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EMBEDDING METRIC FAMILIES

J. F. MCCLENDON

The embedding of a metric space in a Banach space plays
an important role in metric space theory. In the present
paper we consider the problem of embedding a metric family
X—*D in a Banach family. We obtain results under various
hypotheses: (1) X a metric fiber bundle, (2) X an extended
metric family, and (3) X has the coarse topology for a family
of local cross-sections.

In §1 the basic definitions are given and a result is
proved for metric fiber bundles. In §2 some general condi-
tions are given which suffice for embedding. § 3 studies
family metrics which are restrictions of continuous pseudo-
metrics. §4 describes the topology of a metric family in
terms of a given family of local sections. In §5 a Banach
family is associated with a given map and in § 6 this is used
to embed a locally sectioned family. In §7 an example is
described relating to the question of embedding in a product
family and also applying the techniques of § 6 in a different
way.

1. Definitions* In this section various definitions are given
and the embedding question is posed. The question is answered in
the case of metric fiber bundles.

Suppose p:E-+D a function. Define Ed = E(d) = p~ι(d), for
dzD,Es = E(S) = p-'iS) for SdD,EXDE = {(e, β') e E x E\pe = pe'}.
A continuous function will be called as map.

DEFINITION 1.1. A (continuous) [pseudo] metric family is a pair
(p: E-+D, m) where p: E-+D is a map, m: EXDE~-+R is an upper
semi-continuous (continuous) function, and m | E(d) x E(d) is [pseudo]
metric.

Usually we speak of E as being a metric family rather than
(p} m). Recall that a function u:Z—+R from a topological space Z
to the real numbers R is called upper semi-continuous provided that
ίΓ^-oo, 6) is open for all beR. Note that the "metric family" of
[2] is called a continuous metric family here.

Suppose p: E—+D a map. A map s: U—+ E is called a local section
of p if U is open in D and ps — identity (on U). s gives

if E is a metric family. So B(s, r) = {e e E\m{e, spe) < r) is open in
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E since it is (ra (l, sp))~\—<^, r). Let Sf be the family of all local
sections of p and & = &{&) = {JB(s, r ) | r > 0, s e y } . If

is dense in E(d) then it follows as in [2, §2] (see, also, §4) that &
is a basis of a topology on E. If this is the same as the given
topology of E, we say that E is a coarse (continuous) [pseudo]
metric family. The density condition is always assumed when the
word "coarse" is used.

Let p:E—*D be a map and suppose E(d) a vector space and
a: E XD E—+E, a(e, e') = e + e', b: R x E—*E, δ(c, β) = cβ, are both
continuous. Then i? is called a vector family. Suppose each E(d)
is a [pseudo] normed vector space with [pseudo] norm n(d): E(d)—>R.
If n: E—*R, w|i£(ώ) = n(d), is an upper semi-continuous (continuous)
function and the relative topology on E(d) from E is the norm
topology from n(d), then E or (p:E—>D, n) will be called a (con-
tinuous) [pseudo] normed vector family. Define m: EXDE—+ R by
m(e, β') = w(e — e'). This makes i? into a (continuous) [pseudo] metric
family.

Let p:A-+D and q:B-+D be pseudo metric families. A map
/: A —> B with qf = p will be called a D-map. It is an isometric
embedding if it is a topological embedding (homeomorphism onto
f(A)) and an isometry on each A(d). We will consider the following
question. When can a given metric family be embedded in a coarse
normed vector family? There are some related questions, not all
to be considered in the present paper. If such an embedding is
possible, can the vector family be taken to be a product family? a
vector bundle? Can a bound be put on the dimensions of the fibers?
In the present paper we usually assume A is a coarse metric family.
In a later paper we will consider cases where this is not true.

Suppose that M is a metric space with bounded metric m. Let
B(M) be the set of bounded maps M—>R with norm

Then M—>B(M), x~+m(x), m(x)(y) = m(x, y), is an isometric embedding.
If D is any space then D x M—+D x B(M), (d, x)-^(d1 m(x)), is an
isometric embedding of continuous metric family D x M in the con-
tinuous normed vector family D x B(M).

More generally, let X—*D be a metric fiber bundle (group action
on fiber preserves metric) with fiber M and group G. Then G x B(M)—*
B{M), (g-f)(x) = f{gx), gives an action of G on B(M). Then we can
form the associated bundle BD(X) -* D9 BD(X) = U B(X{d)), there is
a natural isometric embedding X—+BD(X) which in the fibers is
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M-+B(M) as above.
Note that for any metric family X—>D it is possible to form

the set BD(X) and get a 1 — 1 function X—+ BD{X). It would be
interesting to know necessary and sufficient condtions, or even different
sufficient conditions, under which BD(X) can be topologized in such
a way as to make X—»BD(X) an embedding of the desired type.

2* Embedding conditions* Assume that (a: A—>D, m) and
(b:B—+ D, m') are pseudo-metric families and /:A—>J5 is a D-
function. Here we consider some conditions on A, B, and /, and
some easy consequences of them.

1. / is isometric, i.e., each f(d) is isometric and / is 1 — 1.
2. If s is a local section of A then fs is a local section of B.
3. f(A) has a basis {B(fs, r)\r > 0, s a local section of A}.
4. A has the coarse topology.
5. B has the coarse topology.

THEOREM 2.1. // condidition 1 — 4 are satisfied then f is an
embedding.

Proof. Note first that Condition 1 implies that / is injective
and that the following two formulas are true

fB(s; r) = B(fs; r) Π fA

f-'Bifs; r) = B(s; r)

for any s: S—> A, S c ΰ , as = id. From 2, 3, and the second formula
we see that / is continuous. Similarly from 2, 4, and the first
formula we see that / : A —> f(A) is open.

THEOREM 2.2. If condition 1, 2, 4, and 5, are satisfied then f
is an embedding.

Proof. We need to show Condition 3. Let 6 — f(a) e B(t; r),
t:W-+B a local section. Let da = d0, m'(t{d0), b) = r(l) < r(2) < r.
Select a local section s: U—+ A, d0 e U> m(a, sd0) < c = min {r(2) — r(l),
r - r(2)}. Then m'(/sd0, ίd0) ̂  m'(/sd0, /α) + m'(/α, ίd0) - m(βd0, α) +
m'(6, ίd0) < r(2) - r(l) + r(l) = r(2). So there is an open V, d0 e V,
and deV implies m'(fsd, td) < r(2). I claim b e B(fs \V,c)a B(t; r)
(which will prove 3). First m'(fsd0, b) = m'(fsd0, fa) = m(sdQ, a) < r.
Now suppose e e B(fs\V, c), be = de V. Then m'(e, tbe) — m'(e, td) <^
m'(e, fsd) + m'ifsd, td) < c + r(2) ̂  (r - r(2)) + r(2) = r. Hence
e e B(t; r).

3* Extended metric families* In this section we will study
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metric families which satisfy a strong extension condition and prove
two embedding theorems for them.

DEFINITION 3.1. (x:X —>D, m) is an extended metric family if
x is continuous and

(1) m: X x X —>R is a continuous pseudo metric
(2) m\X XD X is a, family metric.
Note that m is continuous if and only if it is upper semi-con-

tinuous. Also it is clear that an extended metric family is a continuous
metric family.

If m is actually a bounded metric on X and X has the metric
topology then X—>B(X) is an embedding so X—+Dx B(X) is an
isometric embedding into a product family.

In general if we take m be bounded, as we can, then v: X—>
D x B(X), x —• (xx, m(x)), m(x)(y) = m(x, y), is continuous and 1 — 1
(since it is fiber preserving and 1 — 1 on each fiber (since m\X(d) x
X(d) is a metric)). This proves the following theorem.

THEOREM 3.2. Suppose that {X-+D, m) is an extended metric
family. Suppose that X is compact and D is Hausdorff. Then v
is an isometric embedding of X in the product family D x B(X).

THEOREM 3.3. Suppose that (X—+D,m) is an extended metric
family. Suppose also that it has the coarse topology. Then v is
an isometric embedding of X in the product family DxB(X).

Proof. This will follow from Theorem 2.2. We have that v is
1 — 1, isometric, and continuous. This gives Conditions 1 and 2.
Condition 4 is assumed and Condition 5 is true because D x B(X)
is a product family.

4* Families of local sections* Let X be a set, D a topological
space, and x: X—+D a function. Suppose m: XXD X—»22 is a function
such that the restriction is a [pseudo] metric on X(d) for all d e D.
Let y be a family of local sections of x, i.e., functions s:W—>X
where W =W(s) is open in D and xs = identity on W. Assume
{s(d)\seS^} is dense in X(d) for all d eD. For s, s' e£f, define
u = u(8, 8'):W(8) n W(s') — R by u(d) = m(s(d)f s'(d)). Also for s e &;
W open in D, define B(s; r) = B(s; r, m) = {xeX\m(x9 sxx) < r}.
Write B(s\W; r) for B(t; r) where t = restriction of s to W Π W(s),
so B(s\W;r) = B(s; r) n x'W). Let & - ^ ( ^ m ) - {B(s\W;r)\se

Sζ r > 0, W open in D). Theorems 4.1 and 4.2 below should be
compared to [Fell, 1, Prop 1.6, p. 10].
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THEOREM 4.1. Assume u(s, s') upper semi-continuous (continuous)
for all s, s' e<9: Then

(1) & is a basis for a topology ^~ = ^(S^ m) on X. x is
continuous and open.

(2) Each s is a continuous local section.
(3) m is upper semi-continuous (continuous).
(4) (X, S^m) is a coarse [pseudo] (continuous) metric family.
(5 ) Let t:U—*X be a function, xt = id, U open in D, then
(a) t continuous implies u(s, t) upper semi-continuous (con-

tinuous) all s e y
(b) u(st t) upper semi-continuous all s e £f implies t is continuous.

Proof of 1. Suppose xeB(s\W; r)nB{s'\W; r'\ xx = d, m(sdf x) =
r(l) < r(2) < r, m(β'd, α?) - r(l)' < r(2)' < r'. Let α - min (r(2)-r(l),
r - r(2), r(2)' - r(l)', r' - r(2)'). Select t 6 ^ with m(x, td) < a. Let

u = u(s, ί), ^ - %(«', *'). ̂  = " - 1 ( - °°, K2)) n ^ ' " 1 ( - oof r(2)') n TΓ n w.
It is not hard to show x eB(t\ U; a) aB(s\W; r) Π B{s'W'\ r% (cf.
proof of 2.2).

Proof of 2. s~ιB(t \W;r) = {d\m(s(d)f t(d)) < r) n W = u- χ (- oo, r ) n
TΓ, w = ^(s, ί) So s e y implies s continuous.

Proof of 3. If m is upper semi-continuous use α = — oo in what
follows. Let (#', y') e m~\a, b) = {(a?, y) | xx = %, α < m(#, y) < 6}. Let
m(x\ y') — c, xx = d' = % ' . Select r, α', and 6', such that a < α' —
r < α' < c < 6' < 6' + r < 6, and set z = min ((&' - c)/2, r/2, (c - α')/2).
Select ί , ί ' e ^ with m(^', id') < «, m(^', ί'd') < s. Let

TΓ - u(t, tTW, V).

It is not hard to check that (x'f yf) e B(tW; r/2) XD B(t'\W, r/2) c
m'^a, b). So m-1(α, 6) is open and m is upper semi-continuous
[continuous].

Now 4 follows from 1, 2, and 3, and 5 is easy.
It is interesting to see from part 5 that if u{s, sf) is continuous

for all s, sr e SS then if t: U—> X, xt — id, C7 open, we have that u(s, t)
is upper semi-continuous if and only if it is continuous. Theorem
4.1 permits us to complete a metric family and preserve whatever
condit ions we had. Let X(d)' be the completion of X(d) and i: X(d) —>
X(d)' the embedding. Set X' = (J W giving

X >Xr

\ * /

D
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The [pseudo] metrics m'd give m': X' XD X' -> R. Let S?' = {is \ s e
Then {8'(d)\8'esr'} is dense in X(d)'. Also u(s', t') = u(s, t) so the
hypotheses on X carry over to X'. We give X' the topology from
£f'. Conditions 1, 2, 4, 5, of §2 are clear so i is an isometric
embedding.

Let E be a set, D %, topological space, and e:E—>D a function.
Assume E(d) a [pseudo] normed real vector space. Let y be a
given family of local sections of e. Let s + &' and cs be defined
by operating on values, dom (s + s') = dom (s) Π dom (s'). The function
φ: φ —• j£ is a local section. Suppose

(51) {s(cZ)J3 6^f dedom (s)} is dense in E(d)
(52) s, 1 6 ^ imply s + ί e y
(53) s e y implies c s e ^ all ceR
(54) s e y implies the function d —+n(s(d)) is upper semi-con-

tinuous (continuous). Define m: E XD E~> J? by m(e, β;) = w(e — β')
and ^ = &(&>) = {B(s\W; r)\seS1 W open in D, r > 0}. The
following theorem should be compared to [Fell, 1, p. 10].

THEOREM 4.2 (1) & is a basis for a topology on E. e is con-
tinuous and open.

(2) E is a [pseudo] (continuous) normed vector family.

Proof. Lets,te^u = u(s, ί), u(d) = m(s(d)f t(d)) = n((s - t)(d)).
By S2 and S3, s — te£^ and by S4, u is upper semi-continuous
(continuous) so by 4.1 we see that & is a basis for a topology on
E and e is continuous and open. Also each s e £f is a continuous
cross section. It is clear that each E(d) gets the [pseudo] norm
topology. It remains only to show addition and scalor multiplication
are continuous. This is not difficult (cf. proof of 2.2).

The completion process above gives for E as in Theorem 4.2 a
D-map E-+E' where E' —> D is a [pseudo] (continuous) complete
normed vector family = (definition) a [pseudo] (continuous) Banach
family.

5* A metric family associated with X—>D. Recall that we can
associate to any topological space Z the vector space Ba{Z) of all
bounded real valued functions with norm M(b) = sup {| 6(2) 12 eZ) and
metric d(b, b') = M(b — δ') Let B(z) be the sύbspace of continuous
functions and BS(Z) the subspace generated by the upper semi-
continuous functions. Below let B(Z) stand for any of these.

Let x:X-+D be a map. Define P(d) = lim {B(X(U))\ UB d, U
open} as a set. So if e e P(d) then e = [F](d) (equivalence class of
F at d) where F: X(U)->R is a bounded function. Also [F], [G] e



EMBEDDING METRIC FAMILIES 487

P(d), [F] = [G] iff F\X(W) = G\X(W), some open W, d e W. Now
define P{x) = P(X) = U {P(d)\deD} as a set (a disjoint union). Let
Fe e e P and define n(e) = inf {M(F\X(U))\deU, U open}. For Fe
B{X{W)) define s = s(F):W — E by β(F)(<2) - [F](d) and let ^ =
{s(F)\FeB(X(W))f W open in D}. Let & = {£(s|TF; r)\se^r>OfW
open in D}.

THEOREM 5.1. & is a basis for a topology on P = P(X)-P-^D
is a pseudo normed vector family.

Proof. If eeP(d) then e = [F](d) = s(F)(d), proving SI of §4.
s + sf = s(JF) + s(F;) = sCF + ί7'), cs - cs(F) - s(cF) prove S2 and S3.
Suppose s = s ^ ) given and %: W—*R, u{d) = ^(s(d)) = w([F](d)) =
inf {Λf(F|X(?7))|d€ ?7, J7 open}. Suppose u(d') < r. Select V open,
d'e F, with M(F\X(V)) < r. Then for any

deV, n(s(d)) ^ M(F\X(V)) < r .

Thus u is upper semi-continuous.

Now we can complete P(X) to P\X) and form iV(X) = P\X)\&
where β^O iff ?ι(β) = 0. This gives N(X)—>D a Banach family.

Note that in general n is only upper semi-continuous no matter
which B is used (it may be continuous if X—>D is nice).

The above process generalizes to treat FD{X, Y)—+D where Y—+D
is any normed vector family (Y = D x R above) or even any metric
family.

6, Embedding coarse metric families* In this section we assume
that (X—+D, m) is a metric family with a local section through each
point, X has the coarse topology, and m is bounded.

Let P, P'y N, be the families constructed in §5. If X ^ ΰ is a
continuous metric family assume B(X(U)) was used. If X-^D is
only a metric family assume BS(X(U)) was used. Write B in both
cases. Let n denote the norm and K the metric for any of these
families. For F e B(X( U)) let [F](d) be the equivalence class in P(d) or
P'(d) and (F)(d) the class in N(d). For a local section s: U—>X, define
m(s): X { U ) - * R b y m(s)(y) = m ( y , s x y ) s o m{s) e B ( X ( U ) ) . F o r x e X
select a local section s through x and define u(x) — (m(s))(d) e N(d).
The fact that u is single valued follows from the lemma below.

THEOREM 6.1. u:X—+N is an isometric embedding.

LEMMA 6.2. Let s and t be local sections and d in dom(s) and
dom (t). Then
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K([m(s)](d), [m(t)](d)) - m(s(d), t(d)) .

Proof of 6.2.

K([m(s)](d), [m(t)](d)) = inf sup |(m(s) - m{t))(x)\
U3d xeX(U)

= inf sup ( sup I m(s)(x) — m{t)(x) \) .
Usd d'eU \xeX{d') I

But

sup I m(s)(x) — m(t)(x) | = sup | m(sxx, x) — m{txx, x) \ — m(sd', tdf)
xeX(d') xeXW)

and d —> m(sd, td) is upper semi-continuous, proving the result.

Proof of 6.1. Condition 1 of §2 follows from 6.2. The other
conditions are also met so 6.1 follows from 2.2.

Γll give a result on embedding X in P\ The proof given seems
to require an extra assumption on X. Let a: P' —* N be the natural
projection. Define a multifunction F:X~-+P' by F = a^u. Then
pF — x: X-+D and F is lower semi-continuous since a is continuous.
Furthermore, it is easily seen that F(x) is convex and closed in
P\d) for each x, d = &B. Thus 5.1 of [2] applies and gives a con-
tinuous selection u:X—>P\ provided that X is paracompact. u is
isometric because v is. Thus the theorem below follows from 2.1.

THEOREM 6.3. X paracompact. Then u: X~-^P' is an isometric
embedding.

7. An example* Here an example will be described which
illustrates the problem of embedding in a product family. It also
shows that the embedding method of 6.3 applies in other situations.

Let T = / x R as a set where I is the unit interval. Define

N(x, y, r) =

((x — r, x + r) x (y — r, y + r)) Π T x Φ 0

(usual nbhd.)

T x = 0,r>l

(0, y) U {(x, y')\0 < x <r, \y - y'\<xr x = 0, r ^ 1 .

These form a basis for a topology in T which is finer than the
Euclidean topology. In fact, T is a well-known example of a space
which is completely regular but not normal, p: T —> I, p(x, y) = x, is
continuous. Define s(y):I—>T by s(2/)(̂ ) = (#, ?/). Then s(y) is a
continuous section. Now define m:TXzT~>R by
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m(x, y, x, y1) =

mm{\y — y'\/x, 1} x Φ 0

1 x = 0,y Φ y'

0 α? - 0, y = y' .

It is not hard to see that m is continuous. In fact, Γ—>/ is a
coarse continuous metric family with a global section through each
point.

Now define F(y): T~>J2 by F{y)(x', y') = m((x', y'\ s(y)(x')) =
m(xf, y\ x', y). So, in the notation of § 6, F(y) = m(s(y)). Define
u:T-+P' by u(x, y) = [F(y)](x). Condition 1 of §2 follows just as
in §6. Conditions 4 and 5 are clear. In the notation of §5, us(y) =
s(F(y)) so us is a continuous section of P' establishing Condition 2.
Now Theorem 2.2 shows that u is an isometric embedding. Note
that T is not paracompact.

Finally we note that there is no embedding T —> I x M into a
product family, M metric, since this would force T to be normal.
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