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BOUNDS AND QUANTITATIVE COMPARISON
THEOREMS FOR NONOSCILLATORY SECOND

ORDER DIFFERENTIAL EQUATIONS

THOMAS T. READ

A lower bound is given for the positive increasing solution
of yn + 2ry' — q2y = 0 on the interval [0, oo) and an upper
bound is given for the positive decreasing solution of this
equation. These are used to estimate z/y and zolyo where y
and z (respectively y0 and z0) are positive nonprincipal
(respectively principal) solutions of nonoscillatory equations
yfr ~ ViU — 0 and z" — p2z — 0 for which p2 ^ Pi A special
case of one result is that if pλ is bounded and if

lim inf (\X (p2 - pdiμ dt/x) > 0
VJ /

as x —• oo then z/y increases exponentially and zo/yo decreases
exponentially.

1. Introduction* It is our objective to estimate the relative
sizes of the solutions of two nonoscillatory differential equations

(1) V" -piV = 0

and

( 2 ) z" - p2z = 0

on the interval [0, oo) when p2 ^ pt.
It is well-known that (1) has a unique, principal, solution yQ

with the property that for any linearly independent, nonprincipal,
solution y, limyo(x)ly(x) = 0 as a -^w, If ^ is nonnegative, then
yQ may be taken to be positive and decreasing and there is a non-
principal solution which is positive and increasing [3, p. 355].

Our first task will be to obtain a lower bound for such a non-
principal solution and an upper bound for the principal solution.
We shall actually do this in §§ 2 and 3 for the more general equation

(3 ) y" + 2ry' - q2y = 0 .

Here r and q are required only to be real-valued and locally integrable.
Note, however, from the form of (3) that we may also assume that

rdt, \ qdtj and
o Jo

an increasing function F. In the special case when r = 0 they take

G x \

qdt/F(x)) > 1 as x —• oo for suitable F,
0 /
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then there is an increasing solution y such that y(x) Ξ> y(xQ)eF<ίX) for
x ^ x0 and a positive decreasing solution y0 such that yQ(x) <; yo(xo)e~F{x)

for x ;> x0. The case F{x) = ex of this result was discussed in [4].
For sufficiently smooth r and q satisfying appropriate conditions,

asymptotic formulae have been given for the solutions of (3). (See,
for instance, [1, p. 120].) Our estimates, however, require no assump-
tions on r and q beyond local integrability and are thus available
when the asymptotic formulae are not. One such application, to
the deficiency index theory of powers of formally symmetric non-
oscillatory expressions, is given in [5] where it is shown for M(y) —
— (py'Y + QV that if q is nonnegative and if \ (q/p)1/2dt Ξ> K log p(x)

Jo
for some K > [n(n — 1)]1/2 and all x in a set of infinite measure, then
Mj is limit-point for j = 1, 2, , n.

Here we apply these estimates in a different direction. It is
essentially a form of Sturm's comparison theorem that each pair of
eventually positive nonprincipal solutions y and z of (1) and (2)
respectively satisfies z'/z ^ y'/y on some interval [a, °°) and that
the eventually positive principal solutions y0 and z0 satisfy ZQ/Z0 ̂
yΌ/yQ on [α, oo) [3, p. 359]. Hence for all sufficiently large x, z/y is
a positive increasing function and zo/yo is a positive decreasing
function.

In § 5 we shall use our earlier estimates to give a lower bound
for z/y and an upper bound for zo/yo in terms of p2 — plm A special
case of our result is that if p1 is bounded and if

lim inf (J"(p, - pjv*dt/x) > 0

as x —• oo, then z/y increases exponentially and zo/yo decreases ex-
ponentially.

In the general result the boundedness of p1 is replaced by a
p$t. We show that such a condition cannot

0

be omitted by proving for nonnegative pγ and p2 that if p2 — pγ is
bounded and pψ — pψ approaches 0, then z/y increases more slowly
than any exponential. In particular, this conclusion holds for certain
functions p1 and p2 for which p2 — px is bounded away from 0.

In § 4 we shall derive an upper bound for the nonprincipal
solution of (1) and a lower bound for the principal solution. These

S x Γx

\Pi\dt r a t h e r t h a n 1 \pι\
ll2dt as one might hope from

o Jo

the other bounds. We give an example to show that this cannot be
avoided.

2* A lower bound for the nonprincipal solution* We begin
by deriving a lower bound for an increasing solution of (3) valid on
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the complement of a set of finite Lebesgue measure.

THEOREM 2.1. Let r and q be real-valued locally integrable
functions on [0, oo) with q nonnegative. Let y be any solution of
(3) with y{ϋ) > 0 and y'(0) > 0. Then for each c, 0 < c < 1, there
is a subset Ec of [0, oo) such that m(Ec) ^ y(0)c2/y'(0)(l - c2) and for
all x not in Ec,

y(x) ^ y(0) exp

Proof. Let y be as in the statement of the theorem. Set

S x

rdt and w — fy'jy. Note that
0

( 4 ) log y(x) = log 2/(0) + [* w/f dt .
Jo

w is positive since y is increasing and satisfies the Riccati equation
w' — q2f — w2lf or, equivalently,

(5 ) w'/w + w/f = q2f/w .

From Schwarz's inequality and (5),

*qdt)* ̂  fβ w/f dt \* q2f/w dt

^ Γ wff dt ΓΓ w/f dt + log (w(x)/w(0)f(x)) + 2 \*rdt\ .

We shall complete the proof by showing that log (w(x)/w(0)f(x))
w/f dt off a set of finite measure. Fix c < 1

0

and set 6 = (1 — c2)/c2. Let Ec denote the set of all x for which

log (w(x)/w(Q)f(x)) ^ b \ w/f dt, that is for which
Jo

W(x) = [w(x)/f(x)] exp

— 6 \ w// d ί ) ,

Jo /

1/6 ^ Γ TΓ^ ^ ( w(0)dx = w(Q)m(Ec) .
Jo )EC

Recalling the definitions of b and w,

m(Ec) ^ y(Q)c2/y'(0)(l - c2) .

For x$Ee we have from (6) that
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(Γ qdtj ^ Γ w/f dt Γ(l/c2) j " w/f dt + 2 (" rtfί] .

The conclusion of Theorem 2.1 now follows by solving this inequality
w/fdt and substituting the result into (4).

0

It should be noted that the exceptional sets Ee can be unbounded
and of positive measure for each c > 0. An example with r — 0 for
which this occurs is given in [4].

From the basic estimate we can now quickly obtain a lower bound
for nonprincipal solutions of (3).

THEOREM 2.2. Let r and q be as in Theorem 2.1. Let F be an
increasing differentiate function on [0, oo) such that F' ^ KF for
some positive constant K. If

(7) lim inf (TYΓ qdtj + (Xrdt^Ύ* - [' rdή/F{x) > 1

then for any increasing solution y of (3),

y(χ) ^ y(0)eF{x)

for all x greater than some x0.

Proof. Choose δ > 0 and xt so that the expression in (7) is greater
than 1 + δ for x ^ xt. Choose c < 1 so that c2(l + δ) = 1 + δ' > 1.
Let Ec be as in Theorem 2.1. Then for x greater than xι and not
in Ec,

log y(x) ^ log 2/(0) + c ( \ ( J qdtj + c2 (^ rdtJΎ* -cl* rdt)

^ log 1/(0) + c2([(J" qdtj + (J* rdtjjjj2

^ log 7/(0) + (1 + δf)F(x) .

Now choose ε < δ'/K(l + <5') and x2 so that m(J5c Π [x2, ^)) < ε. Then
for any x "^ x0 = max (α̂ , x2) there exists X e [x — ε, x] such that

log y(x) ^ log 7/(X) ^ log 7/(0) + (1 + δ')

- log 2/(0) + TO + (1 + δ')(F(X) - F(α)) + δ'F(a?)

^ log 1/(0) + F(a;) .

The last inequality follows from the Mean Value Theorem and the
choice of δ. This completes the proof.

In particular we have the following criterion for exponential
growth.
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COROLLARY 2.3. Let r and q be as in Theorem 2.1. // for
some a > 0

lim inf ( (\ qdt) + (\ rdt) \ - rdt) x > a ,

z-oo VLVJo / VJo / J Jo //

then for any increasing solution y of (3),

y(x) ^ y(0)eax

for all x greater than some x0.
It is clear from the constant coefficient case that the exponent

is the best possible.

3* An upper bound for the principal solution* We now take
up the problem of finding an upper bound for the principal solution
of (3). Our method will be slightly different than in the previous
section; instead of deriving a general inequality like Theorem 2.1
we shall proceed directly to an analog of Theorem 2.2. However
the proof, in part, is similar to the proof of Theorem 2.1. It is
convenient to begin with a lemma.

LEMMA 3.1. If u and v are locally integrable functions on [0, so)
with v nonnegative, u positive and u~a e L^O, oo) for all 0 < a < 1/2,
and if

u{x) ^ -SΓexp I uvdt
Jo

for all sufficiently large x and some positive K, then vβeLγ{Qy ©o)
for all 0 < β ^ 1.

Proof. For any nonnegative u and v and any positive T,

uvexpy— Ί \ uvdt) = ( — 1/7)1 exp( — 7 I uvdtj 6^(0, oo) .

We have here that eventually v ^ K~xuv exp ( — I uvdt). Hence
V Jo /

veL^O, oo). Let E be a set of finite measure such that for all x

in the complement, D, of E, the hypothesis of the lemma holds and

also uv exp (-1/2 Γ uvdt) ^ K1'2. Thus on D,

u(x) ^ K exp \ uvdt ^ u\x)v\x) .
Jo

r

Then for any 0 < β < 1, u~β!2 ^ vβ on D and so \ vβdt < oo.
JD
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Now write E as the disjoint union E — A U B where A =
r

{x e E: v(x) ^ 1}. Clearly \ vβdt < <*>. For any β < 1 we have also
vβdt g vdt < co. Collecting the results on A, B and D, the lemma

B )B

is proved.

THEOREM 3.2. Let r and q be as in Theorem 2.1. Let F be an
increasing differentiable function such that F'eaF —»co as x —> °o for
each positive a. If

(8) lim inf (T(T qdtj + (T rdtJΎ% + Γ rdt\JF(x) > 1

/or £fce positive decreasing solution y0 of (3),

yo(x) ^ yo(O)e-F^

for all x greater than some xQ.

Proof. We shall for the first part of the proof assume in addi-
rdt and w = —fyΌ/Vo- Then

o

w is positive and w' — w2/f — q2f. Also

w/f dt

0

so that we must show \ w/f dt ^ F(x) for x ^ x0.
Jo rx

We assert first that 1 w/f dt ^ F(x) for arbitrarily large values
Jo

of x. A calculation using Schwarz's lemma as in the proof of
Theorem 2.1 yields

(\*qdt)2 £ [w/f dt\\X w/f dt - 2 [rdt
/ Q \ VJo / Jo LJo Jo
K*) η

+ log (f(x)w(0)/w(x)) .

Choose δ > 0 and x1 so that the expression in (8) is greater than

1 + d for all x ^ a?!. Suppose that for some x2 ^ xλ, \ w/f dt < F(x)
JO

for all x ^ x2. Then for a? ^ a;2,

(10) ( ( " gdί) 1 ^ F(x)[F(^) - 2 ( 'rdt + log (/(a;)w(0)/iι;(α;))] .

In order to complete the proof of the assertion we need the
fact that for any real numbers A, B, and F with F nonnegative, if
(A2 + Bψ2 + B ^ (1 + δ)F, then A2 + 2BF - F2 ^ SF2. This is clear
if 2B ^ (1 + <5)F. Otherwise, let J? = εF with 2ε < 1 + δ. Then
A2 + B2 ^ (1 + 8 - ε)2F2 so that
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A2 + 2BF ^ (1 + 2d + d2 - 2dε)F2

= [1 + δ + δ(l + δ - 2ε)]F2

^ (1 + δ)F2 .

For this inequality and (8) we have that

([oQdt)2 + 2F(x) \"rdt - F\x) ^ δF2(x)

for all a? ̂  α̂ . Thus from (10) we obtain that for x ^ x2,

log (f(x)w(0)/w(x)) ^ δF(α) or

(11) f(x)/w(x) ^ e5F

To see that (11) cannot hold for all x >̂ x29 set u — f/w. Then
u is positive and

(12) u'/u - 2r + ^~x = ^ 2 .

It follows from (8) that ([* qdtj ^ -2F(x)\* rdt for all x ^ ^ . By

integrating (12) from 0 to x and using this inequality we obtain

log (u(x)/u(0)) + (Tqdt)2/F(x)
\Jo / /

For all x greater than some a?3, F
;(α;)βδi?1(a;) ^ 3^(0) and hence

vr\x) ^ ^(0)e"δF(a?) £ F'(x)/S. Thus by the Schwarz inequality,

( ΐ ?dίY ^ Γ u~ldt Γ ^ 2 ώ έ ^ — lF(χ) ~ F(xz)]\X uq2dt
\Jxz J Jίc3 Jxz 3 Jz3

Hence, since qgL^O, ©o),

Γ ^2dέ ^ 2 (Γ qdt\JF{x)

for all sufficiently large x.
For such x,

log (u(x)/u(0)) + \X u~ιdt ^ — [* uq2dt .
Jo 2 Jo

Moreover, ^ e i ^ O , oo) for each a > 0, since for all sufficiently large
x we have from (11) and the assumption on F that

u~«{x) £ Ce~aδFW ^ Ff(x)e-'ocδl2)F{x)eLι(09 oo) .

Hence for all sufficiently large x and some positive if,
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1 f*
u(x) ^ K exp — 1 uq2dt .

2 Jo

Now Lemma 3.1 with β = 1/2 applied to u and v = q2/2 implies that
qeL^O, oo). But this contradicts the extra assumption made at the

S x

w/f dt ^ F(x) for arbitrarily large
0

values of x as asserted.
Now choose x0 so that x ^ x0 implies F'(x) ^ 2w(0)e~δF{x). Suppose

that for some X ^ x09 Γ w/f dt < F(X). Let
Jo

X' = inf ix > X: \" w/f dt ^ F(x)} .

On the interval (X, X') the inequality (11) is valid, that is, w(x)/f(x) <£
1/2 F'(x). Hence

w/f dt = \X w/f dt + Γ' w/f dt < F(X)
Jo Jx

+ 1 [*'F'dt < F(X') .
2 J^

This contradiction completes the proof of the theorem when q $ L^O, oo).
Now suppose g e L^O, oo). Then (8) implies that

liminf 2 \* rdt/F(x) > 1 .
»-»oo J 0

Let z be the positive decreasing solution of z" + 2rz' — 0 such that

s(0) = 1. Then

expί —2 I r{u)du) dt .

x \ Jo /

For all sufficiently large t,

k exp ( - 2 Γ r(^)ώu) ^ fc exp (-(1 + δ)

so that ^ (α ) ^ 1 F'e~Fdt = e~F{x). But the principal solution #0 of
JX

(3) satisfies /̂0(x) <Ξ ί/o(O)2;(̂ ) [3, p. 359] so that the conclusion is true
in this case also and the proof is complete.

The hypothesis F'eaF —+ oo for all a > 0 is satisfied, for example,
for every positive power of x. For the function F(x) = log (1 + x),
corresponding to solutions of the form x~r, it is satisfied only for
a > 1. Examples of the form y" — k(l + x)~2y = 0 for small positive
k show that in fact the result is no longer true for this choice of
F. However a slight modification of the proof of Theorem 3.2 does
yield the following result for gίL^O, oo).
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COROLLARY 3.3. Let r and q be as in Theorem 2.1 with q g
, oo). Let F be an increasing differentiate function such that

aF~+oo as x-+oo for all a greater than some aQ. 7/(8) holds
then

for all x greater than some x0 and some β > 0.

As in the previous section we state the condition for exponential
decay as a corollary of Theorem 3.2.

COROLLARY 3.4. Let r and q be as in Theorem 2.1. If for
some a > 0,

/Γ/f* \ 2 /f* \2Ίl/2 fa \ /

lim inf (\ qdt) + (\ rdt) \ + rdt) x > a
x^oo \|_\Jθ / \Jθ / J JO //

then for the positive decreasing solution y0 of (3),

yo(x) ^ yo(O)e-"

then all x greater than some x0.

Again it is clear from the constant coefficient case that the
exponent is the best possible.

4. Bounds for y" — py = 0. If qeL^O, oo) then certainly no
upper bound for the increasing solution of y" — q2y = 0 can be made

qdt. The following example shows that it does not help
0

to require qgL^O, oo).
Let {Xk}ΐ=Q be an increasing sequence with x0 = 0 chosen so that

if q(x) = 0 on each In = [x2n, x2n+ί) and q(x) = 3n on each Jn = [x2n+1, aw 2 ),
then the solution w of w' = q2 — w2 with w(x0) — e satisfies w(x2n) — e
and w(x2n+ί) = 1 for all n. Obviously x2n+1 — x2n does not depend on
n. Solving the equations w' = — w2 and wf = 9n2 — w2 it is found
that 1 wdt = 1 for each n and that for large n, x2n+2 — x2n+1 is

^n f

approximately (e — l)/9n2 so that 1 qdt ~ (e — 1)/Zn. Hence the

S X ]j%

wdt of y" — q2y — 0 increases exponentially
0 Cx

while gίL^O, oo) but I qdt/x—>Q.
JO Γx / Γas \ 1/2

To overcome this difficulty we replace qdt by (x\ q2dt) .
Jo \ Jo /

There is no advantage in restricting ourselves to nonnegative coef-
ficients, so we state our result in terms of
(13) y"-py = 0.
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THEOREM 4.1. Let p be a locally integrable function on [0, °o),

not identically 0, such that (13) is nonoscillatory. Let G be an

increasing differentiable function such that xGf(x)/G2(x) —> 0 as x —* co.

If

S x

p I dtjG\x) < 1 ,
0

then every eventually positive solution y of (13) satisfies

(14) y(xo)e'G{x) ^ y{x) ^ y(xo)eG{x)

for all x greater than some xQ.

Proof. By applying the comparison theorem discussed in the
introduction to pλ — p, p2 = I P | it is clear that it suffices to establish
(14) for solutions of y" — \ p \ y = 0.

Let y be a positive increasing solution of this equation, and let
w — y'/y. Then w' + w2 — \ p |. Hence, integrating from 0 to x and

S x Γx

ufdt <; w(0) + I \p\dt. If peLL(0, °o)
then it is well-known that x~m \ wdt —• 0 as £->oo [2, Th. 223,

S x Jo

wdt/G(x) —> 0 and the right hand inequality for (14)
0

follows. If p&LL(0, oo), then an application of Schwarz's inequality
gives, for sufficiently large xo>

([* wdtj ^ χ[w(0) + Γ \p\dt\^ G2(x)

for all cc ̂  x0 and hence the right hand side of (14) follows again.
The left hand side is of course trivial in either case.

Now let y0 be a positive decreasing solution of y" — \ p \ y = 0

and let w — —yΌ/y0. Then w is positive and — w' + w2 = | p | . If

weLJβ, oo) then certainly for some xQ, \ wdt ^ G(x) for all x ^ xQ
JXQ

and the left hand side in (14) follows.
If w^L^O, oo) then for sufficiently large x0 and some δ < 1,

(1 - δ)
J

°
Jo

wdt)
o /

^ 1, 2xG'(x) < (1 - δ)G2(x) for α? ̂  a?0 and

(15) ([ wdt)Ίx ^[X \p\dt + w(x) ^ δG\x)/x + w(x)
\Jo / / Jo

^ώί > G^J. If this
XQ

inequality remains valid for all x Ξ> x19 then for such x it follows

from (15) that xw(x) ^ (1 — δ)( I 'wcZίj and hence
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w(x)([* wdty* ^ (1 - 8)/x .

But this cannot be true for all x ^ xx since the function on the left
is in Z/̂ O, oo) and the function on the right is not.

{ Γx \

x > x,: \ wdt <Ξ G(x)\. On (xl9 x2) we have
w(x) ^ (1 - δ)(\Xwdt) jx > Γwdt/x and also w(x) ^ (1 - 3)G2(x)/x.

\Jo / / Jo
Hence on (xίy x2),

Γ/Γ* \2 / Ί ' /Γx \Γ Cx Ί

( wdt) x\ = ( wdt/x)\ 2w(x) - \ wdt/x

^ ^(x) 1 wdt/x
J ί C O

^ [G\x)lx\ .
Then f Γ2 wdt) x2 - G2(x2)/x2 ̂  f P wdt)/x1 - G^xJ/x, > 0, contra-

dieting the choice of x2. Hence we must have \ wdt ^ G(x) for x ^ x0

and the left hand inequality in (14) follows. The right hand ine-
quality is clear for the decreasing solution and so the proof is
complete.

5* Quantitative comparison theorems* We shall now combine
the results of §§ 2, 3 and 4 to obtain some comparison theorems.
Thus let rpι and p2 be locally integrable functions on [0, oo) with
Ί>2 ^ Pi such that (1) and (2) are nonoscillatory. We wish to obtain
a lower bound for the quotient z/y of positive nonprincipal solutions
of (1) and (2) and an upper bound for the quotient zJyQ of the
positive principal solutions of (1) and (2).

THEOREM 5.1. Let G and Hbe increasing differentiable functions
such that xG\x)/G\x) — 0, H'eaH -* oo for all a > 0 and H'/H is
bounded. Suppose that

(a ) lim s u p ^ x j " | px \ dt/G\x) < 1

( b ) lim inf ,_ Γ (p2 - p,)112 dt/H(x) > 1 .
Jo

// H(x) ^ KG(x) for some positive K, then

z(x)/y(x) ^ eβH[x); zo(x)/yo(x) S e~^H{x)

for some β > 0 and all x greater than some x0.

Proof. For the first assertion, set u = z/y. Then u satisfies
u" + 2{y'ly)u' — (p2 — p^)u = 0. For all sufficiently large x it follows
from Theorem 4.1 that Γ y'/y dt ^ G{x). Hence

Jo
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* (ft - Pί)
lί2dtJ + ( j " y'/y dtJY - j " j/'/y dί

1/2 - G(x) ^

for some β > 0 and all sufficiently large cc. Thus the assertion is a
consequence of Theorem 2.2. For the second assertion set u0 = zQ/yQ.
Then u'ό + 2(y'0/y0)u'0 - (p2 - pλ)u0 = 0 and [* yΌ/yQdt ^ - G ( x ) for all

Jo

sufficiently large as. Hence

(ft - Pi)1/2^) + (j y /% dί j J + J i/ί/ί/o dt ^ βH(x)

for some /3 > 0 and all sufficiently large x and the second assertion
follows from Theorem 3.2.

A variant of the above concerned with exponential growth is
the following.

THEOREM 5.2. Let G and H be as in Theorem 5.1 and suppose
(a) and (b) are satisfied. If H\x) ^ Kx(x + G(x)) for some positive
K, then

z(x)/y{x) t: eβx; zo(x)/yo(x) ̂  e^*

for some β > 0 and all sufficiently large x.

Proof. (Jo (p2 - ft)1/2dί j + (JQ y'ly dtj ^ H\x) + G2(x) ^ [̂ a; +
G(x)f for some /S > 0 and all sufficiently large x. Thus the first
assertion is a consequence of Theorem 2.2 as in the previous theorem.
The second assertion follows similarly from Theorem 3.2.

Choosing G and H to be multiples of x in either theorem yields
a slightly more general result than that mentioned in the intro-
duction.

COROLLARY 5.3. If \ | pΣ\ dt <: Mx for some M, and if
Jo

lim infΓ (p2 - p,)1'2 dt/x > 0 ,
£->0O Jo

then

z(x)/y(x) ^ eβx; zo(x)/yo(x) ̂  β""

for some β > 0 cwd αii x greater than some xQ.

If Pi and p2 are nonnegative, then an application of Schwarz's
lemma shows that (b) in Theorem 5.1, is in the presence of the other
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hypotheses of that theorem, equivalent to the in general more
restrictive

( b') lim inf,_ Γ V~p2 - Vp, dt/H(x) > 0 .
Jo

The same is then true of Corollary 5.3. From the form of Theorems
2.2 and 3.2 when r = 0 one might expect this condition to be more
closely related than (b) to the behavior of z/y. Our final theorem
may also be viewed in this way, for it implies that z/y can fail to
increase exponentially even when p2 — px is bounded away from 0
provided that λ/p2 — V/p1 approaches 0.

THEOREM 5.5. Suppose that px and p2 are nonnegative locally
integrable functions such that \p2 — pt\ ^ M for some M and
l/p2 — λ/pλ —* 0 as x —•> oo. Then for any positive nonprincipal
solutions y and z of (1) and (2),

(log z/y)' > 0 as x > co .

It then follows immediately that for any positive α',

log (z(x)/y(x)) — ax > - co

as x—* oo and so, exponentiating, [z(x)/y(x)]e~ax —-> 0 as x-^^o.

Proof. We may assume p2 ^ plf for the hypotheses are still
valid for the functions min (p19 p2) and max (pl9 p2) and the quotient
of nonprincipal solutions of the equations with px and p2 replaced
by these functions is greater than z/y. We shall for the present
assume further that pλ{x) ^ 1 for all x.

It suffices to extablish the theorem for the solutions y and z of
(1) and (2) with τ/(0) = y'(0) = z(0) = s'(0) = 1. Set u -= z'/z and
v — y'/y so that u' = p2 — u2 and vf = pί — v2. Note that p ^ l implies
v ^ 1, for if v(x0) < 1 then v(Xj) < 1, v'(x^) < 0 for some xι e (0, x0),
and this is impossible. Similarly u ^ 1. Finally, set w — u — v.
Then

(16) w' = p2 - pί - (u + v)w; w(0) = 0 .

Let ε > 0 be given. Choose c < 1 so that K = c2/(l — c2) satisfies

MK < ε/3. Choose x0 so that Vp2(x) ~ Vpγ(x) < cε/3 for x ^ xQ.

Repeating the argument in the proof of Theorem 2.1 for the equa-

uds ^ c \ Vp2 ds

for all .a; ^ t not in a set Ee,t such that m(EC)t) ^ c2/u(t)(l - c2) ^ K.
Hence for any x ^ t + K there is some X e [x — K, x] such that

S x ex rx r»-x

ucίs ^ I uώs ^ c V p2 ds ^ c \ V p2 ds.
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S x Γx-K

vds ^ c I vVi ds whenever x — K ^t t .
For all x ^ x0 + K we have from (16) that

S x / Γx \

exp — \ u Λ- vds)(p2(t) — pit))dt
0 \ Jί /

S x0 Cx-K Γx

+ + = It + J2 + 7,
0 JXQ JX-K

Since ^ + v ^ 2,

— 1 u + vds) <L Mx0exp( —2(a - x0)) < ε/3

for all x greater than some xx.

By the choice of x0 we have next
^ (cε/3) fX " exp f- Γ

= (ce/3)(l/c) exp (~

+ VpΊ ds)(v/p2(t) dt

ε/3 .

Finally, by the choice of K, J3 ^ KM < ε/3. Hence w(x) < ε for
all x ^ a?!. Also p2 ^ ^ and ^(0) = v(0) implies w = u — v^ 0. Since
ε was arbitrary we have that w = u — v = (log z/y)' —> 0 as # —̂  ^
and the theorem is proved when pt ^ 1.

Now let pι and p2 be as in the statement of the theorem and
consider the functions yL and zλ such that ^(0) = y[{0) = ̂ ^0) = '̂(0) = 1
and

yϊ - (Pi + i)y = o

«ί' - (ft + i)s = o .

Note that (τ/p2 + 1 - l/ft + l)(τ/p2 + 1 + Vpx + 1) = p2 - pt =
T/^Xi/^ + i/ft) so that ί i/p2 + 1 - l/pi + 11 ^ | T / ^ - l/^Ί .

Hence the special case already proved can be applied to zjy^
Let y and z be the solutions of (1) and (2) such that

tf(0) - »'(0) - s(O) = s'(0) - 1 .

Then w = J/'/J/ and w1 = y'Jyi satisfy w' — ί>L — w2, wj = px + 1 — w\,
and w(0) = w^O). Also (w + 1)' = pί - (w + I)2 + 1 + 2w ^ pι + 1 -
(w + I)2. Hence y'/» ^ y'Jy, ^ y'/y + 1.

Set s = z/y and sx = z,/yi. Then

β" + 2(y'/y)s' - (p, - P l )β = 0

ί/y1)βί - (3>« - 3>i)βi = 0
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and by the proof so far we know (log s j ' — s[/sι —> 0 as x —> oo. Now
r = s/s1 is an increasing solution of

r" + 2[y'/y + βί/sjr' - 2(y[/y1 - y'/yXs'JsJr = 0

since r(0) = 1, r'(0) = 0 and the coefficient of r is nonnegative. Also
r'/r — s'/s — sί/si Thus to establish that (log 2/1/)' = s'/s —> 0 it re-
mains, finally, only to verify that if / and g are nonnegative functions
such that g —> 0 then every increasing solution of y" + fy' — gy — 0
satisfies y'/y —* 0. To see this note that w — y'/y satisfies w' + w2 =
g — fw S g- It is well-known (and easy to see) that if g —> 0 then
every solution of v! + u2 — g on [0, 00) does also. If u is the solution
with u(Q) — w(0), then 0 ^ w ^ u so that y'/y = tt; does approach 0
and the proof of Theorem 5.5 is complete.
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