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ON THE ASSOCIATIVITY AND COMMUTATIVITY
OF ALGEBRAS OVER COMMUTATIVE RINGS

KWANGIL KOH, JIANG LUH AND MOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a
commutative ring R A is left scalar associative if for
each a,b, ce A there exists ae R depending on a,b, c such
that (ab)c = aa(bc). A right scalar associativity is defined
similarly. A is scalar commutative if for each α, b in A,
there exists a e R depending on a, b such that aab = ba. In
this paper, it is shown that if A is right and left scalar
associative and scalar commutative then (ab)c — a(bc) and
ab — ba are nilpotent for every α, b and c in A. If 1 € A,
then [(ab)c — a(bc)]2 = 0. If R is a principal ideal domain
then A is associative and commutative.

Introduction* Coughlin and Rich [1] and Coughlin, Kleinfeld
and Rich [2] have studied algebras A over a field F with the property
that for any x, y, z e A there exists aeF depending on x, y, z such
that (xy)z = ax(yz). They show that if A has a nonzero idempotent
then this condition implies associativity. Rich [4] has shown that
if for each x,yeA there exists aeF depending on x, y such that
xy — ayx, then A is either commutative or anti-commutative. In
this paper we study related conditions for an algebra A over a com-
utative ring R. If either A has no zero divisors or if A has identity
element and R is a principal ideal domain, then we can still prove
associativity and commutativity under the respective conditions. In
general with some additional minor constraints we are able to prove
the nilpotency of associators and commutators in A.

1* Preliminaries. Throughout this paper N will denote the set
of natural numbers and Z+ will denote the set of positive integers.
R will denote a commutative, associative ring which may or may
not have an identity element. A will denote a not necessarily
associative ring which may or may not have an identity element.
We assume that A is an algebra over R in the sense that for all
a, b e A and a, β e R, (a + β)a — aaΛ- βa, a{a + b) = aa + cώ, (aβ)a =
a(βa), and a(ab) — (aa)b = a(ab). As usual if a,b,ce A, the assocίator
(a, by c) — (ab)c — a(bc) and the commutator [a, b] = ab — ba. We will
be concerned with the following generalizations of concepts introduced
in [1], [4].

DEFINITION 1. A is left scalar associative if for each a, 6, c e A
there exists a e R depending on a, b, c such that (ab)c = aa(bc).
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2. A is r i g h t s c a l a r a s s o c i a t i v e if f o r e a c h a,b, ceA t h e r e e x i s t s
aeR depending on a, b, c such that a(bc) = a(ab)c.

3. A is scalar associative if it is both right and left scalar
associative.

4. A is scalar commutative if for each a, b e A there exists
aeR depending on a, b such that ab = aba.

LEMMA 1.1. (i) If A is scalar associative, then for all a, b, ce
A, aeR, aa(bc) = 0 if and only if a(ab)c = 0. Also, (ab)c — 0 if
and only if a(bc) == 0.

(ii) If A is scalar commutative, then for all a, be A, aeR,
aab = 0 if and only if aba — 0. Also, ab = 0 if and only if
ba = 0.

LEMMA 1.2. (i) Suppose A is scalar associative. Let x, y, z,ue
A, a, βeR such that (x, y, u) = 0, (xy)z = ax(yz) and x(y(z + u)) —
β(xy)(z + u). Then xyu — axyu — βxyu + aβxyu = 0.

(ii) Suppose A is scalar commutative. Let x, y, ue A, a, β eR
such that yn = uy, yx = axy and (x + u)y = βy(x + u). Then yu —
ayu — βyu + aβyu = 0.

Proof, (i) We have £(#(2 + u — α/3z — βu)) = 0 and hence by
Lemma 1.1, (##)(£ + u — aβz — βu) ~ 0. Also aβ(xy)(z + u) = (xy)z +
axyu. Combining these we have the result.

(ii) We have (x + u — aβx — βu)y — 0. Hence by Lemma 1.1,
y(x + u — aβx — βu) = 0. Also aβy(x + u) = yx + α#w. Combining
these we have the result.

2* Associators and commutators* The main purpose of this
section is to study nilpotency of associators and commutators.

THEOREM 2.1. Let A be scalar commutative. If either A has
an identity element or is scalar associative, then the square of every
commutator in A is zero.

Proof. Let x,yeA. There exists aeR such that yx = axy.
First assume A has an identity element 1. Then there exists βeR
such that (x + l)y = βy(x + 1). By Lemma 1.2 we set y — ay — βy +
aβy = 0. Hence y(x + 1) — ay(x + 1) = βy(x + 1) - aβy(x + 1) =
(x + l)y — a(x + l)y. This implies that (xy — yxf = {xy — axyf = 0.

Next assume A is scalar associative. There exists ΊeR such
that (x + #)# = Ύy(x + 2/). By Lemma 1.2, y2 - ay2 = oy - αry?/2.
Multiplying the first equation by a and then subtracting from
itself, we get xy — axy = 72/x — aT̂ /a?. Now there exists δ e R such
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that y(yx) = δy2x. So y(xy — axy) = Ίy(yx) — aJy(yx) = δ(7y2-aΎy2)x =
% 2 - tf2/2)tf = 2/(yα?) + αy(ya?) = #1/(71/) - a2y(xy). Hence

α8a?2/) = 0. By Lemma 1.1, (ay - 2/#)2 = (xy - axy)2 = 0.

THEOREM 2.2. Suppose A has an identity element 1 αraZ is
scalar associative. Then the square of every associator in A is zero.

Proof. Let x, y, z e A. There exist a, β e J? such that
and 05(2/(3 + 1)) = β(xy)(z + 1). By Lemma 1.2, xy - axy

So

(xy)(z + 1) - α(a?i/Xί? + 1) = /S(^)(^ + 1) - aβ(xy)(z + 1)
= x(y(z + 1)) - αa?(y(2 + 1)) .

Thus (x, y, zf = 0.

THEOREM 2.3. Suppose A has no zero divisors.
( i ) If A is scalar commutative then A is commutative.
(ii) If A is scalar associative then A is associative.

Proof, (i) Let x9yeA. There exist a, βeR such that yx =
axy and (x + y)y = £y(α; + #). By Lemma 1.2, (y - ay)(y - βy) = 0.
So y = ay or 2/ = βy. In either case aψ = yx.

(ii) Let w, v9 we A be nonzero. Let aeR be such that w —
cm(tw). Let 10' € A. We make the following claim.

(1) If [w, w'] Φ 0 , then (uv)w' = au(vw') .

There exists 7 e R such that (uv)wf = Ύu(vw'). Suppose (1) is not
true. Then au Φ Ίu. There exists βeR such that (uv)(w + wf) =
βu(v(w + w')) So au(vw) + Ύu(vw') = βu(vw) + βu(vw'). Since A
has no zero divisors we get αw + 7w' = /3w + /3w\ Hence (α — /9)w =
(/S — Ύ)w'. Thus w' commutes with (a — β)w and w commutes with
(/3 - Ύ)w'. So,

(a - /S)[^, w'] = [(a - β)w, w'] = 0;

(β - Ύ)[w', w] = [(/9 - 7)n;', w] = 0 .

Hence

(a — /9Mw, w'J = 0 = (jS — 7)i6[w, wf] .

Since [w, ̂ '] Φ 0 we get (α — β)u = 0 = (β — 7)w. Hence α^ = 7%,
a contradiction. So (1) is true. Similarly, it can be seen that if
u', v' 6 A, then
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[u, u'] Φ 0 implies {u'v)w = au'{vw)

[v, v'\ Φ 0 implies (uv')w = au(v'w).

Next we show that for all x e A, x-x2 = #2 x. Suppose not. Then
there exists x e A such that [x, x2] Φ 0. So a? Φ 0 and there exists
δeR such that (a ί φ = δx(x-x). By (1), (2) we get {xz-x)x = δx2(cc x),
(# ce2)# = S#(#2-x) and (α? x)x2 = δx(x-x2). So (cc2 #)# = δx2(α? x) =
δ(x x)x* = δ2x(x x2) = δx(δx-x2) = &φ 2 a?) - (x x2)x. This contradiction
shows that x2 x — x-x2 for all xe A. Now let α, 6, c6 A, a, b, c Φ 0
such that (α, 6, c) = 0. Let c' e A. There exist μ, veR such that
(αί>)c' — μa(bc'), a(b(c' + c)) = v(ab)(c' + c). By Lemma 1.2 and the
fact that A is a domain we get (a — μα)(α — yα) = 0. So a = ̂ α-
or α = vα. In either case (α, δ, c') = 0. By duality we can therefore
conclude that for a, b, CΦO, (a, 6, c) = 0 implies that(α', 6, c) = (α, 6', c) =
(α, 6, c') = 0 for all ar, b\ c' e A. Starting with the fact that x-x2 =
x2-x for all a e i , we can use the above repeatedly to conclude that
A is associative.

If I is an ideal of A which is also a subalgebra, then A/1 is
also an algebra over R. If A is scalar associative (resp. scalar
commutative) then so is A/I. If A is scalar associative and xe A,
then by Lemma 1.1, the nth power of x is zero in one association
if and only if it is zero in every association. Hence it makes sense
to talk about nilpotent elements in A.

THEOREM 2.4. Let A be scalar associative and scalar commuta-
tive. Then every associator and every commutator in A is nilpotent.

Proof. The hypothesis implies that the nilpotents of A form an
ideal and a subalgebra. So without loss of generality, let A have
no nilpotent elements. By Theorem 2.1, A is commutative. Call an
ideal / of A prime if abel implies ael or be I. We now follow
some well known ideas (cf. [3; Chapter 4]). Let xe A, x Φ 0. Let
T be the groupoid generated by x. Then 0 g T. By Zorn's lemma
there exists a maximal ideal P of A not intersecting T. We claim
that P is prime. Suppose there exist α, b e A such that a, b$P but
abeP. Let Pι — {na + ra + u\neN, re A, ueP). Then by commu-
tativity and scalar associativity, Pλ is an ideal of A containing P
and a. Hence P f] T Φ 0. So there exists dλ — n& + rxaeT for
some nλ eN9 r1e A. Similarly there exists d2 = n2b + r2beT for some
n2eN, r2e A. So dtd2e T. By commutativity, scalar associativity
and the fact that abeP, we get dji^eP. This contradiction shows
that P is a prime ideal. Hence the intersection of all prime ideals
is zero. We claim that each prime ideal P is a subalgebra. For
let x e P. Then for any a e R, (ax)(ax) = (a2x) x e P. Hence ax e P.
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Thus A is a subdirect sum of algebras without zero divisors, each
of which scalar associative. By Theorem 2.3, A is associative.

3* Algebras with identity elements* Throughout this section
we will assume that R has an identity element 1 satisfying l α = a
for all aeA and that A itself has an identity element which will
also be denoted by 1.

LEMMA 3.1. A is right scalar associative if and only if A is
left scalar associative if and only if A is scalar associative.

Proof By the dual nature of the conditions we may assume A
is left scalar associative and prove that A is right scalar associative.
Since A is left scalar associative we have that for any x, y, ze A,
x(yz) = 0 implies (xy)z = 0. Now let a, 6, c e A. There exist a, βe
R such that (ab)c — aa(bc), and ((a + l)b)c = β(a + l)(bc). Hence
aa(bc) + be = βa(bc) + βbc. Thus (aa + (1 - β)Ί - βa){bc) = 0. So
((aa + (1 - β)-1 - βa)b)c = 0. It follows that (a - £)(α&)<? = (β-ί)bc =
(α - β)φe). So (/3 - l)α(6c) = (α - β)aφc) = (a- β)(ab)c = (/3 - l)6c.
Hence (/3 - l)(α + l)(δc) - α[(/3 - l)6c] + (/S - l)6c - a[(β - I)α6c] +
(β - l)bc = (β - l)aa{bc) + (β - l)6c = (β - l)(ab)c + (β - l)bc =
(/5 - l)((α + l)b)c. Consequently, ((α + l)δ)c = β(a + l)(bc) = (^ - 1).
(α + l)(δc) + (α + l)(6c) = (^ - l)((α + l)b)c + (α + l)(6c). Thus
(α + l)(δc) = (2 — /S)((α + l)δ)c. Since a, b, c are arbitrary we obtain
that A is right scalar associative.

Suppose R is a P.I.D. (Principal Ideal Domain) and aeA. Then
we define order of a, o(α), to be the generator of the ideal / =
{a I a e R, aa — 0} of R. Thus o(a) is unique up to associates in R.
o(α) = 1 if and only if a = 0.

LEMMA 3.2. Suppose R is a P.I.D.
( i ) If A is scalar associative, a, beR and o(ab) = 0 then

(α, b, c) = 0 /or αii c e A.
( i i) If A is scalar commutative, beR and o(b) — 0 then b is

in the center of A.

Proof, (i) Let ceA. There exist a, β eR such that (ab)c —
aa{bc) and a(b(c + 1)) = β(ab)(c + 1). By Lemma 1.2, (1 - a)(l - /3)αδ =
0. So a = 1 or /3 = 1 and thus (α, 6, c) = 0.

(ii) Let be A. There exist a, βeR such that ba — aab and
(a + 1)6 = £&(α + 1). So by Lemma 1.2, (1 - a)(l - β)b = 0. Hence
a = 1 or b — 1 and thus αδ = ba.

LEMMA 3.3. Suppose R is a P.I.D. and A is scalar associative.
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Assume further that there exists a prime p e R, m e Z+ such that
pmA = 0. Then A is associative.

Proof. Let J^ = {(x, y)\x, y eA and (x, y, z) = 0 for all z e A},
= {(x, y)\x, yeA and (u, x, y) = 0 for all ueA} and J ^ = stf[Π

Let x, y e A. Let o(xy) = pk, ke N. We prove by induction on
fc that (x, y) e *Szf. If k = 0 then xy = 0 and by Lemma 1.1, (x, y) e
S/i So we assume fc > 0 and that the statement is true for I < fc.
We first show that for any zeAy (x, y, z) Φ 0 implies (x, yz, w) = 0
for all we A. So let (x, y, z) Φ 0. There exist a, βeR such that
(xy)z = ax(yz) and ((x + 1)?/)̂  = /3(x + l){yz). So αx(#z) + 2/3 = βx(yz) +

. Hence (a — β)x{yz) ~ (β — l)yz. If (α: — β)x(yz) = 0, then
= yz whence (x, y, z) = 0, a contradiction. So (α — β)x(yz) Φ 0.

In particular α — β Φ 0 and a — β^δp* for some teN,deR, (S, p) = 1.
If £ ̂ > k then since o(x̂ /) = pk we would get (α — β)xy = 0. But then
(α — β)(xy)z = 0 which by Lemma 1.1 implies (a — β)x(yz) — 0, a
contradiction. Hence t < k. Now since pk(xy)z = 0we get pkx(yz) =
0. So p*"-*Ge - l)i/3 = pk3x{yz) = 0. Let o(t/z) = j>*. We claim that
i ^ fc. For suppose i < k. Then by induction hypothesis (#, s) e
J ^ £ j^J. In particular (x, y, z) = 0, a contradiction. So i ^ fc.
Hence p f c |p*|p^^/S - 1). Thus p*\β — 1 and /3 - 1 = pιΊ for some
ΎeR. So p*[δa?(2/«) - Ύyz] = 0. Therefore j>*[(5a? - Ύ-l)(yz)] = 0. By
induction hypothesis (δx — 7 1, 2/3) e J ^ £ J^Γ. Hence for all w eA,
(δx — 7 1, j/3, w) = 0. Since (7-1, yz, w) = 0 we get δ(x, |/«, w) =
(δa?, 1/3, w) = 0. Since (δ, p) = 1, there exist μ, v e R such that μpm +
vδ = 1. So (#, 3/«, w) — vδ(x, yz, w) = 0. Thus we have shown that

( 3) (x, y, z) φ 0 implies (x, yz, w) = 0 for all ^ G A .

Now we proceed to show that (x, 1/) 6 J ^ . For suppose not.
Then (x, y,u)Φθ for some ueA. Then we also have (x, y, u + 1) Φ 0.
So by (3) we get (x, yu, w) — 0 = (a?, 2/w + 2/, w) for all w e A. This
implies (x, ί/, w) — 0 for all w eA. In particular (x, #, u) — 0, a con-
tradiction. This contradiction shows that (cc, /̂) 6 j^J. A right-left
dual argument can be given to show that (x, y) e J ^ . Hence (x, y) e S/.
This completes the induction step.

LEMMA 3.4. Suppose R is a P.I.D. and A is scalar commutative.
Assume fuyther that there exists a prime p e R, m e Z+ such that
pmA = 0. Then A is commutative.

Proof. Let C be the center of A. Let x 6 A and o(x) = pk, ke
N. We prove by induction on fc that xeC. If fc = 0, then x = 0
and there is nothing to prove. So let fc > 0 and assume the
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statement for I < k. We first show that for any y e A, [x, y] Φ 0
implies [yx, y] = 0. So let [#, y] Φ 0. There exist a, βeR such
that #2/ = ayx and (a? + l)y = /3i/(cc + 1). So α̂ /cc + y = β̂j/aj + βy.
Hence (α - β)yx = (β - l)y. If (α - β)yx = 0, then βy = y and
[#, /̂] = 0, a contradiction. So (a: — /3)?/# ̂  0. In particular a — /5 Φ 0
and α - /3 = p'S for some teN,δeR with (5, p) = 1. If t ^ fe, then
(α - β)yx = 0, a contradiction. So ί < &. Then pk'*(β - l)y =
pfe~*(α: — £)#& = p̂ T/a; = 0. Let o(y) = p\ ieN. If i < k then by in-
duction hypothesis y eC, a contradiction. So i ^&. Hence pfc | p* | p*"* x
(/S - 1). So p* I β - 1 and /9 - 1 = pιΊ for some ΎeR. So p*(δ|/a? -
Ύy) = 0 and by induction hypothesis <?τ/x — ΎyeC. In particular
[%£ — 7y, y] = 0. Since [7?/, #] = 0 we get d[yx, y] = [δya?, /̂] = 0.
Since (<?, p) = 1 there exist μ, veR such that μδ + ypm = 1. So we
get [yx, y] = μδ[yx, y] = 0. Thus we have shown that for all ye A,

(4 ) [x, y] Φ 0 implies [yx, y] = 0 .

Now we proceed to show that xeC. Suppose not. Then there exists
u e A such that [x, u] Φ 0. So [xf u + 1] Φ 0. By (4) we get [ux, u] =
[ux + x, u + 1] = 0. Hence [x, u] = 0, a contradiction. This proves
x G C completing the induction step.

THEOREM 3.5. Suppose R is a P.I.D.
( i ) If A is scalar associative, then A is associative.
(ii) If A is scalar commutative, then A is commutative.

Proof, (i) Suppose A is not associative. We will get a cont-
radiction. There exist x, y, z e A such that (x, y, z) Φ 0. So (x + 1,
y, z) Φ 0. By Lemma 3.2, o(xy) Φ 0, o(xy + y) Φ 0. Thus o(y) =£ 0.
Since (x, y + 1, z) Φ 0, the above argument shows that o(# + 1) Φ 0.
Hence o(l) ^ 0. Let o(l) = d Φ 0. Then d is not a unit and hence
d = 2>{1 pi* for some primes pw , ^ 6 A and some positive integers
iu •••, iί# Let At — {a\ae A, p1*a — 0}. Then each At is a nonzero
subalgebra of A and i ^ Λ φ φ Λ . Being subalgebras of A,
the A/s are scalar associative. Being homomorphic images of A,
all the A/s have identity elements. By Lemma 3.3, each At and
hence A is associative, a contradiction.

(ii) Suppose A is not commutative. We will obtain a con-
tradiction. There exists xeA such that xίC, the center of A. So
α + lgC. By Lemma 3.2, o(α0^0 and o(a; + l ) ^ 0 . Hence O(1)Φ0.

By using Lemma 3.4, we obtain as in (i), that A is commutative, a
contradiction.

EXAMPLE 3.6. If R is a field and A is scalar commutative then
even if A does not have an identity element, Rich [4] shows that
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A must be either commutative or anti-commutative. This is not
true for P.LD.'s. To see this let Aλ be the non-commutative, anti-
commutative algebra over Zδ given in [4]. As a Z-algebra Ax satisfies
xy — 4yχ, Now Z3 as a ^-algebra satisfies the same identity. So
the if-algebra A = Ax x Zz satisfies xy = Ayx. However A is not
commutative (since Ax is not) and A is not anti-commutative (since
Zz is not).
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