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MATRIX TRANSFORMATIONS AND ABSOLUTE
SUMMABILITY

THOMAS A. KEAGY

The main results of this paper are two theorems which
give necessary conditions for a matrix to map into / the
set of all subsequences (rearrangements) of a null sequence
not in /. These results provide affirmative answers to the
following questions proposed by J. A. Fridy. Is a null
sequence x necessarily in / if there exists a sum-preserving
/ — / matrix A that maps all subsequences (rearrangements)
of x into /?

1* Introduction* Let s, m, c, cQ and cs denote, respectively,

the set of all complex sequences, the set of all bounded sequences
in s, the set of all convergent sequences in s, the set of all null
sequences in e, and the set of all sequences in s with sequence of
partial sums in c. Let

s= {xes:Σ\xp\< oo} and / 2 = {x es: Σ \ xp\
2 < oo} .

A matrix A which maps each element of / into / is called an
/—/matrix and may be characterized [3] and [6] by the property:
{ΣP=I I a™ !}?=i e w. If, in addition, Σ?U Σ?=i G J A = ΣίU sff, whenever
x e /, then A is a sum-preserving / — / matrix; this is characterized

by Σ£=i aPQ = 1> f o r e a c h Q

In 1943, R. C. Buck [1] showed that a sequence x is convergent
if some regular matrix sums every subsequence of x. J. A. Fridy
[5] has obtained an analog to Buck's theorem in which "subsequence"
is replaced by "rearrangement." In addition, he has characterized
/ by showing that x e / if there is a sum-preserving / — / matrix
that transforms every rearrangement of x into /. In §2 of the
present paper, necessary conditions are obtained for a matrix to
map into / the set of all subsequences of a null sequence not in
/. This result yields as a corollary the affirmative answer to the
following question proposed by J. A. Fridy [5]. Is a null sequence
x necessarily in / if there exists a sum-preserving / — / matrix
that maps all subsequences of x into /? In § 3, necessary conditions
are obtained for a matrix to map into / all rearrangements of a
null sequence not in /. This yields as a corollary Fridy's character-
ization of / mentioned above. Finally, § 4 contains examples of
matrix mappings involving both subsequences and rearrangements.

2. Subsequences* The following two lemmas will be instru-
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mental in the proof of Theorem 1.

LEMMA 1. Suppose x and a are sequences such that Σ?U
converges for every subsequence y of x. If e > 0, then there exist
M > 0 and a strictly increasing function δ: I+ —• /+ such that if
t> M, then \Σi7=taqyq\ ^ ε for every subsequence {yq)^t of (xq)ϊ=δlt).

LEMMA 2. If x is a null sequence not in / and a is a nonnull
convergent sequence, then there exists a subsequence y of x such that
lim-i I ΣJ=i yq\ = oo and (Σί=i&qVi)n=i is not bounded.

THEOREM 1. Let x be a null sequence not in /, and suppose
A is a matrix such that Ay e / for every subsequence y of x. Then

( i ) ΣSU I °>P<I I < °° for q = 1, 2, 3, and

(ii) if limff Σ^U αp g = L, then L = 0.

Proof. To show (i), let & be fixed and j > i > k such that
ίCi ^ %. Let 2/ be the subsequence of x such that t/? = xq for g =
1, 2, , k — 1; 3/A. = a?,; and yk+t = xi+t for ί = 1, 2, 3, . Let z be
the subsequence of x such that 2fc = xs and zg = yq otherwise. Then

>Σ
p=ί

Σ dpqVq — Σ »j>
9 = 1

= I ̂  — By I Σ I a

2 > = 1
Pk I

Therefore Σ?=i i αpfc | <

Suppose lim g Σ?=i αpg =^# and L ^ 0. Let (ylf , J / ^ J ) be a subse-
quence of x with 2/if_1 = x r . Since x$s there exists a subsequence
(Wg)g°=;κ of (a5ff)"=r+1 such t h a t lim t | Σ U J T W « I — °° By Lemma 2 there
exists a subsequence (zq)^M of (wg)~=Jtf such t h a t lim t | ΣJ=if ^
and lim sup* | Σ U Λ Z* Σ ? = I α?g I — °° Choose k > M such t h a t

q=M
Σ #2> > M + Σ IV, I Σ I α M I + 3

9 = 1

Let JBΓ > 0 such that | Σ?=i^+i ^ I < 1/(*<I *<* I + 1)) for q = M, , Λ.
By Lemma 1, letting ε = 1/K, there exist Np and δj, for 1 <̂  p ^ K,
such that if N= max {i\Γ/, , iSΓ̂ , A; + 2} and δ(i) = max {δ;(i): p =
1, « , i ί } , then Σ 5 = i l Σ 7 = ^ ^ 9 ^ l < 1 for every subsequence (vq)^=N

of (a?g)JU(y). L e t 1/ff = z* f ° r -M" ̂  Q ^ ^̂  a n ( i choose (yk+ί, , ^ ^ J
a subsequence of (Wg)^^^, such that Σf^Vi 11/? I Σ ϊ U I αPα I < l Note
that the first N — 1 terms of a fixed sequence # have now been
determined. If y* is any subsequence of x that agrees with y for
these first iSΓ — 1 terms, then Σf=i I Σ ϊ U ^ 2 / * I > M.

This process for defining terms of y may be continued so that
if T > 0, then there exist M^T and iΓ > 0 such that
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Σ
p=l

Σ dpqVq

Thus a subsequence y of x can be constructed suchf[that Ay 0 /, a
contradiction.

COROLLARY 1. A ?mϊϊ sequence x is in / if and only if there
exists a sum-preserving / — / matrix A such that Ay e / for every
subsequence y of x.

3* Rearrangements* Following J. A. Fridy [5], the sequence
y is called a rearrangement of the sequence x provided that there
is a 1 — 1 function π from the positive integers onto themselves
such that for each k, xh = yπUc). The word "permutation" will be
reserved to indicate the reordering of a finite sequence.

THEOREM. If x is a null sequence not in / and A is a
matrix such that Ay e/ for every rearrangement y of x, then
lim9 ΣP=I I aPQ I = 0.

Proof. Let xt Φ x,- be nonzero elements of x. Suppose the ftth
column of A is not in /. Let q Φ k and y be a rearrangement of
a? with 2/fc = α?< and yq = a?y. Let z be the rearrangement of x such
that Zfc — Xj, zq = xίf and zt = # t otherwise. Then

- % IΣ = Σ v < co .

Therefore Σ?=i I α** — &*><? I < °° f o r every g =£ A. Since Σ~=11 α^ | = oo,
it now follows that Σ?=i I ^ I = °° for g ^ 1. Suppose N> 0 and a
permutation (n, , rM) of l ί terms of x has been chosen such that
Σf=i rff ^ 0. If λ = Σ?=i I Σf=i α,grff | < °o, then

oo > λ + Σ 2 2 J I αpl I ,

a contradiction. Therefore λ = oo and there exists K > N such
that Σ?=* i Σί=i <W* I > 2. Let i = min {q: xq e x\(rl9 , r^)}. J. A.
Fridy [5] has shown that each row of A is null. Therefore there
exists T > M + 1 such that
(rM+ι, *",^τ-i) be a subsequence of

< 2 " Let ?γ = xi and
rΓ) such that

a.PQ I r . < 2"(itf+2» and ?t 0. Then

Σ ap,rg — Σ Σ
M

a* > 1
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But this process may be continued. Therefore there exists a rear-
rangement r of x such that if L > 0, then there exist K > N^ L
such that ΣP=JV IΣJU α ^ r ? I > 1» a contradiction. Hence each column
of A is in /.

Now suppose there exists ε > 0 such that if N > 0, then there
exists q > N such that > ε. Let 3 e / be a subsequence
of $ that includes all zero terms of x. Let j \ = min {g: # g ^ 0}. Let

t > 0 such that Σϊ
be a subsequence of z such that Σf=i*

> e. Let rNι = xh. Also let (rlf

< 1/2 and zt — ra

only if for each s < t such that zs = 0 there exists b < a such that
28 = rό. Let Jlίi > 0 such that

Σ l *. and ~

Let jz = min {̂ : a?ff 6 a?\(rlf , r^^, and xq Φ 0}. Since each row of A
is null, there exists N2 > Nx + 1 such that Σ " = J Ϊ 1 + 1 \apNz \ > e/2 and
I xj2 i Σf i i i <ipNt I < 1/8. Let τN2 - a?i2. Also let (rNl+1, , r^_0 be a
subsequence of z\(ru , r^x, rN2) such that Σίi5i+i I rq \ Σ?=i I «„« |<1/16
and zt = rα only if for each s < t such that #s = 0 there exists b < a
such that 2S = rb. Let M"2 > Mx such that Σfi^i+i I O>PN2 I > ε/2 and
I ?V21 Σ?=3f2+i I aPN21 < 1/32. This selection process may be continued
so that if k is fixed, then

Σ
p=l

, apgrq ^̂( Σ <W.

- Γ Σ V .
\ 9=1

2 V 2 - 1

_j_ V 1 v

+ Σ K
p=M2+l

vj +

Mk

IΣJα

• +

>.l +

,.1 +

+ ...

Mk

^ Σ
Σ

P=iί1+i

IIV

,Wt I

- 1 .

But r has been selected so that limfc ΣίU i r ^ I = °° Therefore
Ar ί /, a contradiction. Hence limff Σ?=i I ^ I = 0.

The proof of Theorem 2 is now complete, and Corollary 2, which
was first proved by J. A. Fridy [5], follows directly.

COROLLARY 2. The null sequence x is in / if and only if there
exists a sum-preserving / — / matrix A such that Ay 6 / for every
rearrangement y of x.

4* Examples* By Theorem 2 a matrix A that maps all rear-
rangements of a sequence x e c\/ into / must be an / — s matrix.
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But Theorem 1 gives little insight into the question of whether
A must be / — / if it maps all subsequences of x into /. The
following example shows that A need not be / — / in this case.
Let xn = 1/n for n = 1, 2, 3, aqq = g1/3 for ? = 1, 8, 27, 64, . . .
and apq — 0 otherwise. If y is a subsequence of x and A# = 2,
then I zq | ^ g~2/3 for ? = 1, 8, 27, and sff = 0 otherwise. Thus
z 6 /, but clearly α? 6 co\/ and A is not / — /.

I. J. Maddox [7] showed that a matrix A is Schur if it maps
all subsequences of some divergent sequence x into c. This might
cause one to suspect that if A maps all subsequences (rearrange-
ments) of a sequence x e c\/ into /, then Az e / for every z e cs. The
following example shows that this is not true. (The author wishes
to thank the referee for his comments which aided in the simpli-
fication of this example.) Let xn = 1/n for n = 1, 2, 3, aιq — (—1)7?
for q :> 1 and α^ = 0 otherwise. Since (αw)JU and x are both in
/\ each subsequence (rearrangement) # of x is also in /2; hence,
Ai/€/. But if z is defined by 3* = ( —l)7(log(? + 1)) for each q,
then zees and (α^JJLiίcs; thus, Azg/.
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