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PRIMARY POWERS OF A PRIME IDEAL

L. ROBBIANO AND G. VALLA

In this paper we show that the powers of a prime ideal
p are primary iff the direct summands of the graded ring
associated with p are torsion-free. We prove some conse-
quences of this fact especially in connection with geometric
situations.

Let A be a field, Y, X closed subschemes of P£\ suppose that Y
is irreducible, reduced and contained in X and let p be the prime
ideal corresponding to Y in the homogeneous coordinate ring of X
(which is the unique ring B = k[xQ, -—,xn] such that X=Proj(B)
and (x0, — ,xn) does not belong to Ass (2?)). Is it true that pn is
primary for every ni

The general answer is of course in the negative (see for instance
Corollary 3.2). On the other hand it is well known that the answer
is in the affirmative if k = C, X = Pi and 7 is a complete inter-
section; this fact has been improved by Bonardi in [1] and recently
by Hochster, who more generally proved that pn is primary for all
n if p is a prime ideal generated by a regular sequence in a domain
(see [3]).

The main purpose of this paper is the study of the case where
Y is not a complete intersection in X, and we get two essentially
different situations when dim(Y) — 0 and dim(Y)>0. More precisely,
if Y is a closed rational point, we get the following complete answer:
pn is primary for all n if and only if x is a "cone" having Y in
its vertex (for precise statement see Theorem 3.1). Instead, when
dim(F) > 0, if Y and X are complete intersections in Pζ, such that
Y is nonsigular and X is nonsingular in the points of Y9 then p2

is primary and pn is primary for all n if we add the condition
dim(Γ) ;> codim (X) (see Theorem 3.3), in particular if X is a hyper-
surface (Corollary 3.4).

Suitable example at the end of § 3 justify the hypotheses we
need in the above mentioned theorems.

As to the proofs, first we develop criteria for pn to be primary,
showing that this property is connected with the fact that certain
modules are torsion-free (Proposition 1.1 and Corollaries). Then,
essentially using homological methods, we can prove "algebraic"
theorems (Theorems 2.2 and 2.3), from which the "geometric" ones
easily follow.

In this paper all rings are supposed to be commutative, noetherian
and with identity.
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1. Let B be a ring, p a prime ideal and A = J5/̂ ; denote by
Gn the A-module pnjpn+1 and by G(t>) the graded A-algebra φSU GΛ

(for more details see [6]).

PROPOSITION 1.1. If N is a positive integer, the following con-
ditions are equivalent:

(a ) pn is primary for n ^ N.
(b ) Gn is torsion-free for n ^ N — 1.

Proof. It is clear that pn primary implies Gn^ torsion-free. Let
n ^ Nf x $ p, y $ pn. If y e pr, y £ pr+1 then 0 <: r < n; we have 0 Φ
x eA, 0 Φ y e Gr9 therefore xy Φ 0 or, which is the same, xy ί pr+1;
but we have pr+1 2 Pn and so xy & pn.

REMARK 1. As a consequence of Proposition 1.2 we get that p2

is primary iff Gx is torsion-free. Nevertheless the following example
shows that if n > Ίp* need not to be primary even if Gn-t is torsion-
free. Let B - k[x, y, z] = k[X, Y, Z]/( Y\ YZ, XY- Z") and p - (y, z).
We get in this case G(p) s k[X][Tu Tt]l(XT» TλT2, Γf, T% hence G2

is torsion-free, but ^3 is not primary.

REMARK 2. In the above example p* is primary and this shows
that GN torsion-free does not imply Gn torsion-free for n < N.

COROLLARY 1.2. The following conditions are equivalent:
( a ) pn is primary for every n.
(b) G(p) is torsion-free.
( c) The canonical homomorphism G{p) —> G(pBp) is injectίve.
In particular G(p) is a domain iff pn is primary for every n

and G(pBp) is a domain.

Proof. It follows from Proposition 1.1 that (a) and (b) are
equivalent. Denoting with K the quotient field of A, the equivalence
of (b) and (c) easily follows after remarking that G(pBp) = G(p) ®^ K.

COROLLARY 1.3. // p is locally generated by a regular sequence,
p% is primary for all n. In particular if V(p) is regular in Spec (B)
and Spec (A) is regular, pn is primary for every n.

Proof. For an ideal it is clear that to be primary is a local
property, hence we may assume that p is generated by a regular
sequence and the conclusion follows since G(p) is a polynomial ring
over A (see [5] Theorem 2.1).
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2* Let B be a ring, p a prime ideal and A = B/p.

LEMMA 2.1. The following conditions are equivalent:
( a ) p is locally generated by a regular sequence,
( b ) pjp2 is a projective A-module and Bv is regular.
( c ) pn/pn+1 is a projective A-module for all n and Bp is regular.

Proof. We may assume that B is local. If p is generated by
a regular S-sequence, Bp is regular and since G(p) is a polynomial
ring over A, pn/pn+1 is a free A-module for all n. Let us now assume
that (b) holds, and a19 •••, arep/p2 be a free basis over A. Using
Nakayama we get p = (a19 , ar)9 hence pBp — (αx , α,.)^; we claim
that (alf « , α r ) is a minimal basis for pBp. On the contrary, let
pBp be generated by a proper subset of {aί9 -—, ar) say {α2, •••, ar}]
then there exists an element t not in p such that £<xx e (α2, •••, α r)B,
which contradicts the hypothesis that a19 , ar are linearly inde-
pendent over A. Combining with Bp regular, it follows that a19 , ar

is a regular j? rsequence. Let us now consider the graded homo-
morphism φ: A[Tly •••, Tr]~>G(p) defined by φ(Tt) = α, eplp\ It is
clear that φ is onto, hence G(J)) = AIT,, •••, Γr]/J. On the other
hand G(pBp) ^ G(p) ®AK^ K[Tlf , Γ r] (K = quotient field of A)
because a19 , ar is a regular J5Γsequence generating |?5P. It follows
that I®A K— 0, hence / — 0 as / is obviously a torsion-free A-module.
Applying Rees criterion (see [5] Theorem 2.2) we get that aί9 -- ,ar

is a regular B-sequence.

THEOREM 2.2. // Bp and A are regular and dim (A) = 1 the
following conditions are equivalent:

( a) p2 is primary.
(b) pn is primary for every n.
( c ) V(p) is regular in Spec (B).
(d) p is locally generated by a regular sequence.
(e ) pip2 is a projective A-module.
( f) pnlpnJrl is a projective A-module for every n.

Proof. It is obvious that (b) implies (a). By Lemma 2.1 (d),
(e), (f) are equivalent and (d) implies (b) by Corollary 1.3. If now
p2 is primary, by Proposition 1.1 pfp2 is a finitely generated torsion-
free A-module, hence projective, because A is a Dedekind domain
and so (a) implies (e). The equivalence between (c) and (d) is well
known since A is regular.

LEMMA 2.3. Let Abe a domain, M a finitely generated A-module,
and a an ideal of A such that h.ά.A M < gr (α) and Mp is torsion-
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free for every prime p such that α φ p. Then M is torsion-free.

Proof. If not, we can choose a prime ί>^(0) such that p e Ass(M),
and then pAp e Ass (Mp), hence depth (Mp) = 0. Therefore h.dMt> Mp =
gr (pAp). But h.d Λ<) (M,) ^ h.ά.A M and so gr (pAp) ^ h.dM ikf <*gr (α);
this implies aς£ p, then Mp is torsion-free over A,,, a contradiction.

THEOREM 2.4. Leέ R be a ring, α, Sβ, π ideals such that α, Sβ are
locally generated by regular sequence, Sβ is prime and a £ ^ £ ti.
// F(W<*) - F(π/a) is regular in Spec (i2/a), Spec (j?/*β) - F(ιt/5β) is
regular and gr (tt/^) = d ^ 2, we ftcwe:

( a ) (Wα)2 ̂ s primary
( b) If d> gr (cijβOT) /or every maximal ideal m Ώ π (for istance

if d > dim i?), £/kew (Wα)% ̂ s primary for every n.

Proof. Using Corollary 1.3 and the local character of the
property of being primary, we can restrict our attention to the
maximal ideals containing rt. Hence we may assume that R is local.

We shall denote by a19 , ar the elements of the regular R-
sequence generating α, by at the ideal (a19 •••, a%) (α0 = 0), by B the
ring R/a, by Bt the ring R/ai9 by p the ideal 3̂/α in B and by A the
ring Λ/tβ = B/t).

We shall give the proof in several steps.

1. V(φ/at) - V(n/at) is regular in Spec (BJ for i = 1, , r.
It follows from the property that a local ring is regular if its quotient
by a regular sequence is regular.

2. aaΨ + (alf , diy , ar) for i = 1, , r.
If we denote by α* the ideal (alf , α4, , α r), the ring

is regular, hence at g 3̂2i2qj + α-i2φ.

3. Let s, iSΓ be integers 0 ^ s ^ r, 0 < N; if (Sβ/ĉ )' is primary
for every nonnegative integer i ^ s — 1 and for every t = 1, , ΛΓ,
then αs n ^ = α ^ " 1 for every ί = 1, , N.

The proof is by induction on s; the case s = 0 is trivial. Hence
we may assume s ^ 1 and α 8 - 1 π Ψ = ^-rβ*" 1 for every t = 1, , iV.
Let now Σ*=i ^ΐ^i € ̂ 3*, then αsίc8 e 3̂* + αs_L; by step 2 a8 $ ψ + ̂ . i
so 0 =* α s G (W^-i)/(W^-i)2 Let xs e φm + αβ_x, a:8 ί φ- + 1 + a8_19 thus

. 1 ) m + 1 . On the other hand, by Proposition 1.1,
can be imbedded as a graded module in

(where K is the quotient field of A), which is an
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integral domain by Corollary 1.3 and step 1. Therefore, if m < t — 1,
0 Φ άsxs e (Was_1)™+ί/(<$/as_ίr

+2 i.e. asx8 £ g?w+2 + as_, hence asxs ί ψ +
as_ίf a contradiction. In conclusion m ^ t — 1 and so xs e ^β*"1 + cιs_1#

We get Σ U α<&< = Σ5=ί ail/* + αsτ/8 with y, e ^β*"1; hence Σ?=ί <*>iVi e
as_! Π ̂ β* = as_1^3ί~1 by induction and the conclusion immediately
follows.

4. The following sequence of A-modules is exact for all t and i.

(1) 0 > a, Π Ψ/a, n ψ+ί > ψ/ψ+1 > a, + ξβ'/α, + ψ+1 > 0

The proof is standard.

5. (Wα

s)
2 i s primary for s <Ξ r. If s = 0 it follows from Corol-

lary 1.3. Therefore we may assume that ($β/α<)2 i s primary for
1 ^ s - 1. Using step 3 we get as/as Π ̂ β2 = αs/αsφ. This is a free
A-module generated by aί9 •• ,α β ; indeed if α1α?1 + ••• + asx8eas?fi9

we get Σί=i αt^^ = Σί=i α ^ i w i t h 2/t e β̂» hence α* — yt e as ςz φ. Using
the exact sequence (1) with ί = 1, i = s we get h.d.^ (Wα

s)/(Wα

s)
2 ^ 1-

On the other hand by step 1 F(^β/αs) — V(n/as) is regular in
Spec (Bs) and by hypothesis Spec (JS/?β) — V(n/^) is regular; applying
Corollary 1.3 we get that (Wαs)2 is primary at every point of
S p e c ( β s ) - F(n/αβ), hence by Proposition 1.1 (Wα.)/(Wα.)2 is torsion-
free at the same points. Applying Lemma 2.3, we are through.

6. Let s be an integer, 1 <; s ^ r. If ($β/αΐ)* is primary for
ί = 0, •••, s — 1 and for every ί, the following exact sequence of
A-modules holds for all t:

o — > αs_, n φvα.-! n ? ί + 1 —> αs n m n φ ί + 1

( 2 )
-£-> αs_, + ^"Vα.., + φ* > 0 .

The first homomorphism is the canonical one. Let a be an element
of αs Π Ψ/as Π ψ+1; by step 3 α = Σί=i «i^» ^ G ^ " ' We define
φ(μ) = xs and the exactness easily follows.

7. If 0 <Ξ s < ώ, (W^)' is primary for every £. We shall prove
by induction on s that h.d M (α, Π Ψ/as Π ̂ βί+1) £ s - 1 for all £,
h.d v l (αs + ψ/as + φ<+1) ^ s for all t and ($/<*.)' is primary for all ί
(we use the convention that h.d.^Λf = —1 if M is the A-module
with unique element 0).

The case s = 0 is clear. Let us now suppose that
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for all ί, h.d.^ ( α ^ + φ/a.^ + ψ+1) ^ s - 1 for all t and (ξβ/α,)' is
primary for i <. s — 1 and for every t. By step 4 and 6, the exact
sequences (1) and (2) hold for any t and for i = s. From (2)
and Theorem B ([4] pg. 124) we get h.ά.A (α, Π Ψ/a8 Π ψ+1) ^
maxih.d.A^-.nψ/a^nψ^ h.ά.Λ(*.-i + φ-'K-i + $')) = * - 1 for
all ί, hence we deduce from (1) h.d.^ (αβ + Sβ'/α, + ψ+1) <; s < d for
all £. Using Lemma 2.3 and the same kind of argument of step 5
we get that as + Sβ*/αβ + Ψ+1 is torsion-free for all t. Hence, by
Proposition 1.1, (Wα«)* is primary for all t.

8. (Conclusion.) Applying step 5 with s = r we get (a); applying
step 7 with s = r we get (b).

3* In this section k will denote a field and Pfe

w the ^-dimensional
protective space over k; if α is a homogeneous ideal of k[XQ, , Xn],
we shall denote by V = V(a) = Proj (k[X0, •••, XΛ]/α) the associated
protective scheme. If P is a closed rational point on V and £ the
homogeneous prime ideal of k[x0, •••,#„] = &[X0, " *> -^»]/α corre-
sponding to P, we may assume in the following that P = (1, 0, , 0),
hence p = (^, •••, a?J.

THEOREM 3.1. "PΓiίfo ίfeβ same assumptions, the following con-
ditions are equivalent:

( a ) pn is primary for every n.
(b) α is generated by forms in k[Xlf •••, Xn],

Proof. Let α - (2^ . . . , Fr), Ftek[X19 •••, XJ and R =
k[Xlf , Xn]/a* where α* = (Fu , ̂ ^ [ X , , • , XJ; we get
k[XQ, —, Xn]/a = R[X0] and so p is the extension to R[X0] of a
maximal ideal of R. Hence (b) implies (a). Now we prove that (a)
implies (b). Let α = (F19 , Fr); we may write F1 = XT^G^X^ ,
Xn) + X?-*GJ&» ...,XΛ)+...+ Gm{Xlf , X.) where m = 3 F t and

i = dGt. Reducing modulo α we get xT'^i e £2; but a;?1"1 ί t> and p2 is
primary, hence g1ep* i.e. G^eiXx, •••, XΛ)2 + α which implies G ^ α .
By repeating this argument we get G19 , Gm e α, therefore α =
((?!, , Gm, F2, , jPr); the same for F2, , Fr and we are done.

COROLLARY 3.2. With the same assumptions as above, if P is
regular the following conditions are equivalent:

( a) p2 is primary.
(b) pn is primary for every n.
(c) V is a linear space (i.e. α is generated by linear forms).

Proof. It follows from Theorem 3.1 that (c) and (b) are equivalent
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after remarking that a cone is a linear space if a point of its vertex
is nonsingular for the cone. The equivalence of (a) and (b) follows
from Theorem 2.2.

THEOREM 3.3. Let X, Y be closed subschemes of P£, which are
complete intersections in P£. Suppose that Y is an irreducible,
reduced, positive dimensional, normal subscheme of X and Sing (X) Π
Γ£Sing(Y) (where "Sing" stands for "singular locus of"). // p
denotes the prime ideal corresponding to Yin the protective coordi-
nate ring of X, then:

( a ) p2 is primary.
( b) // dim Y ^ codim X, then pn is primary for every n.

Proof. If we denote by π the ideal associated with Sing(F),
we get the proof as a strightforward consequence of Theorem 2.3.

COROLLARY 3.4. With the same hypotheses of Theorem 3.3, if
X is a hypersurface, pn is primary for all n.

Now we shall try to justify the hypotheses of the previous
theorems with same examples.

EXAMPLE 1. In Theorem 3.1 and Corollary 3.2 the condition
"P rational" is essential. Let

B = R[xϋ, xlf x2]/(Xo +' 2X1 ~ 2X,X2 + Xξ) ,

p = (xt - x2); we have B/p = R[X0, JfJ/(X0

2 + Xΐ), hence P is a non-
rational closed point on V. By strightforward computation V is a
regular conic and pn is primary for all n since p is generated by a
regular element of B, but V is obviously not a linear space.

EXAMPLE 2. In Corollary 3.2 the condition " P regular" is essen-
tial. Let B = k[x0, xlf x2] = k[X0, Xly X2\I(X,X\ ~ XI), p = (xl9 x2); it is
clear that p2 is primary.

REMARK. In Theorem 3.3 the condition "dim Y> 0" is essential
because if dim Y = 0 we have the counterexamples given by Theorem
3.1.

EXAMPLE 3. Let

B = k[xOf , χ<]l(XoX* - X*X« X,Xt - Xs\ ^0X3 - I A ) ,

p — (x2, xz, x4). In this case the hypotheses of Theorem 3.3 are full-
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filled, save "X complete intersection", and p2 is not primary.

EXAMPLE 4. (see [2]). Let X = PI, p the prime ideal defining
the Veronese surface i.e. the prime ideal generated by the 2 by 2

Ύ Y Ύ
minors of the matrix M = \X1 Xz X4 . In this case the hypotheses

\X2 X4 Xj
of Theorem 3.3 are fullfilled, save "Y complete intersection", and p2

is not primary. In fact if d — det M, dgp2 (for i = 0, , 5).

EXAMPLE 5. Let B = k[x0, x19 x2, xz] = k[XOf Xlf X2, Xz[l{XιX2 - XI),

p = (x2, a?3). In this case the hypotheses of Theorem 3.3 are fullfilled,
save "Sing(X)f! Γ £ Sing(Γ)", and p2 is not primary.

EXAMPLE 6. Let

B - k[x0, , x7]/(XQX2 + X,X3 + XI XQX5 + X,X6 + X7

2) ,

P == fat ###,^7) In this case the hypotheses of Theorem 3.3 are
fullfilled hence p2 is primary, but 1 = dim Y < codim X = 2 and we
are going to prove that ps is not primary. In fact if we call fx —
X0X2 + XtX3 + XI f2 - X0X5 + X,X6 + X2

79 from the identity

-Σ.Λ ~ Xzf* = Xi(^3X5 ~ XA) + X5X4

2 - X2X7

2

we get x±(x^x5 — x2x6) = x2x
2 = xbxl e p* wi th xzx5 — x2x6 e )̂3 and x1 g p.
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