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BOUNDS AND QUANTITATIVE COMPARISON
THEOREMS FOR NONOSCILLATORY SECOND
ORDER DIFFERENTIAL EQUATIONS

TaoMmAs T. READ

A lower bound is given for the positive increasing solution
of y'”+2ry’ —q>y =0 on the interval [0, o) and an upper
bound is given for the positive decreasing solution of this
equation. These are used to estimate z/y and z,/y, where ¥y
and z (respectively %, and 2,) are positive nonprincipal
(respectively principal) solutions of nonoscillatory equations
y"” —py=0 and 2/’ — p,z=0 for which p, = p;. A special
case of one result is that if p, is bounded and if

lim inf (Sx (ps — Y2 dt/w) >0
0

as £ — oo then z/y increases exponentially and z,/y, decreases
exponentially.

1. Introduction. It is our objective to estimate the relative
sizes of the solutions of two nonoscillatory differential equations

(1) Yy —py=0
and
(2) 2" — P2z =0

on the interval [0, <) when p, = p,.

It is well-known that (1) has a unique, principal, solution ¥,
with the property that for any linearly independent, nonprincipal,
solution ¢, lim yx)/y(x) =0 as — . If p, is nonnegative, then
9, may be taken to be positive and decreasing and there is a non-
principal solution which is positive and increasing [3, p. 355].

Our first task will be to obtain a lower bound for such a non-
principal solution and an upper bound for the principal solution.
We shall actually do this in §§2 and 3 for the more general equation

(3) Y' +2ry — ¢y =0.

Here r and g are required only to be real-valued and locally integrable.
Note, however, from the form of (3) that we may also assume that
¢ is nonnegative. The estimates are in terms of Sg rdt, qudt, and
an increasing function F. In the special case when ofr =0 ’ghey take
the form that if lim inf(S: th/F(x)) >1 as — o for suitable F,
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then there is an increasing solution % such that y(x) = y(x,)e™® for
x = x, and a positive decreasing solution ¥, such that y,(z) < y,(x,)e 7
for * =z x,. The case F(x) = cx of this result was discussed in [4].

For sufficiently smooth 7 and ¢ satisfying appropriate conditions,
asymptotic formulae have been given for the solutions of (3). (See,
for instance, [1, p. 120].) Our estimates, however, require no assump-
tions on r and ¢ beyond local integrability and are thus available
when the asymptotic formulae are not. One such application, to
the deficiency index theory of powers of formally symmetric non-
oscillatory expressions, is given in [5] where it is shown for M(y) =

—(py') + qy that if ¢ is nonnegative and if Sz(q/p)”“’dt = Klog p(x)

for some K > [n(n — 1)]"* and all z in a set of oinﬁnite measure, then
M¢ is limit-point for 7 =1, 2, ---, n.

Here we apply these estimates in a different direction. It is
essentially a form of Sturm’s comparison theorem that each pair of
eventually positive nonprincipal solutions y and z of (1) and (2)
respectively satisfies z’/z = ¥'/y on some interval [a, <) and that
the eventually positive principal solutions y, and z, satisfy zi/z, <
Y5/Y, on [a, =) [3, p. 359]. Hence for all sufficiently large =, z/y is
a positive increasing function and 2z,/¥, is a positive decreasing
function.

In §5 we shall use our earlier estimates to give a lower bound
for z/y and an upper bound for z,/¥, in terms of p, — p,. A special
case of our result is that if p, is bounded and if

lim inf <S:(p2 - pl)“zdt/x> >0

as x — co, then z/y increases exponentially and z,/y, decreases ex-
ponentially.

In the general result the boundedness of », is replaced by a
growth condition on r p,dt. We show that such a condition cannot
be omitted by provings,r for nonnegative p, and p, that if p, — p, is
bounded and py* — pi* approaches 0, then z/y increases more slowly
than any exponential. In particular, this conclusion holds for certain
functions p, and p, for which p, — p, is bounded away from 0.

In §4 we shall derive an upper bound for the nonprincipal
solution of (1) and a lower bound for the principal solution. These

depend on z] P, | dt rather than r | o, |"*dt as one might hope from
[}

the other boounds. We give an example to show that this cannot be
avoided.

2. A lower bound for the nonprincipal solution. We begin
by deriving a lower bound for an increasing solution of (3) valid on
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the complement of a set of finite Lebesgue measure.

THEOREM 2.1. Let r and q be real-valued locally integrable
Sunctions on [0, ) with g nonnegative. Let y be any solution of
(8) with y(0) >0 and %'(0) > 0. Then for each ¢, 0 < ¢ <1, there
is a subset E, of [0, o) such that m(E,) < y(0)c*/y'(0)(1 — ¢*) and for
all © not tn H,,

y(x) = y(0) exp c<[cz<5: rdt)2 + (S:th)z:'m —c S:'rdt> .

Proof. Let y be as in the statement of the theorem. Set
f(x) =exp2 Sx rdt and w = fy'/y. Note that
0

(4) log y(@) = log y(0) + | w/f dt .

w is positive since y is increasing and satisfies the Riccati equation
w' = ¢*f — w’/f or, equivalently,

(5) w'w + w/f = ¢flw.

From Schwarz’s inequality and (5),

. <S thy = § wlf dit S ¢*f |w dt
(6) < SO w/f dt UO w/f dt + log (w(x)/w(0)f(x)) + 2 So ” dt] .

We shall complete the proof by showing that log (w(x)/w(0)f (x))
is small compared to Sm w/f dt off a set of finite measure. Fix ¢ <1
and set b= (1 — 02)/02.o Let E, denote the set of all x for which
log (w(x)/w(0)f (x)) = b S w/f dt, that is for which

W) = [w@)f @) exp (= | wif dt) = w().
Since W is positive and is the derivative of (—1/b) exp <— b S: w/f dt>,

16 = S” Wda = SE w(0)dz = w(0)ym(E,) .

Recalling the definitions of b and w,
m(E,) < y(0)e’/y'(0)(1 — ¢°) .

For x ¢ E, we have from (6) that
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(j th)z < S w/f dt [(1/02) S w/f dt + 2 ﬂ rdt] .

The conclusion of Theorem 2.1 now follows by solving this inequality
for g w/f dt and substituting the result into (4).

IE should be noted that the exceptional sets E, can be unbounded
and of positive measure for each ¢ > 0. An example with » = 0 for
which this occurs is given in [4].

From the basic estimate we can now quickly obtain a lower bound
for nonprincipal solutions of (3).

THEOREM 2.2. Let r and q be as tn Theorem 2.1. Let F be an
inereasing differentiable function on [0, ) such that F' < KF for
some positive constant K. If

(7)  liminf ([(S th)z + <S:rdtﬂm - SO rdt) /F(x) >1

then for any increasing solution y of (3),
y(x) = y(0)e™™
for all x greater than some x,.
Proof. Choose ¢ >0 and «, so that the expression in (7) is greater
than 1 + § for # = x,. Choose ¢ <1 so that ¢l +0d)=1+ 0" > 1.

Let E, be as in Theorem 2.1. Then for x greater than x, and not
in E,

log y(x) = log y(0) + ¢ ([(g: th>2 + (S: rdt)jllz —c S: rdt)

2 g0+ o(([ ) ([ v ] v

= logy(0) + (1 + ) F () .
Now choose ¢ < ¢'/K(1 + 4') and , so that m(E, N[, c)) <e&. Then
for any « = », = max (x,, z,) there exists X e[z — ¢, 2] such that
log y(x) = log y(X) = log y(0) + (1 + ¢")F(X)
= log y(0) + F(x) + (1 + 0" WF(X) — F(x)) + ¢'F(x)
= log y(0) + F(x) .

The last inequality follows from the Mean Value Theorem and the
choice of 6. This completes the proof.

In particular we have the following criterion for exponential
growth.
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COROLLARY 2.3. Let r and q be as in Theorem 2.1. If for
some a >0

smn ([ ) + ([ rt] ] [ >

then for any increasing solution y of (3),
y(x) = y(0)e**

for all x greater than some x,.

It is clear from the constant coefficient case that the exponent
is the best possible.

3. An upper bound for the principal solution. We now take
up the problem of finding an upper bound for the principal solution
of (8). Our method will be slightly different than in the previous
section; instead of deriving a general inequality like Theorem 2.1
we shall proceed directly to an analog of Theorem 2.2. However
the proof, in part, is similar to the proof of Theorem 2.1. It is
convenient to begin with a lemma.

LemMA 3.1. If w and v are locally integrable functions on [0, o)
with v nonnegative, u positive and u *€ L0, ) for all 0 < a <1/2,
and if

u(@) = Kexp 5 wodt
0

for all sufficiently large x and some positive K, then v° e L,(0, =)
Jor all 0 < B =1,

Proof. For any nonnegative u and v and any positive 7,

UV exp (—7 g: uvdt) = (—=1/7) [exp (—7 g: uvdtﬂ' e L,(0, ).

We have here that eventually v§K'%wexp(-—§xuvdt). Hence
0
ve L0, ). Let E be a set of finite measure such that for all 2

in the complement, D, of E, the hypothesis of the lemma holds and
also wv exp(—l/zs uvdt) < K**. Thus on D,
0

u(x) = K exp Sz wvdt = u*(x)v*(x) .

Then for any 0 < 8 <1, w*2= v on D and so S Vedt < oo,
D
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Now write E as the disjoint union EF = AU B where A4 =

{xe E:v(x) £1}. Clearly 8 v*dt < o. For any B <1 we have also

Vidt < g vdt < oo, Coﬂécting the results on A4, Band D, the lemma
isB proved. B

THEOREM 3.2. Let r and q be as in Theorem 2.1. Let F be an
wnereasing differentiable function such that F'e*™ — o as x— o for
each positive a. If

(8)  liminf <[<§:th)2 + (S rdtﬂ‘” + g rdt) /F(x) >1

then for the positive decreasing solution Y, of (3),
Yo(%) = Y(0)e™"

for all x greater than some x,.

Proof. We shall for the first part of the proof assume in addi-
tion that ¢ ¢ L0, «). Set f(x) = exp 2 S rdt and w= — Fy!/y,. Then
w is positive and w' = w*/f — ¢®f. Also

log y(x) = log %,(0) — SO w/f dt

so that we must show | w/f dt = F(x) for x = x,.
0z
We assert first that S w/f dt = F(x) for arbitrarily large values

of z. A calculation using Schwarz’s lemma as in the proof of
Theorem 2.1 yields

([ade) = [Jwir ae| | wir ae -2 rat

(9)
+ log (F(@w(0)/w@) ] -

Choose 6 >0 and z, so that the expression in (8) is greater than

1+ 0 for all = x,. Suppose that for some z, =z, E w/f dt < F(x)
0

for all 2 = x,. Then for 2 = x,,

(10) (S th)z < F(x)[F(a:) _2 S:rdt + log (f(x)w(O)/w(x)):] .

In order to complete the proof of the assertion we need the
fact that for any real numbers A, B, and F' with F nonnegative, if
(A* + B)'"* + B= (1 + 0)F, then A* + 2BF — F* = 6F*. This is clear
if 2B= (1 + 0)F. Otherwise, let B=¢F with 26 <1+ 0. Then
A*+ B*= (1 + 0 — €)*F"® so that
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A+ 2BF = (1 + 20 + & — 206)F®
=140+ 51+ 05— 2)]F*
> (1 + 0)F*.

For this inequality and (8) we have that
(g”thf + 2F(x) S rdt — Fi(x) = 6F*()
0 0

for all x = «,. Thus from (10) we obtain that for x = x,,
log (f(x)w(0)/w(x)) = 6F(x) or
(11) S@)/w(x) = 7 /w(0) .

To see that (11) cannot hold for all x = x,, set v = f/w. Then
% is positive and

(12) ulw — 2r + u™t = ugt .
It follows from (8) that (SI th)z = —~2F(oc)gac rdt for all x = x,. By
integrating (12) from 0 to « and using this inequality we obtain
log (u(@)/u(0)) + (| th)z/F(x) + S utdt = S ugds .
0 0 0

For all x greater than some x, F'(x)e’”™ = 3w(0) and hence
u™(x) £ w(0)e™ '™ < F'(x)/3. Thus by the Schwarz inequality,

x

(S ait) = S ™t 5 ug'dt < — [F(z) - F(xa)]g; ug'dt

A

1 Fw) quqzdt :
3 0
Hence, since ¢ ¢ L,(0, ),

S ugdt = 2 (S th)2 /F(x)

for all sufficiently large «.
For such u,

z -1 1 z
log (u(@/u(0) + [ udt = = |

uqdt .

Moreover, uw~=€ L0, ) for each & > 0, since for all sufficiently large
2 we have from (11) and the assumption on F' that
u(x) £ Ce @F™ < F'(x)e™@BF@ ¢ [,(0, ) .

Hence for all sufficiently large x and some positive K,
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1 “ 2
u(x) = KexpE uqdt .
0

Now Lemma 3.1 with 8 = 1/2 applied to w and v = ¢?/2 implies that
qe L0, ). But this contradicts the extra assumption made at the

beginning of the proof. Hence wa/ f dt = F(x) for arbitrarily large

values of z as asserted.
Now choose x, so that x = x, implies F"(x) = 2w(0)e ***. Suppose

that for some X = =z, ng/f dt < F(X). Let
X' = inf {x > X: S wlf dt = F(x)} .
0

On the interval (X, X’) the inequality (11) is valid, that is, w(z)/f(x) <
1/2 F'(xz). Hence

g:" w/f dt = g:r w/f dt + Sjw/f dt < F(X)
+ % [ Frae < Fx).

This contradiction completes the proof of the theorem when q ¢ L,(0, o).
Now suppose ¢q € L,(0, ). Then (8) implies that

lim inf 2 S rdt/Fx) > 1.

Z—00 0
Let 2z be the positive decreasing solution of 2" + 27z’ = 0 such that
2(0) = 1. Then

z(x) =k r exp<—2 St r(u)du) dt .
For all sufficiently large ¢,
k exp <—2 gt 'r(u)du> < kexp(—(1 + )F () £ F'(t)e ™
0

so that z(z) £ | F'e"dt = ¢ ", But the principal solution y, of
(3) satisfies yo(x)x§ ¥(0)2(z) [3, p. 359] so that the conclusion is true
in this case also and the proof is complete.

The hypothesis F'e*” — o for all a > 0 is satisfied, for example,
for every positive power of x. For the function F(x) = log (1 + ),
corresponding to solutions of the form x77, it is satisfied only for
a > 1. Examples of the form y" — k(1 + x)™>y = 0 for small positive
k show that in fact the result is no longer true for this choice of
F. However a slight modification of the proof of Theorem 3.2 does
yield the following result for q ¢ L,(0, o).



BOUNDS FOR NONOSCILLATORY SECOND ORDER EQUATION 239

COROLLARY 8.3. Let r and q be as in Theorem 2.1 with q ¢
L0, ). Let F be an increasing differentiable function such that
Fle®f— oo as x— oo for all a greater than some &, If (8) holds
then

Yo(®) = Yo(0)e™ 7

for all x greater than some x, and some B > 0.

As in the previous section we state the condition for exponential
decay as a corollary of Theorem 3.2.

COROLLARY 3.4. Let r and q be as in Theorem 2.1. If for
some a > 0,

Iiﬂinf (KS: qolt)2 + (g: ?dt)z]m + S: rdt)/x >a

then for the positive decreasing solution y, of (3),
Yo(®) = yo(0)e™**

then all x greater than some x,.

Again it is clear from the constant coefficient case that the
exponent is the best possible.

4. Bounds for ¥y’ —py =0. If qeL(0, ) then certainly no
upper bound for the increasing solution of %" — ¢y = 0 can be made

from exp Sz gdt. The following example shows that it does not help
0

to require q ¢ L,(0, ).

Let {x.}7-. be an increasing sequence with x, = 0 chosen so that
if ¢(x)=0 on each I,=[a,,, 2,,+,) and g(x)=38n on each J,= [, T30+2),
then the solution w of w’ = ¢* — w* with w(x,) = e satisfies w(x,,) = e
and w(x,,.,) = 1 for all n. Obviously #,,., — «,, does not depend on
n. Solving the equations w’ = —w? and w’ = 9n® — w? it is found

that wdt =1 for each » and that for large n, %,,., — %54, 1S
approygi’ﬁlately (e — 1)/9%* so that 5 qdt ~ (¢ — 1)/3n. Hence the
solution w¥(x) = exp Sx wdt of y"” — qgi} = ( increases exponentially
while g ¢ L,(0, o) but S”th/x—»o.

To overcome this aiﬂiculty we replace S: qdt by (m 5: qzdt>llz.

There is no advantage in restricting ourselves to nonnegative coef-
ficients, so we state our result in terms of

(13) y' —py=0.
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THEOREM 4.1. Let p be a locally integrable function onm [0, =),
not identically 0, such that (13) is monoscillatory. Let G be an
nereasing differentiable function such that xG'(x)/G¥x)—0 as x— .

If
lim sup x r |p|dt/GH(x) < 1,

then every eventually positive solution y of (13) satisfies
(14) Y(@)e % < y(@) = Y(w,)e™”

for all x greater than some x,.

Proof. By applying the comparison theorem discussed in the
introduction to p, = p, p, = | p| it is clear that it suffices to establish
(14) for solutions of ¥y’ — |p|ly = 0.

Let y be a positive increasing solution of this equation, and let
w=y'ly. Then w' + w* = |p|. Hence, integrating from 0 to x and
using the positivity of w, rwzdt < w(0) + S”|p| dt. If peL(0, =)

0 z 0
then it is well-known that x7**\ wdt—0 as x— « [2, Th. 223,
x 0
p. 164]; hence g wdt/G(x) — 0 and the right hand inequality for (14)
0
follows. If p¢ L,(0, «), then an application of Schwarz’s inequality
gives, for sufficiently large =z,

(S:owdt>2 < x[w(()) + S ] dt] < ¢

for all x = z, and hence the right hand side of (14) follows again.
The left hand side is of course trivial in either case.

Now let y, be a positive decreasing solution of y” — |p|y =0
and let w = —y!/y,. Then w is positive and —w' + w? = |p]|. If

w € L,(0, ) then certainly for some z, Sw wdt =< G(x) for all x = =,

and the left hand side in (14) follows.
If we L(0, ) then for sufficiently large =z, and some ¢ < 1,

1 - o) g wdt = 1, 20G'(x) < (1 — 8)Gxx) for « = , and

(15) (g wdt)z/oc < § |p|dt + w(x) < 0G*@)x + w()

0 0
for © = x,. Suppose that for some z, = z,, Szl wdt > G(x,). If this
inequality remains valid for all ¢ = z,, then for such z it follows

from (15) that zw() = (1 — 5)(rwdt)2 and hence
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w(x)(S: wolt>—2 =>(1—0)x .

But this cannot be true for all x = «, since the function on the left
is in L0, ) and the function on the right is not.

Thus let x, = inf {x > x,: Sx wdt < G(x)}. On (z, x,) we have

w(z) = (1 — 5)( gzwdty/x > g wdte and also w(@) = (1 — 8)G(x)/a.
Hence on (x,, xz)(,)

(7 )] = (F wawtr—  wie]
= w(x) S: wdt/x
=1~ 5)069(90)/902 z [G(@)/x] .

Then (SIZ wdt)z/ x, — G¥(x,)/x, = (Sml wdt)z/ x, — G¥(x,)/x, > 0, contra-
dicting thweO choice of z,. Hence we must have Sw wdt < G(x) for x = =,
and the left hand inequality in (14) follows. “The right hand ine-
quality is clear for the decreasing solution and so the proof is
complete.

5. Quantitative comparison theorems. We shall now combine
the results of §§2,3 and 4 to obtain some comparison theorems.
Thus let p, and p, be locally integrable functions on [0, ) with
», = p, such that (1) and (2) are nonoscillatory. We wish to obtain
a lower bound for the quotient z/y of positive nonprincipal solutions
of (1) and (2) and an upper bound for the quotient z,/y, of the

positive principal solutions of (1) and (2).

THEOREM 5.1. Let G and H be increasing differentiable functions
such that xG'(x)/G¥x)— 0, H'e*" —  for all a >0 and H'|H is
bounded. Suppose that

(a) limsup,..s | .| dt/G@) <1
(b) lim infMS (D, — p)'= dt/H(z) > 1 .
If H(x) = KG(x) for some positive K, then

2@)/y(e) = 0 2a) ya) = e

for some B8 >0 and all x greater than some x,.

Proof. For the first assertion, set # = z/y. Then u satisfies
w4+ 20y [y’ — (p, — p)u = 0. For all sufficiently large x it follows

from Theorem 4.1 that S Y[y dt < G(x). Hence
0



242 THOMAS T. READ

[(So (p. — Y dt) + (So vy dtﬂuz — So v'ly dt
>[H¥z) + G(x)]'® — G(x) = BH(x)

for some B > 0 and all sufficiently large x. Thus the assertion is a

consequence of Theorem 2.2. For the second assertion set u, = 2,/%,.

Then uf' + 2(u/yui — (p, — pJs = 0 and | yijy,dt = ~G(a) for all
0

sufficiently large x. Hence

[(S (p, — pJ“Zdt)z + (SO il dtﬂm + So e dt = BH(z)

for some B > 0 and all sufficiently large = and the second assertion
follows from Theorem 3.2.

A variant of the above concerned with exponential growth is
the following.

THEOREM 5.2. Let G and H be as in Theorem 5.1 and suppose
(a) and (b) are satisfied. If H*x) = Kx(x + G(x)) for some positive
K, then

2(x)/y(x) = €75 2o(x)/Yolx) < e

for some B > 0 and all sufficiently large x.

Proof. (|/ (0. = pyrat) + (|'w/wat) = H@) + G@) = 60 +
G(x)P for someoz B8 >0 and all suof'ﬁciently large x. Thus the first
assertion is a consequence of Theorem 2.2 as in the previous theorem.
The second assertion follows similarly from Theorem 3.2.

Choosing G and H to be multiples of x in either theorem yields
a slightly more general result than that mentioned in the intro-
duection.

COROLLARY 5.3. If g || dt < Ma for some M, and if

lim infgz (p, — p)*dt/x >0,
0

o0

then
2(x)/y(x) = e*; zo(@)/yo(@) = 7"

for some B > 0 and all x greater than some x,.

If p, and p, are nonnegative, then an application of Schwarz’s
lemma shows that (b) in Theorem 5.1, is in the presence of the other
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hypotheses of that theorem, equivalent to the in general more
restrictive
(v) liminf, . g’”v P — VD dt/H@) > 0 .
0

The same is then true of Corollary 5.3. From the form of Theorems
2.2 and 3.2 when r = 0 one might expect this condition to be more
closely related than (b) to the behavior of z/y. Our final theorem
may also be viewed in this way, for it implies that z/y can fail to
increase exponentially even when p, — p, is bounded away from 0
provided that 1"p, — 1/p, approaches 0.

THEOREM 5.5. Suppose that p, and p, are nonnegative locally
wntegrable functions such that |p, — p,| <M for some M and
Vo, — VD0, —0 as x—co. Then for any positive nonprincipal
solutions y and z of (1) and (2),

(logz/y) — 0 as x—> oo .
It then follows immediately that for any positive «,
log (2(x)/y(x)) — ax —— — o

as ¢ — oo and so, exponentiating, [2(x)/y(x)]le *® — 0 as x — oo,

Proof. We may assume p, = p,, for the hypotheses are still
valid for the functions min (p, p,) and max (p, »,) and the quotient
of nonprincipal solutions of the equations with p, and p, replaced
by these functions is greater than z/y. We shall for the present

assume further that p(x) = 1 for all =.

It suffices to extablish the theorem for the solutions y and z of
(1) and (2) with #%(0) = %'(0) = 2(0) = 2’(0) = 1. Set w ==2'[z and
v=1'[/y so that u'= p,—u* and v'=p,—1*. Note that p,=1 implies
v =1, for if w(x,) <1 then w(z) <1, 2'(x) < 0 for some z, (0, x,),
and this is impossible. Similarly » = 1. Finally, set w =u — v.
Then

(16) w =, — p, — (u+ v)w;, w0)=0.

Let ¢ > 0 be given. Choose ¢ <1 so that K = ¢*/(1 — ¢’) satisfies
MK < ¢/3. Choose x, so that v'pfx) — V'p(x) < ce/3 for z = x,.
Repeating the argument in the proof of Theorem 2.1 for the equa-
tion 4’ = p, — u? on the interval [¢, =) yields that Sx uds = ¢ r V'p, ds
for all x = ¢ not in a set F,, such that m(F,,) = éz/u(t)(l —tcz) =K.
Hence for any = =t + K there is some X e[z — K, «] such that

Y uds = SK uds = ¢ SXI/E ds>c¢ ‘x_K V' p, ds.
t

t t vt
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Similarly Sx vds = ¢ Sx_KV p, ds whenever x — K >t.
13 t
For all # = x, + K we have from (16) that

w(x) = S: exp (—Sj U+ vds)(pz(t) — p,(t))dt

a0 z—K z
SR AR SRR

Since u + v = 2,

x

I, < Mz, exp<—S U + vds) < Mz, exp (—2(x — x,)) < €/3
0

for all « greater than some x,.
By the choice of x, we have next

r— K x—K — —_ — s
L, < (¢s/3) g " exp <—c§ Vs + VD, ds><1/p2(t) + Vpl(t)) dt
£ t
z—K — — z—K
= (ce/3)(L/e) exp <—c§ Vo, + VD ds>§ <¢f3.
t T
Finally, by the choice of K, I, < KM < ¢/3. Hence w(x) < ¢ for

all x = x,. Also p, = p, and «(0) = v(0) implies w = w — v = 0. Since
¢ was arbitrary we have that w =4 — v = (logz2/y)’ —0 as t— o
and the theorem is proved when p, = 1.

Now let p, and p, be as in the statement of the theorem and
consider the functions ¥, and z, such that ¥,(0) = ¥1(0) =2,(0) = z/(0) =1
and

Y —(m+y=0
2 — (P, +1z=0.

Note that (Vp, + 1 —Vp, + DV, + 1+ Vp, +1) = p, — p, =
(V. — V)V +1Vp) so that [V, + 1 — Vo + 1| < [V, — V.
Hence the special case already proved can be applied to z,/y..

Let y and z be the solutions of (1) and (2) such that

¥(0) = ¥'(0) = 2(0) = 2'(0) = 1.

Then w = ¥'/y and w, = y/y, satisfy w' = p, — w*, w, = p, + 1 — w},
and w(0) = wy(0). Also (w+1) =9, —(w+ 1P +1+2w=p +1—
(w + 1)*. Hence ¥'/y = yi/y. = ¥'/y + 1.

Set s = z/y and s, = z,/y,. Then

8" + 2('[y)s’ — (P, — p)s =0
s+ 2(?/:/’!/1)3{ — (0. — p)s, =0
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and by the proof so far we know (log s,) = sj/s,— 0 as x— «. Now
r = g/s, is an increasing solution of

™+ 20y’ ly + si/sidr — 2(yi/y, — ¥ [y)si/s)r = 0

since 7(0) = 1, #'(0) = 0 and the coefficient of » is nonnegative. Also
r'|/r = §'/s — s}/s,. Thus to establish that (logz/y) = s'/s—0 it re-
mains, finally, only to verify that if f and g are nonnegative functions
such that g-— 0 then every increasing solution of %" + fy' — gy = 0
satisfies %'/y — 0. To see this note that w = y'/y satisfies w' + w* =
g—fw=g. It is well-known (and easy to see) that if ¢ — 0 then
every solution of #’ + u® = g on [0, ) does also. If u is the solution
with w(0) = w(0), then 0 £ w < w so that ¥'/y = w does approach 0
and the proof of Theorem 5.5 is complete.
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