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ANALYTIC EXTENSIONS OF VECTOR-VALUED
FUNCTIONS

J. GLOBEVNIK

Let Δ be the open unit disc in C, dΔ its boundary and
B c dΔ a relatively open set. Let X be a complex Banach
space. Denote by HB(Δ, X) the set of all continuous functions
from Δ U B to X which are analytic on Δ. A set P c X is
said to have the analytic extension property with respect to
HB(Δ, X) if for each relatively closed set F<zB of Lebesgue
measure 0 and for each continuous function f:F-+P there
exists ge HB(Δ, X) with g \ F = / and g(Δ U B) c P.

THEOREM. Let P c X be an open set. Then P has the
analytic extension property with respect to HB(Δ, X) for every
relatively open B cdΔ if and only if P is connected.

By a result of E. A. Heard and J. ΈL Wells any closed disc in
C has the analytic extension property with respect to HB(Δ, C) for
every relatively open BadA (see [9]). The special case B = dA is
the well known Rudin-Carleson theorem (see [4], [10], [12]). This
result was generalized to the vector case by proving that every
closed ball in X has the analytic extension property with respect to
HB(Δ, X) for every relatively open B(zdA (see [6]), the special case
B — dΔ is the Rudin-Carleson theorem for vector-valued functions
(see [5], [11], [14]).

It is a natural question whether the balls above can be replaced
by some other sets:

Problem (see [8]). Obtain a (geometrical, topological) character-
ization of the sets having the analytic extension property with respect
to HB(Δ, X) for every relatively open B c dΔ.

It seems that this problem is not solved even for the subsets
of C.

Taking B — dΔ, F = {— 1, 1} it is trivial to see that every set
having the analytic extension property with respect to HB(Δ, X) for
every relatively open B c dΔ, is pathwise connected. The converse
is not true in general as shown by taking P = {t: 0 ̂  t ^ 1}. However,
the converse turns out to be true for open sets and this is the main
result of the present paper.

Throughout, we denote by Δ the closure of Δ. Given r > 0 we
denote by Br(X) the open ball in X of radius r, centered at the
origin. If K is a compact Hausdorff space we denote by C(K, X)
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the space of all continuous functions from K to X. By A(Δ, X) we
denote the Banach space of all continuous functions from Δ to X,
analytic on Δ, with sup norm, and we write A = A(Δ, C). We write
I — {t: 0 ^ t <; 1} and we denote the set of all positive integers by
N.

For the proof of theorem we shall need four lemmas.

LEMMA 1. Suppose that G is a closed subset of dΔ of Lebesgue
measure 0 and let U(G)dΔ be a neighbourhood of G. Let p:I—>X
be a path in a complex Banach space X and let e > 0 be arbitrary.
There exists φ e A(Δ, X) having the following properties:

( i ) \\ψ{z)-p(l)\\<ε (zeG)
(ii) \\Φ(z)-p(0)\\<ε ( 2 6 J - U(G))
(iii)

Proof. By the Mergelyan theorem for analytic functions into
a Banach space (see [3]) there exists a polynomial f:C—+X satisfying
\\f(z) — p(z)\\ < ε (2 e l ) . By the continuity of / there exists an
open neighbourhood V of I such that f(V) czp(I) + Bε(X). Let
W c F b e an open set, bounded by a Jordan curve, containing the
point 1 in its boundary and satisfying I — {1} c W, WaV. Let
T c W be a neighbourhood of the point 0 in W such that
II f(z) — P(0) II < ε (z e T). Assume for a moment that aeA satisfies
a(Δ) c W, a(G) = {1} and a(Δ- U(G)) c T. Then it is easy to check
that φ = foa has all the required properties. It remains to prove
the existence of such an a. By the Riemann mapping theorem (see
[13]) there exists a homeomorphism β from / onto W, analytic on
Δ and satisfying /9(0) = 0, /3(1) = 1. Let S c J be a neighbourhood
of 0 such that β(S) c T. By the Rudin-Carleson theorem (see [12])
there exists ΎeA satisfying 7(1) c ί , Ύ(G) = {1}. Also (see [15],
p. 205) there exists ψ e A satisfying ψ(Δ) c 1, ψ(G) = {1}, | ψ{z) \ < 1
(z e I — G). Let Ux c U(G) be an open subset of I containing G.
Now I — Uγ is a compact set disjoint from G and it follows that
for sufficiently large neNwe have ψn(z) Ύ(z) eS (z eΔ — ί/;). Now
putting α(2) = β[ψn(z) 7(^)] (2 G J) it is easy to see that a has all
the required properties.

LEMMA 2. Let X be a complex Banach space and let Q be an
open connected subset of X. Given a compact subset K of Q and a
point xeK there exists δ0 > 0 such that for every δ: 0 < d < <50 there
exists a path p:I—*X satisfying

( i )
(ii)
(iii) p(I) + BU{X) c Q.
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Proof. By the compactness of K there exists an ε > 0 such
that K + B7ε(X) c Q. Cover K by a finite number of balls, say by
Bu B2, , Bn of radii ε whose centers lie in K. With no loss of
generality assume that the center of Bί is x. By the connectedness
of Q there exists a path q\I—*X, satisfying q(I)cQ, q(0) = x, and
connecting the centers of all Bt. By the compactness of q(I) there
exists δ0: 0 < δ0 < ε such that q(I) + B6δQ(X)cQ. Let δ satisfy 0 < δ < δ{

and cover K by a finite number of balls D19 D2, ---, Dm of radii δ
whose centers lie in K. Let 1 ̂  i ^ n. Consider those balls Dk

whose centers lie in Bt. Connect all these centers by a path pt

starting and ending at the center of Bt and satisfying p%(I) c Bt.
Having done this for all i, denote by qt (1 ̂  ί ^ n — 1) the part of
the path q between the centers of Bu Bί+1. Now define p as the sum
of the paths

P = Σ (Pi + ϊi) + Pn

If s e ί is such that p(s) is in none of the balls Bt (1 ̂  i ^ n) then
p(s) G ?(J) and consequently p(s) + BU{X) c q(I) + S6δo(X) c Q. If
s e / is such that p(s) is in some Bt then p(s) + B6δ(X) (zBt + B6δo(X) c
K + J37e(X) c Q. On the other hand, if y e if then | / e A for some
ball Dj. whose center is contained in p(I) which means that y e p(I) +
Bδ{X).

LEMMA 3. Let Fad/1 be a closed set of Lebesgue measure 0 and
let U(F) c Δ be a neighbourhood of F. Suppose that Q is an open
connected set in a complex Banach space X containing the point 0.
Let e > 0 be arbitrary. Given f e C(F, X) satisfying f(F) c Q there
exists f e A{Δ, X) satisfying

( i ) ?\F = f
( i i ) / ( J ) c O

(iii) | | / ( * ) | | < 6 (zeΔ-

Proof. f(F) U {0} is a compact set contained in Q. By Lemma 2
there exists δ: 0 < δ < ε/5 and a path p: I—+X satisfying f(F)dp(I) +
Bδ(X), p(I) + BU{X) c Q and p(0) = 0. Since F is a compact set the
function / is uniformly continuous on F. By the assumption F is
nowhere dense on dΔ. It follows that

F= \JF,

where Ft c dΔ are disjoint closed sets such that

- / ( O I K « fo.CeΉ; l ^ i ^ n ) .
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Let Ui (1 5Ξ i ^ n) be disjoint open subsets of I satisfying Ft<z Z7< c
C7(F) (l^i^n). Since f(F)cp(I) + BS(X) there exist ^ e l and
ZiQ.Fi (1 <Ξ ΐ 5Ξ w) such that

II j*t«)-/(««) I K « ( l ^ ΐ ^ Λ ) . •

Applying Lemma 1 to the paths t H* pitj) (1 5Ξ i g TO) there exist
functions ί ( 6 i ( 4 X) (1 ̂  ί ^ M ) satisfying

\\Φ&)-V(tt)[\<δ (zeFi)

\\Φi(z)\\<δln ( « e J - 17,)

Now define F e A{Δ, X) by

If « 6 i - U?=! ZΛ then

It ze Ui for some ί then z & U3- (i Φ j) and

Ψ(z) = φi(z)

Consequently f (J) e p(I) + BJ.X). Now define 0 e C(F, X) by 6>(z) =
W(z) — /(«) (« 6 F). It ze F then 2 e Ft for some ΐ and consequently

II Θ(z) II 5Ξ II y ( z ) - p(ί4) II + II p(ti) - f{Zi) II + II f(zt) - f(z) II

By the Rudin-Carleson theorem for vector valued functions there
exists θ e i ( J , I ) satisfying | |θ | |<4<5, θ\F=θ. Finally, define
f(z) - Ψ(z) -Θ(z) (z € I). Clearly / e A{Δ% X). Further, f(I) c p(I) +
B2δ(X) + B4δ(X)dp(I) + B6δ(X)(zQ. Clearly f\F = f. Also, if
2 € J - U(F) then ^ 6 J - \JU U< hence || f(z) \\ ̂  \\ Ψ(z) \\ + || % ) || <
δ + 4δ < ε.

LEMMA 4. Le£ £/ be closed subset of dΔ and let GadΔ — E be
a relatively closed set of Lebesgue measure 0. Let Had A — E be a
compact set of Lebesgue measure 0, disjoint from G. Let Q be an
open connected set in a complex Banach space X containing the
point 0 and suppose that feC(H, X) satisfies f(H)(zQ.

There exists δ0 > 0 such that for every d: 0 < d < δ0 and for
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every ε: 0 < ε < δ and for every neighbourhood UcΔ — E of H
there exists a continuous function f: Δ — E —> X, analytic on Δ and
satisfying

( i ) ?\H = f
(ϋ) / | G = 0
(iii) \\?(z)\\<e (Ze(Δ-E)-E)- U)
(iv)

Proof. With no loss of generality we may assume that Uΐ\ G= 0 .
By Lemma 2 there exists δQ > 0 such that for every δ: 0 < δ < δ0

there exists a path p: I — X satisfying p(0) = 0, f(H) c p(J) + Bδ(X),
p(I) + B6δ(X) c Q. Let 0 < δ < <?0 and 0 < ε < δ. Applying Lemma 3
to the function / and to the (open connected) set p(I) + Bδ(X) there
exists /i e A(Δ, X) satisfying

HΛωiKe/2 (zel- U) .

Define

0 (seH).

Then f2 is continuous o n G u i ϊ and satisfies ||/2(s) || < e/2 (s e G U H).
By Theorem 2 in [6] there exists a continuous function / 2: /F— E—>X,
a n a l y t i c o n Δ, s a t i s f y i n g f 2 \ G U H = f2 a n d \\f2(z) \ \ ^ ε / 2 ( z e l - E ) .
Put / = /i + /2. It is easy to check that / has all the required
properties.

Proof of theorem. Let Q be an open connected subset of a
complex [Banach space X. Let EcdΔ be a closed set and let Fa
dΔ — E be a relatively closed set of Lebesgue measure 0. Suppose
that / : F —> X is a continuous function satisfying /(F) c Q. We will
prove that there exists a continuous extension f:Δ — E—>X,f\F-—f,
which is analytic on Δ and which satisfies /(Δ — E)dQ.

If j? is empty then the statement of the theorem is proved by
Lemma 3. So assume that E is not empty. With no loss of gener-
ality assume that 0 e Q. As in [6] write F — U«=i Fn where Fn c
Δ — E are compact sets such that there exist disjoint open sets
UncΔ — E satisfying Fn(Z Un for all n.

Now we define inductively a sequence {Dn} of open subsets of
2— E satisfying Fna Dncz Un for all n, a decreasing sequence {δn}
of positive numbers and a sequence {φn} of functions from I — E to
X having the following properties:
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( i ) for each ieN, φt is continuous on I — E and analytic
on Δ

(ii) &|jFy = 0 {iΦΪ, hJeN)
(iii) φtlF^flF* (ieN)
(iv) ^ ( J - £7) + Bh{X) ^Q(ieN)
( v ) \\φt(z) || < ^/2 ί + 1 (z e (J - # ) - A ; i e iV)

(vi) || Σ/=i &(*) II < Si+J2 (z e D< + 1; i e N).
If ΐ = 1, put DL = Z7Ί and apply Lemma 4 to the function f \ Ft to
obtain δ, satisfying Bh(X)dQ and & which satisfies (i)-(v) above
for i = 1. Now assume that δi9 Dif Φi (1 ̂  i ^ n) are given satisfying
(i)-(v) for 1 <; i ^ n and (vi) 1 ^ ΐ ^ n — 1. Applying Lemma 4 to
the function / | Fn+1 there exists ίΛ+1: 0 < δn+1 < δn such that Lemma
4 holds for d — δw + 1. Since the function

is continuous on Δ — E and equal 0 on i^%+1 there exists a neigh-
bourhood Dn+1 aΔ — E of Fn+1 satisfying Dn+1 c Un+ι and such that
(vi) is satisfied for i = n. Now, by Lemma 4 there exists φn+ι

satisfying (i)-(v) for i — n + 1.
Define

/(*) = !><(*) (zel-E).

If ze(J-E)- UF=i A t h e n II ί*i(z) II < δ*/2i+1 < δi/2 i + 1 Consequently
the series converges uniformly for all such z. By

and by Bδl(X) c Q we have /(^ ) 6 Q for all such 3. Suppose that
z e Dk for some k. Then 2 g D-,- for j Φ k and by the above argument
the series converges uniformly on Dk. Further, by (v) and (vi) we
have

Σ Φte)
i
Σ Σ + Σ l l Φi(z) II < δk/2 + δj2 = δk

jkΣl
j=k+i

Consequently by (iv) f(z)eφk(Δ — E) + Bδk(X)cQ. Since each com-
pact subset of Δ — E misses all but a finite number of the sets JO,
the series converges uniformly on compact subsets of I ~ E. Conse-
quently / is continuous on 2— E, analytic on Δ and, as shown above,
satisfies f(Δ — E) c Q. By the properties of φi we have also f\F = f.

COROLLARY (see [7]). Given any open connected subset Q of a
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separable complex Banach space X there exists an analytic function
f:J—+X whose range is contained and dense in Q.

Proof. Put E = {1} and let F = {zn} c dΔ - {1} be an injective
sequence converging to 1. Let f(zn) = wn where {wn} c Q is a
sequence dense in Q and then apply theorem.
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