SOLVABILITY OF CONVOLUTION EQUATIONS IN \mathcal{H}'_{p} , p > 1

S. SZNAJDER AND Z. ZIELEZNY

Let S be a convolution operator in the space \mathscr{K}'_p , p > 1, of distributions in \mathbb{R}^n growing no faster than $\exp(k |x|^p)$ for some k. A condition on S introduced by I. Cioranescu is proved to be equivalent to $S*\mathscr{K}'_p = \mathscr{K}'_p$.

We denote by \mathscr{K}'_p , p > 1, the space introduced in [4] and consisting of distributions in \mathbb{R}^n which "grow" no faster than $\exp(k|x|^p)$, for some k.

I. Cioranescu [1] characterized distributions with compact support, i.e. in the space \mathscr{C}' , having fundamental solutions in \mathscr{K}_p' . We recall that a distribution E is a fundamental solution for $S \in \mathscr{C}'$ if

$$S{*}E=\delta$$
 ,

where δ is the Dirac measure and * denotes the convolution. Cioranescu proved that, if S is a distribution in \mathscr{C}' and \hat{S} its Fourier transform, the following conditions are equivalent:

(a) There exist positive constants A, N, C such that

$$\sup_{x \, \in \, R^n, \, |x| \, \leq \, A(\log(2+|\xi|))^{1/q}} \geq rac{C}{(1 \, + \, |\xi|)^N}, \, \xi \in R^n$$
 ,

where 1/p + 1/q = 1.

(b) S has a fundamental solution in \mathcal{K}'_{p} .

In this paper we study the solvability of convolution equations in \mathscr{K}'_p . If $\mathscr{O}'_c(\mathscr{K}'_p:\mathscr{K}'_p)$ is the space of convolution operators in \mathscr{K}'_p , we ask the question: Under what condition on $S \in \mathscr{O}'_c(\mathscr{K}'_p:\mathscr{K}'_p)$ is $S*\mathscr{K}'_p = \mathscr{K}'_p?$ The last equation means that the mapping $u \to S*u$ of \mathscr{K}'_p into \mathscr{K}'_p is surjective.

We prove the following theorem which extends the results of Cioranescu mentioned above.

THEOREM. If S is a distribution in $\mathcal{O}'_{\mathcal{C}}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$ then each of the conditions (a) and (b) is equivalent to each of the following ones: (a) There exist positive constants A', N', C' such that

$$\sup_{z \, \in \, C^n, |z| \leq A' [\log(2+|\xi|)]^{1/q}} \geq rac{C'}{(1+|\xi|)^{N'}} \; ; \;\;\; \xi \in R^n$$
 ,

where 1/p + 1/q = 1. (c) $S * \mathscr{K}'_p = \mathscr{K}'_p$. REMARK. For p = 1 a similar theorem was proved in [5].

Before presenting the proof we state the basic facts about the spaces \mathscr{K}'_p and $\mathscr{O}'_c(\mathscr{K}'_p:\mathscr{K}'_p)$; for the proofs we refer to [4].

We denote by \mathscr{K}_p the space of all functions $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that

$$v_k(arphi) = \sup_{x \in R^n, |lpha| \leq k} e^{k |x|^p} |D^lpha arphi(x)| < \infty \,, \qquad k = 0, \, 1, \, \cdots \,,$$

where $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$, $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ and

$$D^{lpha} = \left(rac{1}{i} rac{\partial}{\partial x_1}
ight)^{lpha_1} \left(rac{1}{i} rac{\partial}{\partial x_2}
ight)^{lpha_2} \cdots \left(rac{1}{i} rac{\partial}{\partial x_n}
ight)^{lpha_n}$$

The topology in \mathscr{K}_p is defined by the family of semi-norms v_k . Then \mathscr{K}_p becomes a Frechet space.

The dual \mathscr{K}'_p of \mathscr{K}_p is a space of distributions. A distribution u is in \mathscr{K}'_p if and only if there exists a multi-index α , an integer $k \ge 0$ and a bounded, continuous function f on \mathbb{R}^n such that

$$u = D^{\alpha}[e^{k|x|}f^{p}(x)].$$

If $u \in \mathscr{K}'_p$ and $\varphi \in \mathscr{K}_p$, then the convolution $u * \varphi$ is a function in $C^{\infty}(\mathbb{R}^n)$ defined by

$$u*arphi(x) = \langle u_y, arphi(x-y) \rangle$$

where $\langle u, \varphi \rangle = u(\varphi)$.

The space $\mathscr{O}'_{c}(\mathscr{K}_{p}':\mathscr{K}_{p}')$ of convolution operators in \mathscr{K}'_{p} consists of distributions $S \in \mathscr{K}'_{p}$ satisfying one of the equivalent conditions:

(i) The products $S_x \exp [k(1+|x|^2)^{p/2}]$, $k=0, 1, \cdots$, are tempered distributions

(ii) For every $k \ge 0$ there exists an integer $m \ge 0$ such that

$$S = \sum_{|lpha| \leq m} D^{lpha} f_{lpha}$$
 ,

where f_{α} , $|\alpha| \leq m$, are continuous functions in \mathbb{R}^n whose products with $\exp(k|x|^p)$ are bounded

(iii) For every $\varphi \in \mathscr{K}_p$, the convolution $S * \varphi$ is in \mathscr{K}_p ; moreover, the mapping $\varphi \to S * \varphi$ of \mathscr{K}_p into \mathscr{K}_p is continuous.

If $S \in \mathcal{O}'_{\mathcal{C}}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$ and \check{S} is the distribution in \mathscr{K}'_{p} defined by $\langle \check{S}, \varphi \rangle = \langle S_{x}, \varphi(-x) \rangle, \varphi \in \mathscr{K}_{p}$, then \check{S} is also in $\mathcal{O}'_{\mathcal{C}}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$. The convolution of S with $u \in \mathscr{K}'_{p}$ is then defined by

(1)
$$\langle S * u, \varphi \rangle = \langle u * S, \varphi \rangle = \langle u, \check{S} * \varphi \rangle, \varphi \in \mathscr{K}_p.$$

For a function $\varphi \in \mathscr{K}_p$, the Fourier transform

$$\widehat{\varphi}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle \xi, x \rangle} \varphi(x) dx$$

can be continued in C^n as an entire function such that

$$w_{\scriptscriptstyle k}(\widehat{arphi}) = \sup_{\zeta \, \in \, C^n} (1 + |\, \xi \, |)^k e^{-|\gamma|^{q/k}} |\, \widehat{arphi}(\zeta)\, | < \infty$$
 , $k = 1, \, 2, \, \cdots$,

where $\zeta = \xi + i\eta$. We denote by K_p the space of Fourier transforms of functions in \mathscr{H}_p . If the topology in K_p is defined by the family of semi-norms w_k , then the Fourier transformation is an isomorphism of \mathscr{H}_p onto K_p .

The dual K'_p of K_p is the space of Fourier transforms of distributions in \mathscr{K}'_p . The Fourier transform \hat{u} of a distribution $u \in \mathscr{K}'_p$ is defined by the Parseval formula

$$\langle \hat{u},\, \widehat{arphi}
angle = (2\pi)^n \langle u_x,\, arphi(-x)
angle$$
 .

For $S \in \mathcal{O}'_{\mathcal{C}}(\mathscr{K}_{p}': \mathscr{K}_{p}')$, the Fourier transform \hat{S} is a function which can be continued in C^{n} as an entire function having the following property: For every k > 0 there exist constants C'' and N'' such that

$$|\hat{S}(\hat{arsigma}+i\eta)| \leq C''(1+|arsigma|)^{N''}e^{|\eta|q/k}\,.$$

Furthermore, if $S \in \mathscr{O}'_{c}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$ and $u \in \mathscr{K}'_{p}$, we have the formula

$$\widehat{S*u} = \widehat{S}\widehat{u} ,$$

where the product on the right-hand side is defined in K'_p by $\langle \hat{S}\hat{u}, \psi \rangle = \langle \hat{u}, \hat{S}\psi \rangle$, $\psi \in K_p$.

In the proof of our theorem we shall make use of the following lemma of L. Hörmander (see [3], Lemma 3.2):

If F, G and F/G are entire functions and ρ is an arbitrary positive number, then

$$|F(\zeta)/G(\zeta)| \leq \sup_{|\zeta-z| < 4
ho} |F(z)| \sup_{|\zeta-z| < 4
ho} |G(z)| \Big/ \Big(\sup_{|\zeta-z| <
ho} |G(z)| \Big)^2$$

where $\zeta, z \in C^n$.

Proof of the theorem. It is obvious that (a) \Rightarrow (a') and (c) \Rightarrow (b). The implication (b) \Rightarrow (a) was proved in [1] for $S \in \mathscr{C}'$. If $S \in \mathscr{O}'_{c}(\mathscr{K}'_{p}: \mathscr{K}'_{p})$ the proof is the same and therefore we omit it. Our only task is to prove that $(a') \Rightarrow (c)$.

Let S be a distribution in $\mathscr{O}'_{\mathcal{C}}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$ whose Fourier transform satisfies condition (a'), and let $T = \check{S}$. Then the Fourier transform of T also satisfies condition (a'). We consider the mapping $S^*: u \to$ S*u of \mathscr{K}'_{p} into \mathscr{K}'_{p} . By (1), it is the transpose of the mapping $T^*: \varphi \to T*\varphi$ of \mathscr{K}_{p} into \mathscr{K}_{p} . In order to prove (c) it suffices to show that T^* is an isomorphism of \mathscr{K}_{p} onto $T^*\mathscr{K}_{p}$ (see [2], Corollary on p. 92).

Since T is in $\mathscr{O}'_{\mathcal{C}}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$, the mapping T^{*} is continuous, by (iii). Also, using Fourier transforms and formula (3), it is easy to see that T^{*} is injective. We now prove that the inverse of T^{*} , i.e. the mapping $T^{*}\varphi \rightarrow \varphi$, is continuous. Since the Fourier transformation is an isomorphism from \mathscr{K}_{p} onto K_{p} , it suffices to prove the equivalent statement that the mapping $\widehat{T}\widehat{\varphi} \rightarrow \widehat{\varphi}$ is continuous.

Suppose that

$$\widehat{T}\widehat{arphi}=\widehat{\psi}$$
 ,

where $\hat{\varphi}$, $\hat{\psi} \in K_p$. We recall that \hat{T} is an entire function satisfying condition (a') and estimates of the form (2). Given an arbitrary integer k > 0, we pick an integer k' such that

(4)
$$k' > (10^q + 1)k$$
.

In view of (2), for k' there exist constants N'', C'' > 0 such that

$$||\widehat{T}(\zeta)| \leq C''(1+|arsigma|)^{N''}e^{|\eta|^{q}/k'},\, \zeta=arsigma+i\eta\,{\in}\,C^{n}\;.$$

Hence, setting

(5)
$$\rho = |\eta| + A' [\log (2 + |\xi|)]^{1/q}$$

and making use of the inequality

$$(a+b)^q \leq 2^q(a^q+b^q)$$
, $a, b \geq 0$,

we obtain

$$(6) \qquad \begin{aligned} \sup_{|\zeta-z| < 4\rho} |\widehat{T}(z)| &= \sup_{|z| < 4\rho} |\widehat{T}(\zeta+z)| \\ &\leq C''(1+|\xi|+4\rho)^{N''} e^{(|\eta|+4\rho)^{q/k'}} \\ &\leq C_1(1+|\xi|)^{N''}(1+|\eta|)^{N''} e^{[(10|\eta|)^q+(8A')^{q}\log(2+|\xi|)]/k} \\ &\leq C_1'(1+|\xi|)^{N''+(8A')^{q/k'}} e^{(10^q+1)|\eta|^{q/k'}} \end{aligned}$$

where $z \in C^n$ and C_1 , C'_1 are constants. On the other hand

(7)
$$\frac{\sup_{|\zeta-z|<\rho}|\hat{T}(z)| = \sup_{|z|<\rho}|\hat{T}(\zeta+z)| \ge \sup_{|z|< A' [\log(2+|\xi|)]^{1/q}}|\hat{T}(\xi+z)|}{\ge \frac{C'}{(1+|\xi|)^{N'}}},$$

by condition (a').

Applying now to the functions $\hat{\psi}$, \hat{T} and $\hat{\psi}/\hat{T} = \hat{\varphi}$ Hörmander's lemma with ρ given by (5) and making use of the estimates (6) and (7), we obtain

542

where C_2 is another constant. But, for any integer l > 0 and all $z = x + iy \in C^n$ with $|z| < 4\rho$, we have

$$\begin{array}{l} |\hat{\psi}(\zeta+z)| \leq w_{l}(\hat{\psi})(1+|\xi+x|)^{-l}e^{|\gamma+y|^{q}/l} \\ \leq w_{l}(\hat{\psi})(1+|x|)^{l}(1+|\xi|)^{-l}e^{(|\gamma|+|y|)^{q}/l} \\ \leq w_{l}(\hat{\psi})(1+4\rho)^{l}(1+|\xi|)^{-l}e^{(|\gamma|+4\rho)^{q}/l} \\ \leq C_{s}w_{l}(\hat{\psi})(1+|\gamma|)^{l}(1+|\xi|)^{1-l}e^{[(10|\gamma|)^{q}+(8A')^{q}\log(2+|\xi|)]/l} \\ \leq C'_{s}w_{l}(\hat{\psi})(1+|\xi|)^{1-l+(8A')^{q}/l}e^{(10^{q}+1)|\gamma|^{q}/l} , \end{array}$$

where C_3 and C'_3 depend only on l and q. We choose the integer l so that

$$l>\max\left\{k+1+2N'+N''+2(8A')^{q} ext{, }(10^{q}+1)\left/\left(rac{1}{k}-rac{10^{q}+1}{k'}
ight)
ight\}$$
 ,

which is possible because of (4). Then

$$k+1+2N'+N''+(8A')^q\Bigl(rac{1}{k'}+rac{1}{l}\Bigr)-l<0$$

and

$$(10^q+1)\!\Big(\!rac{1}{k'}+rac{1}{l}\Big)-rac{1}{k}<0\;.$$

Consequently from (8) and (9) it follows that

$$w_k(\widehat{arphi}) \leq C_4 w_l(\widehat{\psi}) = C_4 w_l(\widehat{T}\widehat{arphi}) \; ,$$

for some C_4 independent of $\hat{\varphi}$. This proves the continuity of the mapping $\hat{T}\hat{\varphi} \rightarrow \hat{\varphi}$ and thus completes the proof of the implication $(a') \Rightarrow (c)$.

References

1. I. Cioranescu, Sur les solutions fondamentales d'ordre fini de croissance, Math. Ann., **211** (1974) 37-46.

2. J. Dieudonné et L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier Grenoble, 1 (1949), 61-101.

3. L. Hörmander, On the range of convolution operators, Annals of Math., 76 (1962), 148-170.

4. G. Sampson and Z. Zielezny, Hypoelliptic convolution equations in \mathscr{K}'_p , p > 1, to appear in Trans. Amer. Math. Soc.

S. SZNAJDER AND Z. ZIELEZNY

5. S. Sznajder and Z. Zielezny, Solvability of convolution equations in \mathscr{H}'_1 , to appear in Proc. Amer. Math. Soc.

Received September 24, 1975 and in revised form February 4, 1976.

STATE UNIVERSITY OF NEW YORK AT BUFFALO