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KOROVKIN APPROXIMATIONS IN L.-SPACES

W. KlTTO AND D. E. WULBERT

The main result is a characterization of finite Korovkin
sets for positive operators in lp. It follows that a finite set
containing a positive function is a Korovkin set in lp if and
only if it is a Korovkin set in c0. The methods also show:

PROPOSITION. Let X be a compact subset of Rn. Let K
be a subspace of C(X) containing the constants. If K is a
Korovkin set in C(X), then K is Korovkin set in LP(X).

Several related results are also given. For example a
question of G. G. Lorentz about the restrictions of Korovkin
set in C{X) to a subset Y £ X is answered.

Let S^ be a class of operators on a Banach space E. A subset

K Q E is an Jίf-Korovkίn set if whenever
( i ) {Li} is a bounded sequence in Jέf, and

( i i ) Lik —•> k for each & e K;

we have

(iii) LJ-+f for each / in JS7.
Let Jίf1 be the class of norm one operators on E. If E is also

a lattice, let ^ + denote the positive operators on E; and, £>?1Λ =
J ^ 1 n J S ^ + .

After Korovkin showed that {1, x, x2} is an ^+-Korovkin set in
C[0, 1], interest in this field has been in characterizing the Korovkin
subsets of the classic Banach spaces.

Papers by Berens and Lorentz [3], Franchetti [8, 9], Krasnosilskii
and Lifsic [13], Lorentz [14], Saskin [18], Scheίfold [19], and Wulbert
[22] identified the various types of Korovkin sets in C(X) spaces.
Berens and Lorentz [3] have essentially characterized the ^f1>+-
Korovkin subsets of Lγ spaces (see §3 of this article, also see [Lorentz,
14] and [Wulbert, 22]), and Dzjadyk [7] has shown that {1, sin x,
cosx} is an ^f+-Korovkin set in LP[Q, 2π]. (See also [James, 11],
and [Zaricka, 24].)

The results here are related to identifying J*f+-Korovkin subsets
of Lp-spaces. A sufficient condition is presented that encompasses the
known (and the suspected) .i^-Korovkin sets. For example each
i^+-Korovkin set in C[a, b] that contains constants is also an ^f+-
Korovkin set in Lp[a, b]. The main result given is a characterization
of finite =Sf+-Korovkin sets in lp. A consequence of this characteri-
zation is that the lp spaces have the same finite J5f+-Korovkin sets.
That is, if K is a finite subset of both lr and ls, and K contains a
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positive sequence, then K is ^+-Korovkin in lp if and only if K is
i2^+-Korovkin in l8.

We use the last two sections of the paper to give short direct
generalizations of some related Korovkin theorems. For example,
a recent result by Bernau and Lacey [5] enables the removal of the
last conditions from the characterization of Sf 1+-Korovkin subsets
of Lp-spaces with an easy argument.

G. G. Lorentz [14] proved that if X is a compact metric space,
and K is ^"^Korovkin set in C(X) containing a constant, then for
each closed subset Γ £ X, K\γ is an ^+-Korovkin set in C(Y).
Lorentz asked if the property was true for any compact Hausdorίf
space X. A counterexample is given in section two.

NOTATION. If X is a compact Hausdorff space C(X) is the space
of continuous real functions on X. For x e X, ξ(x) is the linear func-
tional on C(X) given by ξ(x)(f) = f{x). If if is a linear subspace
of C(X), we say x e cb K, the choquet boundary of K, if the only
positive linear functional on C(X) that agrees with ξ(x) on K is ζ(x)
itself. If F is a subset of a set Y, ψF is the characteristic function
of F. We use f\F to denote the restriction of a function / to the
domain F, and for a set of functions K, K\F = {k\F: ke K}. The
dual of a normed space E is written £7*.

As usual, c denotes the space of convergent sequences with the
sup norm,

c0 — {x(i) e c: lim x(i) — 0}, and

h = {x(ϊ)ecQ: Hall, = *VΣ\x{ϊ)\*< <*>}.

The norm on lp is assumed to be || \\p as given above. We will
frequently view these sequence spaces as spaces of continuous func-
tions on the one point compactification of the integers.

Let £f be a class of linear operators on a normed space E. Let
K be a subset of E. A member / 6 E is in the £f-shadow of K if
Lnf —* / for each bound sequence {Ln} S £? such that Lnk —• k for
each k 6 K. Hence K is an ,^-Korovkin set if the ^-shadow of K
is E. Since the .Sf-shadow of K is the same as the ^-shadow of
the span of K we will often assume that K is already a linear
subspace of E.

!_• iPP+-Korovkin sets in Z/p-sρaces* The main result of this
section is the characterization of finite iί^-Korovkin subsets of
ϊp-spaces. The condition is sufficient in general, and provides an
accessible class of J*f+-Korovkin sets in I^-spaces.

We also show that an i^+-Korovkin set of an ^,-space contains
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three functions. The interest in this fact comes from the surprising
observation that that {1, x) is i^1+-Korovkm in Lp[0, 1] (see §3).

Let if be a linear subspace of a normed linear lattice E. Let
/ 6 E. Two sets of vectors {uj?=1 {lt}T=ι is an e-trap for / if there
is a vector e such that:

1. -e+ V?=Ji^f^e+ ΛΓ-î i,
2. Λ?=i ̂  ~ VS=i It + 2β|| < ε, and

3. ||β||<e.

DEFINITION. K traps f if for each ε > 0, K contains an ε-trap for /.

PROPOSITION 1.1. If K traps f, then f is in the =2̂ +-shadow of K.

Proof. Let Li be a sequence of positive operators such that
Lτk—>k for all k in K and | |LJ | < B. Then for k sufficiently large,

A Lh{ut) - A uΛ < ε , and j V Lk(lt) - V h\
1 I ΐ l ί I

We also have,

-Lk(e) + V Lk(h) £ - Lk{e) + U V lt

Since,

we have,

A Lk(ut) .
ϊ l

A Lk(ut) - V 2Lk(e)\

\ L J -f\\ LJ- Lie) - A Lh{uΛ
t=i I

^ 2ε(B + 1) .

We need the following known result. [Alfsen, 1, Cor. 1.5.10].
Let X be a compact Hausdorff space. Let if be a linear subspace

of C(X) that contains the constants and separates the points of X.
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LEMMA 1.2. If f e C(X) and x e cbK then

f(x) = inf

COROLLARY 1.3. Let X and K be as above. Let μ be a positive
finite, regular Borel measure on X. If the support of μ is contained
in cb K, then K is an JSf+-Korovkin set in LP(X, μ), 1 ̂  p < °o.

Proof. From the lemma and Dini's theorem K traps every
continuous function. Since the ^+-shadow of K is closed, and the
continuous functions are dense in LP(X, μ), the corollary is proved.

COROLLARY 1.4. Let X, K, and μ be as above. If cb K = X
then K is an ^f+-Korovkin set in LP(X, μ). In particular if X is
metrizable and K is JSf+-Korovkin in C(X), then K is Jίf+-Korovkin
in LP(X, μ).

Proof. If X is metrizable the Choquet boundary of an ^ + -
Korovkin set is X [14]. (Also see §2.)

EXAMPLE 1.5. (a) (Dzjadyk) {1, sin x, cos x} is an ^+-Korovkin
set in Lp[0, 2π],

(b) {1, x, x2} is an ^+-Korovkin set in Lp[0, 1].
(c) {1, x, y, x\ y2} is an ^+-Korovkin set in LP([Q, 1] x [0, 1]).
In the above corollaries the ε-traps constructed are exact in the

sense that e = 0. Unfortunately such ε-traps cannot generally be
constructed.

PROPOSITION 1.6. If K is a finite dimensional subspace of an
infinite dimensional Lp space, then there is an f e Lp which cannot
be bounded above by any keK.

Proof. Let kl9 -—,kn be a basis for K, and let w = Σ*\kt\.
If k ^ / then there is a multiple of w which also bounds /.
If w has a finite range a.e., then the infinite dimensionality of

Lp can be used to construct an / e Lp which cannot be bounded by
w. Otherwise looking at level sets we can find a countable family
of disjoint measurable sets A(n) such that

JAin)

Let

(nw(x) on A(n)

(0 otherwise
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then / 6 Lp and cannot be bounded by w.

DEFINITION. For the remainder of this section let V be either
c0 or lp for some 1 <̂  p < oo.

With a series of lemmas we will prove a characterization theorem
for finite dimensional ^+-Korovkin sets in V.

DEFINITION. K £ V contains essentially positive members if for
every ε > 0, and every integer x there is a k e K for which

(1) k(x) ^ 1, and

(2) | | f t Λ 0 | | < e .

(for example—if K contains a strictly positive function, K contains
essentially positive members.)

THEOREM 1.7. Let K be a finite dimensional subspace of V then:
(1) K is an ^f+-Korovkin set, and
( 2 ) K contains essentially positive members

if and only if
(3) K traps every member of V.

Proposition 1.1 proved that (3) implies (1), and it is trivial that
(3) implies (2).

Let K be a linear subspace of F.
Let

T = {/ G V: K traps /} .

LEMMA 1.8. T is a closed linear space.

Proof. Clearly K traps /, implies K traps af, for all a e R.
Suppose k traps / and g.
Since it is always true that

x A y + z = (x + z) A (y + z),

it follows that

n s n s

A A (ut + Vj) = A Mi + A v3 .
i-l j=l ΐ = l j=l

Therefore if {ttjw, {Iz}Π=i and {vd}
8

j=1, {h^})^ are ε-traps for / and g, then

{Ui + Vj\ i = 1, -, tι, i = 1, , s}

{̂  + fe,-:i = 1, •••, m, ••-,*}

is a 2ε-trap for f + g.
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It is also easy to see that T is closed.

LEMMA 1.9. Let K be an J?f+-Korovkin subspace of V. If pe V*
is nonnegative and p(k) = (i) for some integer i and all k in K
then p = ξ(i).

Proof. Suppose p is as above. Let

3 = i >

Then P carries k onto k for all ke K. Hence P is the identity
and p = ξ(i).

In particular K separates the integers.

LEMMA 1.10. Let K be a subspace of V for which cbK — {1, 2,

3, •••}. For each integer i there is a keK for which k(i) < k(j)

for all j Φ i, and k(i) < 0.

Proof. Let K' be the span of K and 1 in (c). From Lemma
1.2 there is an a e R and a k in K such that

(1) k(j) + a :> 0 for j Φ i

(2) k(i) + a< - 1 .

Since lim^oo k(j) = 0, a ^ 0. Hence this k has the desired properties,

LEMMA 1.11. Le K be a finite dimensional <2f+-Korovkin set
in V. Let w(i) be a strictly positive sequence such that wk 6 (c0) for
all k in K. Then each integer i is in cb{wK).

Proof. Let p be a nonnegative sequence in l19 such that p(wk) =
w(i)k(i) for each keK. Let ge V. Using Caratheodory's theorem,
the Hahn-Banach theorem, and the characterization of the extreme
points of the unit ball of (c)*, there is a finite set of integers {XJ}]=I

and nonnegative numbers {λy}y=0 such that,

P(f) = \f(-) + Σ λy/fo) for all / e wKφ g 0 1
i=i

where °o denotes the point at infinity.
Let

(XMx^/wiXt): for t = xj9 j = 1, ---,n
Q(t)= L ,,

0 : otherwise
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Now Lemma 1.9 applies to q, and p(g) = q(g) = g(i). Since g was
arbitrary the lemma is proved.

LEMMA 1.12. Let Kbe a finite dimensional subspace of V. There
is a sequence p such that

(1) P>0, ( 2 ) pKQc0, a n d ( 3 ) ±
V

Proof. Let kl9 , kn be a basis for K. Let

It suffices to consider the case in which w has no zeros. It follows
that k(x)/w(x) is bounded for each k e K. Thus if there is a qecQ

such that w/q e V, then

is the desired function.
To find such a g when V is an lp space, let N(e) be the smallest

integer such that

Σ w(j)p ^ ε , and let

i) = (—Yf for Nl-±- (

\(n + I)

If F = c0, let JV(ε) be the smallest integer such that

then let

= - forfor Λ Γ ( ) ^ i < i v ( ^
n \ n2 / \ (n + I)

LEMMA 1.13. Let K be a finite dimensional Jίf^-Korovkin sub-
space of V.

(a) For each integer i and each ε > 0 there is a kεK such that

(1) k(i) — — 1 , and

( 2 ) | | f c Λ 0 | | < l + ε .

(b) // in addition each member of K is also in lq then the
norm in (2) can be taken to be the lg norm.

Proof. For Lemma 1.12 there is a positive sequence p such that
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pKQc0 and 1/p £ V (1/p e lq, resp.). We may also assume that || 1/p \\ =
1 (||1/2>IU = Iresp.)- Let

_ {PU)/ε 3 ̂  i

11 3 = i

By Lemma 1.10 and Lemma 1.11 there is a fee if such that

- 1 = (wk)(i) < (wk)(j) (j Φ i) .

Thus

k(i)= - 1 , and k(j) ̂  l/w(j) .

LEMMA 1.14. Let K be a subspace of V that contains essentially
positive function and which satisfies the conclusion of Lemma 13(a),
then for each i, K traps ψ{i].

Proof. Let 0 < ε < 1/2. The lower sequence {ij for the definition
of an ε-trap for ψ{i} is guaranteed by hypothesis.

Since K contains essentially positive functions for each integer
j there is a k3e K such that

(1) kj(i) = 1 , and

(2) \\ks A 0|| < ε/2i+1 .

Let m, e K be a function (guaranteed by hypothesis) such that

( 3 ) mά{j) = -kj(j) Λ 0 , and

( 4) I (m5 Λ 01 [ <

For j Φ i let,

then there is an n for which {us}%i,s^i forms the upper sequence in
the definition of an ε-trap for

Proof of Theorem 1.7. The theorem is now immediate from
Lemma 1.14, Lemma 1.13 and Lemma 1.8.

THEOREM 1.15 Let K be a finite dimensional subspace oflp that
contains a strictly positive function. Then K is Jίf+-Korovkin if
and only if it is an £f+-Korovkin subspace of c0.

Proof. The necessity is immediate from Theorem 1.7. The
sufficiency follows from Lemma 1.13(b), Lemma 1.14 and Lemma 1.8.
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EXAMPLE 1.16. Let X = {l/i}Γ=i U {0}, and let K' be a finite
dimensional subspace of C(X) that contains the constants and such
that {l/i}5Li Q cbK. Let w e ϋp.

For fee i f let

Then Tk e Ip. Let if = {Tk: k e K'}. Then in view of Lemma 1.2, K
satisfies the conclusion of Lemma 1.13(a) (even with ε = 0). Hence
Lemma 1.14 implies that K is an J^-Korovkin set in lp. For example,
this shows that K = {l/i\ 1/i3, 1/i4} is ^+-Korovkin in each lp, by
letting w(i) = ΐ2 and K' = {1, a;, x2)}.

PROPOSITION 1.17. // LP(-3Γ, Σ, μ) contains a two-dimensional
Jzf+-Korovkin set, then LP{X, Σ, μ) is two dimensional.

Proof. We again use several lemmas. For these let K be- a
two-dimensional subspace of Lp = LP{X, Σ, μ).

LEMMA 1.18. If there exists positive functionals φt and Φ2 on
Lp and a set Y of positive measure such that:

1. if ke K, φλ{k) ̂  0, and φ2(k) :> 0 then k ^ 0 on Y
2. for each pair of real numbers rlf r2 there is a ke K such

that φ%{k) = rx and
3. d i m L p | r ^ 3 ,

then K is not Jzf+-Korovkin.

Proof. For / in Lp let Lf be the unique member k of K such
that

ΦU) = Φt(k) i = 1, 2 .

Now simply let

j
Then P is a nontrivial positive operator which acts as the identity
on K.

LEMMA 1.19. Let g be a measurable positive function that is
bounded and bounded away from zero. Let

K' = {gk: keK}

then K is J*f+-Korovkin if and only if K' is Sf^-Korovkin.
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Proof. If suffices to show that if K is i^+-Korovkin then K'
is also. Let Ln be a bounded sequence of positive operators, such
that

Let

Since

Hence

LJ >f for all feLp.

LEMMA 1.20. Let F Q X be a set of positive measure which is
not an atom. If K is Sf+-Korovkin then d i m i ^ = 2.

Proof. Again one easily constructs a nontrivial positive operator
that is the identity on K.

LEMMA 1.21. A two-dimensional subspace H of i?3 that does not
contain a positive vector, has a nonnegative annihilator.

Proof. Let a = (α^ds) be an annihilator of H. If H does not
have a nonnegative annihilator we may assume that aι > 0 > a2. Let
h = (hl9 h2, hs) be a member in H such that h3 — 0. Then a(h) — 0
implies sgnht — sgn h2. Since H also contains some vector whose
third coordinate is positive, H contains a vector with all positive
coordinates.

LEMMA 1.22. If K is ^+-Korovkin then there is an F £ X and
a he K such that

1. diml/J^ >̂ 3, and
2. k is bounded, positive and bounded away from zero on F.

Proof. If X is not purely atomic the lemma follows from Lemma
1.20. If X is purely atomic the lemma follows from Lemmas 1.20
and 1.21, since if p is a nonnegative annihilator of K, Pf — / +
p(f)ψF is a positive operator for any set F of finite measure.

Proof of the proposition. Suppose K is <^+-Korovkin. From
Lemmas 1.19 and 1.22 we may assume that there is a set FQX
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such that dim(Lp\F) ^ 3, that K is spanned by functions kίf and k2,
and that kx is identically 1 on F. From Lemma 1.20 we can find
subsets Flf F2 and F3 of positive finite measure such that

m a x k2\Fί< m i n k2\Fs^ m a x k2\Fs < m i n k21Fz a . e .

Furthermore if Fis not purely atomic we may assume that dimLp\Fa*z
3. Hence letting ώtf — \ f (i = 1, 2), and Y = Fs contradicts Lemma
1.18. If F is purely atomic we may assume that each Ft is an
atom, and then letting φj — f(Fτ) and Γ = UU{ί1<} would also
contradict Lemma 1.18.

2 Korovkin sets in C(X). Let X be metrizable, and let K be
a subspace of C(X) that contains the constants. G. G. Lorentz [14]
showed that K is j^+-Korovkin in C(X) if and only if cbK = X It
follows that if Y is a closed subset of X then JK]F is ^S^-Korovkin
in C(Y). Answering a question by Lorentz, we will give examples
of a compact Hausdorff space X, and an ^S^-Korovkin sets KQC(X)
whose restrictions to closed subsets of X fail to be Korovkin. The
examples also extend a result by E. Sheffold [19].

DEFINITION. K Q C(X) is Sf-Korovkin for nets if every bounded
net of operators in £f that converges strongly to the identity on K,
also converges strongly to the identity on C(X).

LEMMA 2.1. Let X be a compact Hausdorff space, K is Sf+-
Korovkin for nets if and only if cb K — X.

Proof. This is a minor variant of known results. The sufficiency
can be obtained from the method of proof of Lemma 1 in [Wulbert,
22]. The necessity follows from the following known construction
[Lorentz, 14]. Let {Ua} be a neighborhood base for a point xeX.
Suppose μ is a positive measure in C(X)* such that

k(x) = [kdμ for all k e K .

Let ga be a continuous function that is 1 at a? and vanishes off Ua.
Let

La(f) - (1 - ga)f + (\fdμ)g .

Then

LJk) > k for all k
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but also

(LJ)(x)

The following is also a variant of the proof in [Wulbert, 22].

LEMMA 2.2. Let {Ln} be a bounded sequence of positive operators
on C(X) such that LJc —»k for all ke K £ C(X). If Yis a countably
compact subset of cbK, then for each fe C(X), Lnf converges uniformly
to f on Y.

COROLLARY 2.3. Let X be an open countably compact dense
subset of a compact Hausdorff space Y. Assume that Y — X contains
two points, and let

K= {/ e C( Y): f constant on Y - X) .

Then K is J5f+-Korovkin, but not Jίf+-Korovkin for nets.

EXAMPLES 2.4. (1) Let X be locally compact and countably
compact. Let Y — βX be the Stone-Cech compactification of X. If
Y — X contains two points then X and Y satisfy the conditions of
the corollary.

(2) Let W be the space of ordinals less than the first uncoun-
tably ordinal. Let X = W x W, then I and 7 = βX satisfy the
properties of part (1) above.

(3) Let Y be an jP-space. Let G be a finite subset of Y con-
taining two points, and let X = Y — G. Then X and Y satisfy the
conditions of the corollary. (See [Gillman and Jerison, 10, p. 215].)

(4) In N denotes the integers then βN — N is an 2^-space.

EXAMPLE 2.5. Let X, Y and K be as in the corollary then K is
j^+-Korovkin in C(Γ), but k\γ_κ is not j^+-Korovkin in C(Y - X).

REMARK 2.5. Let X and Y be as in the corollary and let J be
the ideal of continuous functions vanishing on Y — X. Let y e Y — X.
Since the operator P given by

(Pf)(x) = f(x) + f(y)

is a positive mapping that acts as the identity on /, J is not an
^S^-Korovkin set in C(Y). However it only requires minor modi-
fication to show that / is an ^^Korovkin set, although it is not
J/^-Korovkin for nets.

E. Sheffold [19] gave the first example of a set that was an
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set but not .S^-Korovkin for nets. Using a different
method Sheίfold showed that if Y is an i^-space, and J is the ideal
of all continuous functions vanishing at a single point, then J has
the above properties.

R. M. Minkova [15] has proved a Korovkin type theorem in-
volving convergence of the higher order derivatives for functions in
Cr[0, 1], Indeed let X be an open-bounded subset of Rn. Let Y be
the closure of X and let Cr(X) be the continuous real-valued functions
on Y, with r bounded, continuous (Frechet) derivatives on X. Let the
norm on Cr(X) be the sum of the uniform norms of the derivatives

! = I I / I L + Ϊ I / Ί L + ••• + ί ! / Ί L

An operator T on C(X) is r-smooth if T(Cr(X)) Q Cr(X) and T
is continuous on Cr(X).

PROPOSITION 2.6. Let K be a subspace of C(X) that contains the
constants and for which cb K is dense in X. Let {ΓJ be a bounded
sequence of positive r-smooth operators on C(X) such that

(1) {Ti} is uniformly bounded as operators on Cr(X), and
( 2 ) Ttk — k for all keK,

then
(3) τj{j) — f(j) uniformly for each feCr(X), and for each

Proof. This easily follows by induction from Ascoli's theorem
since in this setting (TJ)(x) —* f(x) for all xecbK (Lemma 2.2).

Minkova used a delicate estimate of Landau to bound the deriva-
tive of a function with bounds for the function and its second deriva-
tive, and proved the case of the above proposition obtained when
X is a compact interval of the line, and K is an Jj^-Korovkin set.

3* j^ l i +-Korovkin sets in Lp. Let (X, Σy μ) be a finite measure
space, and let K be a subspace of LX(X, Σ, μ) that contains the
constants. Let E be the closed linear sublattice generated by K.
Since the conditional expectation operator is a contractive projection
of LL onto E, the i2^lt+-shadow of K is contained in E. Berens and
Lorentz [3] have in fact shown that E is the ^1>+-shadow of K.
Bernau and Lacey [5] have announced that every closed sublattice
of an Lp-space is the range of a contractive projection. Hence the
restrictions in the Berens-Lorentz theorem can be removed.

THEOREM 3.1. Let K be a subset of Lp. The ^ u -shadow of
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K is the closed linear sublattice of Lp generated by K.

Proof. Let S be the jS^1>+~shadow of K. It is obvious that S
is closed. To show S is a lattice it suffices to show that / V g e S
when both f eS and geS. Let Li be a sequence of positive con-
tractive on Lp such that Lpk —• k for all ke K. Since / V g dominates
both / and g

Llf V g) ^ Lt(f) V Lt(g) .

We also know that | | / V g\\ ^ \\Lt(f V g)\\ and that

Lt(f) V Lt(g) > / V g .

Hence if / V g ^ 0, lim Lt{f V g) = f V g. Indeed, if we are working
in Llf this limit is found by inspecting the integral \\Li(f V g) — / V g\\.
Otherwise the statement follows from the uniform convexity of Lp.
Therefore if / and g are arbitrary members of S, \ f \ V | g \ 6 S, and

/ V f l r + I / I V|flr| = (/ + |/| V|ίir|)V(flr+|/|V|flf|)€S,

thus / V geS.
The jS^'+ -shadow of K, therefore, contains the closed lattice

generated by K. The converse statement is immediate from the
result of Bernau and Lacey mentioned before the theorem.

REMARK 3.2. Let X be a compact metric space, and let K be
a subspace of C(X) containing the constants. The lattice characteri-
zation of the βSf5'1>+-shadow of K does not apply. In particular the
space spanned by 1 and x is not an £fι +-Korovkin set. However,
it does follow from the proof of Lemma 2.1, and Lemma 1.2. that
if K is a Korovkin set then, the closed sublattice generated by K
is all of C(X).

REFERENCES

1. E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin,
1971.
2. P. M. Anselone, Abstract Riemann integrals, monotone approximations, and gen-
eralizations of Korovkin1s theorem, Tagung uber Numerische Methoden der Approxima-
tionstheorie, ISNM 15, Birkhauser, Basel, 1971.
3. H. Berens and G. G. Lorentz, Korovkin sets in Banach function spaces, Proc.
Symp. on Approx. Theory, Austin, 1973, Academic Press, 1973.
4. H. Berens and G. G. Lorentz, Sequences of contractions of ^-spaces, J. of Func-
tional Analysis, 15 (1974), 155-165.
5. S. J. Bernau and H. E. Lacey, The range of a contractive projection on an Lv-space,
Pacific J. Math., 53 (1974), 21-41.
6. R. A. DeVore, The approximation of continuous functions by positive linear opera-
tors, Lecture Notes in Math. 293, Springer-Verlag, Berlin, 1972.



KOROVKIN APPROXIMATIONS IN L^-SPACES 167

7. V. K. Dzjadyk, Approximation of functions by positive linear operators and singular
integrals (Russian), Math., 56 (N. S), 70 (112), 1966, 508-517.
8. C. Franchetti, Disuguaglianza e teoremi del tipo di Korovkin sugli operatori positivi
in C[0, 1], Boll. Delia Unione Math. Italiana, 2 (1969), 641-647.
9# f Convergenza di operatori in sottospazi dello spazio C(Q), Boll. Delia Unione
Mat. Italiana, 3 (1970), 668-672.
10. L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand,
Princeton, 1960.
11. R. L. James, The extension and convergence of positive operators, J. Approx.
Theory, 7 (1973), 186-197.
12. P. D. Korovkin, On convergence of linear positive operators in the space of con-
tinuous functions, Dokl. Akad. Nauk. SSR (N. S), 90 (1953), 961-969.
13. M. A. Krasnosilskii and E. A. Lifsic, The principle of convergence of sequences of
linear positive operators, Studia Math., 31 (1968), 455-468 (Russian).
14. G. G. Lorentz, Korovkin sets, Lecture Notes, Regional Conference on Approximation
Theory, Riverside, June, 1972.
15. R. M. Minkova, The convergence of the derivatives of linear operators (Russian),
C. R. Acad. Bulgare Sci., 2 3 (1970), 627-629.
16. R. Nakamoto and M. Nakamura, On the theorems of Korovkin II, Proc. Japan.
Acad., 4 1 (1965), 433-435.
17. Yu. A. Saskin, Systems Korovkin in the space of continuous functions, IZV 26
(1962), 495-512.
18. , The Milman Choquet boundary and approximation theorey, Functional
Analysis AppL, 1 (1967), 170-171.
19. E. Scheίfold, Uber die punktweise konvergene von operatoren in C(X), preprint,
1972.
20. H. Walk, Approximation durch folgen linearer positiver operatoren, Arch. d.
Math., 20 (1969), 398-404.
21. M. Wolff, Uber Korovkin-satze in lokalkonvexen vektorverbanden, Math. Ann., to
appear, 1973.
22. D. E. Wulbert, Convergence of operators and Korovkins theorem, J. Approximation
Theory, 1 (1968), 381-390.
23. D. E. Wulbert, Contractive Korovkin approximations, J. Functional Analysis, 19
(1975), 205-215.
24. A. V. Zaric'ka, Approximation of functions by linear positive operators in the
Lp-metric, Dopovidi Adak. Nauk Ukain, (1967), 14-17. (Russian and English summaries.)

Received July 11, 1973 and in revised form July 15, 1974. This research was sup-
ported by the National Science Foundation.

UNIVERSITY OF WASHINGTON

AND

UNIVERSITY OF CALFORNIA, SAN DIEGO






