911 F

By Lemma A,

ess sup || g.)4, || — sup L f9.dp “ =T +e.

A=

Therefore sup,esssup||g,|| = || T| + e Now define g:[0,1]— Y by

ga(t) for teA,
g(t):{o for teC_jA,.
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Then esssup || g|| < || 7| + ¢ and if fe L0, 1],
|11, = || sodr)
< 3| T(7a) = |, foude|
el S el 1L

=

iMs uMe

Therefore |J, 4,€.#. Next we shall see that (.4, =1. For,
if £(U,4,) <1, then #(U,E,) <1 and a <1. Set B,=[0,1] —
U.. 4.. and recall that LY(B,) (Lebesgue integrable functions supported
on B is isometric to L'Y0,1]. Define T.:LXB,)— Y by T.f)=
T(fxs,) for feLE). Since LYB,) is isometric to L'[0, 1], there
exists an operator T,: LY(B,) — Y that attains its norm such that
T, — T.|| <e.

An appeal to Lemma 2 produces a ¥y, €Y and set B, ¢ B, with
H(B)) > 0 such that

745 = |, i,
for all fe L'(B,). Set ¢’ = 4,)5. Then
|TCas) = |, fodes) = 11 7F1n) = T Fra)|
SHT = T xs = ellfas, -
Therefore B,e _#. Now set § =9 + ¢'. If fe L]0, 1]),

A C 2T T W 7

U 4nUB;

IA

|76 =, fode | + | T(aa) = |, 0]

1

< e St ll + € 1A, = 125 auun |l -
Therefore U, 4, UB, = U, E,UB, e _# But
#(UE,UB)=u(UE,)+ uB)
> lim ((E,) + (B, = a + (4(B) > a

contradicting the definition of @. Thus ¢ (U.A4,) =1 and

|7r) ~ | swir| = el 51l for all perqo, 1]

Finally, to check that Y has the Radon-Nikodym property, let

fo,11
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9.: [0, 1] — Y be a sequence of Bochner integrable essentially bounded
functions such that for all fe L0, 1]

|7 = | ro.del| s 1niifi,

for all n. An appeal to Lemma 1 shows that lim,,, esssup || g, — 9. ||
Hence there exists a Bochner integrable essentially bounded g: [0, 1] =Y
with lim,esssup|/g, — g|| =0. If feLY0, 1], the dominated con-
vergence theorem guarantees that

(7))~ tim | fo.dp = fodn.
Thus Y has the Radon-Nikodym property by Lemma B.

The role of strict convexity seems to be crucial in Theorem 3:
for by perturbing co-ordinate functions it is seen easily that norm
attaining operators are dense in B(L'[0, 1], ¢,), B(L'[0, 1], I*) or for
that matter B(X, [*) for any Banach space X. See [8, Prop. 3].

On the other hand, the role of strict convexity could be made
even more palatable by an affirmative answer to an old question of
Diestel’s: Does every Banach space with the Radon-Nikod§m property
have an equivalent strictly convex norm?

COROLLARY 4. If X 1is a strictly convex renorming of L'[0, 1],
then the morm attaining operators are not dense in B(LY0, 1], X).

Proof. Evidently X lacks the Radon-Nikod§ym property.

This leaves unsolved the question of whether the norm attaining
operators are dense in B(L'[0, 1], L'[0, 1]).

Finally say that a Banach space X has property B if for every
Banach space Y the norm attaining operators are dense in B(Y, X).
Lindenstrauss [8, Proposition 4] has observed that if there is a non-
compact operator in B(c,, X) and X is strictly convex, then X lacks
property B. It is not difficult to see that if X has the Radon-
Nikod§ym property, then every operator in B(c, X) is compact and
that the converse in false. Thus Theorem 3 is a better test for
Property B than [8, Proposition 4]. Of course this brings up a
question that is well beyond the scope of this note. If X is a strictly
convex Banach space, does X has property B if and only if X has
the Radon-Nikodym property?

The author is happy to acknowledge helpful discussions with
Professor J. Diestel and a helpful comment from Professor T. Figiel.
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