WEAKLY COMPACT SETS IN H^1

FREDDY DELBAEN

Suppose that A is a uniform algebra on a compact set X and that $\phi: A \to C$ is a nonzero multiplicative linear functional on A. Let M_{ϕ} be the set of positive representing measures for ϕ . If M_{ϕ} is finite dimensional, let m be a core measure of M_{ϕ} . The space H^1 is the closure of A in $L^1(m)$. The space H^{∞} is the weak* (i.e. $\sigma(L^{\infty}, L^1)$) closure of A in $L^{\infty}(m)$. The weakly compact sets R in H^1 are then those sets such that for all $\varepsilon > 0$ there is a bounded set in H^{∞} which approximates R up to ε .

It is well known (see Gamelin [1] for all details) that if m is a core measure in the finite dimensional set M_{ϕ} , then the annihilator N of A (or Re A) in the real Banach space L_{R}^{i} is finite dimensional, and is in fact a subspace of L_{R}^{∞} (see Gamelin [1] p. 108). Since N is finite dimensional there is a constant K_{1} such that $||g||_{1} \leq ||g||_{\infty} \leq K_{1}||g||_{1}$ for all $g \in N$. There also exists a linear projection P of L_{R}^{i} onto N, the kernel of P being precisely $\overline{\text{Re } A}$.

I am very grateful to the referee who pointed out an error in the first draft of this paper and gave a simplification of the proof.

2. Weakly compact sets in H^1 . The notation used in the proof of the following theorem is the same as in the introduction.

THEOREM. If $R \subset H^1$ then the following are equivalent (1) R is relatively weakly compact in H^1

(2) $\forall \varepsilon > 0 \exists M \text{ such that } \forall f \in R \exists g \in H^{\infty} \text{ with } ||g||_{\infty} \leq M \text{ and } ||f - g|| \leq \varepsilon$

(3) $\forall \varepsilon > 0 \exists M \text{ such that } \forall f \in R \exists g \in A \text{ with } ||g|| \leq M \text{ and } ||f - g|| \leq \varepsilon.$

Proof. $(3) \Rightarrow (2)$ obvious, $(2) \Rightarrow (1)$ follows from general arguements due to Grothendieck ([2] p. 296); $(1) \Rightarrow (2)$ is less trivial. Without loss of generality we may suppose that for all $f \in R$ we have $||f||_1 \leq 1$. From now on all calculations are made with fixed f. It is clear that all bounds only depend on ||P|| and K_1 . Since $\log^+ |f| \leq |f|$ it is obvious that $||\log^+ |f||_1 \leq ||f||_1 \leq 1$. Since $L_R^1 = \operatorname{Re} A \bigoplus N$ we also have uniquely determined elements $u \in \operatorname{Re} A$ and $v \in N$ such that $\log^+ |f| = u + v$. Since v is the image of $\log^+ |f|$ by the operator P we have

FREDDY DELBAEN

$$||v||_{\infty} \leq K_1 ||v||_1 \leq K_1 \cdot ||P|| ||\log^+|f||| \leq K_1 \cdot ||P|| = K_2.$$

The conjugation operator^{*} is defined on $\overline{\text{Re }A}$ and takes values in $L^p(0 , hence <math>\exists K_s$ such that $||^*u||_{_{1/2}} \leq K_s ||u||_1$. The function e^{u+i^*u} is well defined and $fe^{-u-i^*u} \in H^{\infty}$. Indeed:

$$|f| \cdot |e^{-u - i^* u}| = e^{\log |f|} e^{-u} \leqq e^{\log^+ |f|} e^{-u} = e^v \leqq e^{K_2} = K_4$$
 .

Hence $f = F \cdot e^{u+i^*u}$ with $||F||_{\infty} \leq K_4$. The next step is the approximation of e^{u+i^*u} by functions in H^{∞} . First remark that $u = \log^+|f| - v \geq -K_2$. Put $u_n = \min(u, n) \geq -K_2$ and $u_n = w_n + v_n$ where $w_n \in \overline{\operatorname{Re} A}$ and $v_n \in N$. We first prove that:

(i) $||e^{w_n+i*w_n}||_{\infty} \leq M_n$ where M_n is independent of u(ii) $||e^{w_n+iw_n}-e^{u+i*u}||_1 \to 0$ uniformly in u as $n \to \infty$.

Proof of (i): Since $\log^+ |f| = u + v$ we have

$$|u| \leq ||v||_{\scriptscriptstyle \infty} + \log^+ |f| \leq \log^+ |f| + K_2$$
 .

Hence $e^u \leq K_4 \cdot |f|$ and so the family e^u is equally integrable (Here it is used that relatively weakly compact sets in L^1 are equally integrable (see [2] p. 295).) Consequently $e^{u_n} \rightarrow e^u$ uniformly in u. Since $v_n = P(u_n - u)$ we also have $||v_n||_{\infty} \leq K_1 ||v_n||_1 \leq K_1 \cdot ||P|| ||u_n - u||_1 \leq K_2$ for n large enough. Indeed since $-K_2 \leq u_n \leq u \leq \log^+ |f| + K_2 \leq |f| + K_2$ we have that the functions u form an equally integrable family and hence $u_n \rightarrow u$ uniformly in u. All this implies

$$|e^{w_n+i^*w_n}|=e^{w_n}=e^{u_n-v_n}\leq K_4e^{u_n}\leq K_4e^n=M_n$$
 .

Proof of (ii)

$$\begin{aligned} |e^{u+i^{*}u} - e^{w_{n}+i^{*}w_{n}}| &\leq |e^{u+i^{*}w} - e^{u+i^{*}w_{n}}| + |e^{u+i^{*}w_{n}} - e^{u_{n}+i^{*}w_{n}}| \\ &+ |e^{u_{n}+i^{*}w_{n}} - e^{w_{n}+i^{*}w_{n}}| \\ &\leq e^{u}|e^{i^{*}u} - e^{i^{*}w_{n}}| + |e^{u} - e^{u_{n}}| + |e^{u_{n}} - e^{w_{n}} \\ &\leq A_{n} + B_{n} + C_{n} .\end{aligned}$$

Here is

$$egin{aligned} A_n &= e^u \, | \, e^{i^* u} - e^{i^* w_n} | \ B_n &= | \, e^u - e^{u_n} | \ C_n &= | \, e^{u_n} - e^{w_n} | \ . \end{aligned}$$

In the proof of (i) it was already observed that $||B_n||_1 \rightarrow 0$ uniformly in *u*. For *n* large enough one has

$$|e^{u_n} - e^{w_n}| = |e^{w_n + v_n} - e^{w_n}| = e^{w_n}|e^{v_n} - 1| \leq K_4 e^u |e^{v_n} - 1|$$

Since $||v_n||_{\infty} \leq K_2 ||u_n - u|| \rightarrow 0$ uniformly in u one has $||C_n||_1 \leq$

368

 $K_4||e^u||_1 \cdot ||e^{v_n} - 1||_{\infty} \to 0$ uniformly in u. Remains to show that $\int A_n \to 0$.

Put $E_n = \{x \mid | *u(x) - *w_n(x)| \ge \delta\}$ where $\delta > 0$ will be conveniently chosen.

$$\int\!A_n = \int_{E_n}\!A_n + \int_{E_n^\sigma}\!A_n \leq \int_{E_n}\!2e^u + \int_{E_n^\sigma}\!e^u |e^{i^*u} - {}^{i^*w_n}| \;.$$

Since

$$egin{aligned} K_3&iggli u\,-\,w_n\,|\,dm &\geqq \left(\int\!|\,^st u\,-\,^st w_n\,|^{_{1/2}}dm
ight)^st \geqq & \left(\int_{E_n}\!|\,^st u\,-\,^st w_n\,|^{_{1/2}}dm
ight)^st \&\geqq & \delta m(E_n)^st \end{aligned}$$

one has $m(E_n) \to 0$ uniformly in u, hence by equally integrability of e^u it follows that $\int_{E_n} 2e^u \to 0$ uniformly in u. Also

$$\int_{E_n^c} e^u |e^{i^*u} - e^{i^*w_n}| \leq \int \delta e^u \leq \delta \int K_4 |f| \leq \delta K_4$$

and hence $||A_n||_1 \leq \delta K_4 + 2 \int_{E_n} e^u$.

The first term is made small by choosing δ , afterwards we choose n to be sure that the second term is also small enough, since this can be done uniformly in u the proof of (ii) is complete.

Fix now $\varepsilon > 0$ and let *n* be large enough to assure $||e^{w_n + i^*w_n} - e^{u + i^*u}||_1 \leq \varepsilon/K_4$. It then follows that

$$||f - Fe^{w_n + i^*w_n}||_{_1} \leq ||F||_{_{\infty}} ||e^{u + i^*u} - e^{w_n + i^*w_n}||_{_1} \leq \varepsilon$$
 .

Taking $M = M_n \cdot K_4 = K_4^2 e^n$ will do the job.

To prove that $(2) \Rightarrow (3)$ we only have to observe that the unit ball of A is dense in the unit ball of H^{∞} for the L^{1} norm. Since m is a core point, m is dominant and we can apply the Arens-Singer result ([1], p. 152, 153).

References

T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969.
 A. Grothendieck, Espaces Vectoriels Topolologiques, Sao Paulo, 1964.

Received August 4, 1975.

BRIJE UNIVERSITEIT BRUSSELS