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ANALYTIC MAPS OF THE OPEN UNIT DISK
ONTO A GLEASON PART

KAZUO KISHI

The purpose of this paper is to show that in certain uni-
form algebras all analytic maps (for the definition see §2)
of the open unit disk onto a nontrivial Gleason part are
mutually closely related (Theorem 2), and that these maps
are isometries of the open unit disk with pseudo-hyperbolic
metric onto a nontrivial Gleason part with part metric
(Theorem 3).

The results of this paper are contained in §2. Some necessary
preliminaries are given in §1.

1* Preliminaries* A uniform algebra A on a compact Hausdorίf
space X is a uniformly closed subalgebra of the algebra C(X) of
complex valued continuous functions on X which contains the constants
and separates the points of X. Let ^£{A) denote the maximal ideal
space of A which has the Gelfand topology. Let / be the Gelfand
transform of / in A and let A = {/: / e A}.

For φ and Θ in ^£{A) we define

(1.1) G: G(φ, Θ) = s u p {!?>(/) - θ(f)\:feA9 \\f\\ £ 1} ,

(1.2) σ:σ(φ, θ) - sup {\φ(f)\: f eA, \\f\\ £ 1, θ{f) = 0} ,

where [|/(j = sup {\f(x)\: x e X), and we write φ ~ θ when G(φ, θ) < 2
(or, equivalently, σ(φ9 θ) < 1). Then ~ is an equivalence relation in
^(A), and an equivalence class P(m) = {φ: φ e ^€(A), φ ~ m}(Ξ2 {m})
is called the (nontrivial) Gleason part of m e ^/ί(A) (cf. Gleason [2]).
G(φ, θ) and σ(φ, θ) are metrics on P(m) (cf. Konig [5]).

If me^f(A) has a unique representing measure μm9 i.e., if m

has a unique probability measure μm on X such that m(f) = \ fdμm

for every / e A , then every φ in P(m) also has a unique representing
measure μφ. It is also known that φ in MA belongs to P(m) if and only
if there exist mutually absolutely continuous representing measures
μφ, μm for φ, m respectively; indeed, there exists a constants (0<c<l)
such that cμφ ^ μm and cμm ^ μφ.

For example, let A(D) denote the disk algebra of all continuous
functions on the closed unit disk D — {s: \s\ ^ 1} in the plane wich
are analytic in the open unit disk D. Then ^f(A(D)) can be identified
with JD, and the open unit disk D is one part. For t, seD, we see
that
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(1.3) G(t, s) = s u p { | / ( ί ) - f(s)\:feA(D), \\f\\ ̂  1} ,

(1.4) σ(t, s) - sup{\f(t)\:feA(D), ll/ll ^ 1, /(«) - 0}

(pseudo-hyperbolic metric) .t - s
1-st

Throughout the rest of this paper, we do not distinguish in
notations φe^€(A) from its representing measure when φ has a
unique representing measure, and we suppose that m e ^£{A) has
a unique representing measure m. Let Am = {/ e A; m(f) — 0}, the
kernel of a complex homomorphism m. Let H°°{m), HZ be the weak-
star closures of A, Am in L°°(m) respectively, and for 1 ^ p < oo let
Hp(m), Hζ be the closures of A, Am in Lp{m) norm respectively. If
2> belongs to P(m)(^ {m})9 then for 1 <; p < oo the spaces HF(m) and
Hp(φ) are identical as sets of (equivalence classes of) functions; as
Banach spaces, they have distinct but equivalent norms. Under the
same hypothesis, the Banach algebras H^im) and H°°(φ) are identical.

For a Dirichlet algebra Wermer [7] showed the following theorem,
and Hoffman [3] generalized Wermer's result to a logmodular algebra
(cf. Browder [1], Chap. IV). Functions in H°°{m) of unit modulus
are called inner functions.

THEOREM 1 (WERMER'S EMBEDDING THEOREM). Let Abe a uniform
algebra on a compact space X. Suppose that m e ^£{A) has a unique
representing measure m on X, and that the part P of m consists of
more than one point. Then we have the following.

(1) There is an inner function Z( — Wermer's embedding func-
tion) such that ZΈL\m) = Hi.

(2) If φeP, define Z(φ) — \z dφ. Then Z is a one-one map

of the part P onto the open unit disk D in the plane. The inverse

map τ of Z is a one-one continuous map of D onto P (with the

Gelfand topology).
(3) For every f in A the composed function /°r is analytic

on D.

Let φ be an element of the Gleason part P(m) of m in

Then there is a function h in L°°(m) such that φ(f) = \fdφ = \fhdm

for all / e A, so φ has a unique extension to a linear functional ^

on H°°(m) which is both multiplicative and weak-star continuous.

For any / e Hm(m) φ has the form

9%f) =
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We call φ the measure extension of φ in P(m).

PROPOSITION. Let A, m, P(m) and Z be as in Wermer's embedding
theorem. Let & = &*(m) be the set of measure extension φ of φ
in P(m). Then we have the following.

(1) & is the nontrivial Gleason part of m in ^f(H°°(m)).
(2) The map Z\& is a one-one continuous map of the part

& (with the Gelfand topology) onto the open unit disk D, and thus
the inverse map τ of Z\0> is a homeomorphism of D onto &.

Proof. If the Gelfand transform H°°(m) = H°° of H°°(m) is
restricted to the maximal ideal space Y of L°°(m), then H°° is a
logmodular algebra on Y (see Hoffman [3], Theorem 6.4, corollary),
and therefore every complex homomorphism φ of H°°(m) has a unique
representing measure on Y (see [3], Theorem 4.2). In particular,
m£^(H°°(m)) has a unique representing (normal) measure m on
the hyperstonean space Y. Then for every / in L^m) we have

\ fdm = I fdm .

And we can identify L°°(m) with C(Y) = L°°(m) (cf. Srinivasan-Wang
[6], pp. 221-223).

Now let Σ be the Gleason part of in. For φ in ^ , we have

(1.5) Φ(f) = \ fdφ = \ fhdm = ( fhdm (/ e #°°(m)) ,
JX JX JY

where h is a function in L°°(m) with a < h < b for some positive
constants a and b. From this we see that ψ is in Σ.

Conversely if λ is an element of Σ, then λ has a unique repre-
senting measure λ on Y, and we have for every / e H°°(m)

Mf) = ( fdX=\
jY JY dm

Since dXjdm is an element of L°°(m), there is a function h in
such that dλ/dm = h a.e. (dm). Hence we have

fhdm = \ fhdm
Y JX

and thus λ e ^ 5 . So we get ^ = Σ. Then the rest part (2) of the
proposition follows from Theorem 1.

2. Results.

DEFINITION. Let P(m) be the nontrivial Gleason part of m in
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the maximal ideal space ^{A) of a uniform algebra A. A one-one
continuous map p(t) of the open unit disk D onto P(m) (with the
Gelf and topolgy) is called an analytic map if the composition f(p(t))
is analytic on Df for every / in A.

Now we are in a position to prove the following theorem.

THEOREM 2. Let A be a uniform algebra on a compact space
X. Suppose that m 6 ̂ ^(A) has a unique representing measure m
on X, and that the part P of m consists of more than one point.
Let τ{t) be an analytic map of the open unit disk D onto P which
is obtained in Theorem 1. If p(t) is an analytic map of D onto P
such that p(a) — m, then we have

(2.i) m =

where β is a constant of modulus 1. Furthermore, τ(t) is a homeo-
morphism if and only if p(t) is a homeomorphism.

Proof. Let ^ , Z, and f be as in Theorem 1 and proposition.
For any t e D, p(t) has a unique representing measure htdm, where ht

is an element of L°°(m). Let p(t) be the measure extension of pit) i.e.,
p(t)(f) = [fhtdm for all / e H°°(m). For each / e H^m) there exists

a sequence {fn} in A such that | |/Λ | | ^ | | / | | for all n and /„—•/ a.e.
{dm) (Hoffman-Wermer theorem, see [1], Theorem 4.2.5). Then, by

Lebesgue's dominant convergence theorem, p(t)(fn) = \fnhtdm—>p(t)(f)
for every t in D. Since p(t)(fn)(n — 1, 2, ) are analytic in D and
\p(t)(fn)\ ^ HΛH ^ H/ll, we see that, for every / in H"(m\ p(t)(f)
is analytic in D (Vitali's theorem). Hence we see that ρ(t) is an
analytic map of D onto &. If we set g(t) = (T'^p)^) = Z(ρ(t)),
then f(t) is a one-one holomorphic map of D onto D, and g(a) — 0.
Hence we see

g(t) = t a

1 - at '

where β is a constant of modulus 1, and thus we have

Since τ(t) | A = z(t) and p(t) \ A = ^(ί) we have
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Next we prove that τ(t) is a homeomorphism if and only if p(t) —
τ(β(t — a)/(l — at)) is a homeomorphism. We put La(t) = (t + a)j{l + at)
and β — eίθ. Then τ(t) is a homeomorphism of D onto P if and only

if Z{φ)[- \Zdφ) is a continuous map of P onto D if and only if

Laoe~ιθoZ is a continuous map of P onto D if and only if

is a homeomorphism, and the theorem is proved.

Next we shall prove the following theorem which generalizes a
formula (6.12) in Hoffman [4], p. 105.

THEOREM 3. Let A be a uniform algebra on X. Suppose that
m G Λ€(A) has a unique representing measure m on X, and that
the part P of m consists of more than one point. If p(t) is an
analytic map of the open unit disk D onto P(m)f then we have

σ(p(t), p(s)) = σ(t, s) ,

G(p(t), p(s)) = G(t, s) .

For the definitions of σ, G see (1.1) ~ (1.4).

Proof. Let Z, &, τ and τ be as Theorem 1 and proposition.
Let τ(t) — φ, τ(s) = θ, τ(t) == ψ and τ(s) = θ. From Lemma 4.4.4 in
Browder [1], we see that

e Hξ = [f:feH-(m) - H~(θ), θ(f) - j/Λ? - 0

if and only if f e(Z — s)Hx(m), and from this we easily get
{(Z - s)/(l - sZ)}H°°(m). So we have

σ(Φ, θ) = svLp{\φif)\;feH"(m)t | | / | | <i 1, 9(f) = 0}

= sup \ I φ(f) ί: / e Λz^H"(m), \ \ f 11 ̂

:geH°°(m), \\g\\= sup

t - s
\l-st

1 - sZ

= <τ(ί, s) .

Since the closures of Aθ and i ϊ j in L\m) are the same HI = i/: / e

/d!ί = 0L we have the following equalities from

the result which is stated as "the perhaps surprising equality" in
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Browder [1], p. 134. ('Note that ψ(f) = ί fhdm = ί fdφ (see (1.5))

and J J / \Hφ = JF|/|*dφ, for any / e Ht) *

σ(φ, θ) = sup{|9>(/)|:/e A

= sup|| φ(f) |: / e A

= sup {| ?>(/) |: / 6 JffJ, j | / \*dφ g l}

= sup {\Φ(f)\: f e #Ξ

= sup
= σ(^, 9).

Hence we have

σ(τ(t), τ(s)) = σ{τ(t\ ?(«)) = σ(t, s) .

If p(t) is an analytic map of D onto P(m), then by Theorem 2 we
have pit) = r(/9(ί — α)/(l — at)), where /S is a constant of modulus 1.
Therefore we have

, P(s)) = g(>*~" β-?^-) = σ(t, s) .

The following equality is proved by Konig [5], which holds for
φ, θ in the maximal ideal space ^£{A) of any uniform algebra A.

2 - G(9>, «) 1 - ^(^, β) '
Using this we get
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