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QUADRATIC FORMS OVER NONFORMALLY REAL
FIELDS WITH A FINITE NUMBER OF

QUATERNION ALGEBRAS

CRAIG M. CORDES

This paper is concerned with quadratic forms over a
nonformally real field, F, of characteristic not two, which
has only a finite number, m, of quaternion algebras. The
number q— \F/F*\ is always assumed to be finite. Of central
importance will be the radical, R, which can be defined by
R = {aeF\G(l, -)a = F} where F=F-{0} and G(l, -a) is
the set of nonzero elements represented by the form x2 — ay2

over F. The main result here is that a finite Witt ring
(and hence the complete quadratic form structure) is deter-
mined when m = 2 by the Witt group and the order of F/R.

Other results include analyzing the quadratic form structure for
fields which satisfy | F/R | <̂  8 and discovering an upper bound for
m in terms of q and the largest index in F of all G(l, a). Finally,
the concept of a quadratic form scheme is introduced. This idea
comes from an attempt to abstract value sets of binary quadratic
forms in order to eliminate the immediate necessity of a field in
their study.

Kaplansky [4] showed that if m = 2, the ^-invariant of a non-
formally real field is four. Lam and Elman [3] demonstrated that
the quaternion algebras form a subgroup of the Brauer group only
when u = 1, 2, 4, or 8. As a consequence of their proof of this, it
follows that if m = 4, u = 4 also. Moreover, it is well known that
when u — 4, the quaternion algebras do form a subgroup; and this
was the key needed in [1] to discover the Witt group structure for
fields with u = 4. These group structure theorems are used here
to prove the main result. In [2] it was shown that many results
concerning JP2 remain valid for R. This is the case in the analysis
of fields with \F/R\ <: 8. The structure answers are virtually the
same as those found in [1] for fields with \F/F2\ ^ 8. Since the value
sets of binary forms completely determine quadratic forms over a
field, quadratic form schemes may be of value. Here some elementary
questions are answered; and an interesting example is given of a
scheme for a field which would have q = 16, u — m = 4, and level
(Stufe) s = 2 if the field existed.

2* Throughout this section F will be a nonformally real field
with m = 2 and q < oo. Before the main result of this section,

357



358 CRAIG M. CORDES

some preliminaries are needed.

LEMMA 1. Let F be a nonreal field with m = 2,q<oof and radical
R. For a,beF, G(l, a) = G(l, b) if and only if ab e R.

Proof. The sufficiency follows from Proposition 1 in [2]. Suppose
then that G(l, a) = G(l, b). Now c e G(l, a) if and only if {c, -a) = 1
where {c, — α} is the Hubert symbol for c, — α. So it follows that
{c, — a) — {c, —6} for all ceF. For m = 2 the Hubert symbol is a
multiplicative function while one variable is fixed. Hence, {c, ab} =* 1
for all ceF and G(l, -αδ) = F.

LEMMA 2. Lβ£ V be an n-dimensional vector space over GF(q). If
W is a k-dimensional subspace of W, then there are (qn~k — l)/(q — 1)
(n — lydimensional subspaces of V containing W.

The proof is elementary and will be omitted. However, from
Lemma 2 comes an important corollary.

COROLLARY. Let F be a nonreal field with m = 2, q — 2r < oo,
and radical R. If A 2 R is a subgroup of index 2 in F9 then there
is an aeF such that G(l, a) = A.

Proof. By Proposition 1 of [2], R c G(l, b) for all b e F. Since
m = 2, G(l, 6) is a subgroup of index 1 or 2 (depending on whether
— beR or —bίR). Now let α l f ' ' ,α 2 ί be representatives for the
cosets of R in F. Then the G(l, α*), 1 ̂  i ^ 2*, by Lemma 1, are all
distinct, and all but one of them is a subgroup, containing R, of
index two. F/F2 can be considered as a vector space over GF(2) of
dimension r, and R/F2 is a subspace of dimension r — t. So by
Lemma 2, there are 2* — 1 subgroups of F containing 12 which
have index 2. Since 4 is one of them, A = G(l, at) for some
1 ^ ΐ ^ 2*.

At this time the structure for the Witt group W of F needs
to be recalled. When m — 2 (and hence u — 4), this structure is
obtained from Theorem 4.5 [1]. Let [c, d] denote the quaternion
algebra with structure constants c, deF, G denote G(l, 1), H denote
the group of quaternion algebras (in the Brauer group of F),
and H denote the subgroup of H whose members have the form
[α, a]. In addition, let the groups G/F\ FIG, and HjH be freely
generated by {G^JP2}^/, {bsG}ieJ, and {[ch dΐ\H}UL respectively. Also
assume that if s = 2, then O e l and a0 = — 1. If φ is a quadratic
form over F, let <p denote the element in W which represents the



QUADRATIC FORMS OVER NONFORMALLY REAL FIELDS 359

class of forms having anisotropic parts equivalent to that of ψ.
Write (φ) to mean the subgroup of W generated by φ. As a group,
W is given by the following direct sums of cyclic groups:

iel

s = 2:W = > e < ( , O > Θ < ( , i)> θ
ϊel-{0} j e j ί e i

8 = 4: W = <(!)> Φ <1, -atγ>.
i e l

In order to determine the ring structure of W, it is necessary
to find out how the group generators multiply. (1) is the multiplicative
identity, and any (1, x) times a quaternary form of determinant 1
is 0 in W (since u = 4). So the remaining cases are where binary
forms comprise the product. Since m — 2, the product (1, x) (x) (1, y)
in W is either 0 or ψ where ψ is the unique quaternary form of deter-
minant 1. Also (ϊ~*0 (x) (LΓV) = 0 if and only if -yeG(l,x). The
goal will be to show that under correct hypotheses, a map between
sets of these group generators can be constructed which preserves
multiplication and addition. So the rings will be isomorphic. The
following theorem formalizes the result.

THEOREM 1. Let F be a nonformally real field with m = 2,
q = 2r < oo, and \R/F2\ = 2\ Then r = k (mod 2) ifs = 1, 2, and
r Ξ£ k (mod 2) if s — 4. Moreover, the structure of the Witt ring is
determined by its group structure and k.

Before the proof, note that F/F2 is a group with exponent two
and thus can be considered as a vector space over GF(2). Hence,
if F2 Q B s; C for multiplicative subgroups B, C of F9 then there is
a subgroup A of F with F2 Q A such that C/F2 is the direct sum
(in the vector space) of A/F2 and B/F2. In the forthcoming proof,
this is denoted by C = A ® B because the above implies C is the
direct product of A and B as well.

Proof. There are four different cases: s = l, s = 4, s = 2 with
— 1$R, and s — 2 with — leB. The proofs are similar so only the
case s = 2 with — l£J5 will be done in detail.

From Proposition 1 of [2], i2cG(l, α) for all α e ί . So for
b £ G(l, 1), G(l, 1) n G(l, b) = Λ (x) A where | A/F 2 ] - 2r-*-2 and F =
<-l, b)F2® R® A19 (<-l, 6>F2 is the subgroup in F generated by
-F2 and bF2). Now, if possible, choose aίeA1~F2. Then At =
(a^F2 (g) A; and by the corollary to Lemma 2, -there is an x such
that G(l, -α) = <-l, b)F2 (x) i2 (x) A It is clear also from this that
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xe G(l, 1) Π G(l, 6) Π G(l, -x) = R®A2. Since G(l, -a;) ̂  JP, there
is an a2 e A2 — F2 such that x = αα2 for some α e j?. By Lemma 1,
G(l, — a2) — G(l, — #)>' and so in particular, α x ί G(l, — α2), or equival-
ently, α 2 £G(l, - α j . Also note G(l, — α1) = < — 1, 6, G O ^ J B ^ A S where
4 3 = G(l, - α j fi 4 2 . In fact, by the preceding, A2 = (a2}F2 (x) A3.
Summarizing, F = < - l , 6, alf a2}F2 (g)R(g)A3 with G(l, 1) = < - l , α,,
α2>F2 (x) i2 (g) A3, G(l, - α x ) = < - l , 6, α ^ F 2 <g> R <g> A3, and G(l, -a2) =
< —1, 6, α2>F2 (g) i2 (x) A3. If A3 Φ F2, then exactly the same procedure
can be used on it. That is, if A3 = <α3>jF2(x) A4, then there is an x such
that G(l, — a?) = < —1, 6, ax, α2>i^2 0 R (x) A4. Similarly α3, α4, A5 are
obtained so that G(l, 1) = < - l , α^ αa, α8, »4>F2 (g) R (x) A5,
< - l , 6, a19 α,, α4>i^2(g)iί(8)A5, G(l, - α 2 ) = < - l , 6, α2, α., a,)
G(l, - α 3 ) = < - l , 6, αx, α2, α3>F2 ® R ® A5, and G(l, -α 4 ) - < - l , 6, α,,
α2, α4>.P2 (g) i? (g) A5. The process will continue to yield pairs an9 an+ι

as long as | An+JF2 \ ̂  22. Notice that at no point can An = <x>F2

because, if so, G(l, — a?) =-F. But this contradicts a?ίJB. Hence,
the process stops after (r — k — 2)/2 pairs of α/s have been selected.
This shows r = k (mod 2).

Since - 1 $ R, the group structure for W is TΓ= <ϊ> 0 & 2 <(1, «<)> 0

<(1, b)( 0 <(1, — c, — d, ccί)> where a<, 1 ^ i ^ r — k — 2, can be selected

as above and R = (ar_k_lf •••, ar_2)F2. Suppose F' is another field

with m = 2 and Witt ring IF' such that IF = W (as groups) and

& = kf. By Proposition 4.4 [1], q — g'; and s = s' follows from the fact

that the Witt group has exponent 2s, (see [7]). So α , 1 <; i ^

r — & — 2, and V can be obtained similarly to those for F. By the

remarks preceding the theorem, (1, — α<) (g) (1, 6) = 0 and (1, — α<) (g)

(1, — αy) =7̂  0 if and only if {i, j>'} = {2# — 1, 2e} for some β, 1 <Ξ β ^

(r — k — 2)j2. Moreover, if (1, — at) (x) (1, — αy) ^ 0, it must be

(1, — c, — d, cd). Similar statements hold for F'. Thus the map which

takes (ΐ)->(!), aΓ^J^aΓ^d for 1 ̂  i ^ r - k - 2, (1~6)-(Ϊ~P),
and (1, — c, — d, cd)—>(1, — cr, —d', c'd') extends to a ring isomorphism

from IF onto IF'. This completes the proof for the case s = 2 with

The case s = 1 is done in exactly the same fashion except — 1, b
in the first step are replaced by au a2 with au a2f and aLa2 £ R. This
also works for s = 2 with — 1 6 R. When s = 4, — 1, 6 are replaced
by — 1; and this accounts for the change in parity of r — k. The
proof of Theorem 1 is now finished.

The theorem shows that when \W\ = 4g < oo, the Witt ring is
determined by (IF, +) and \R/F2\. However, no examples are known
with q < oo and R Φ F or F2. If no fields with m — 2, q < <χ>, and
R Φ F2 existed (which is unlikely), the above would imply the stronger
theorem that the Witt ring for fields with \W\ — 4q was determined
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by the Witt group.

3* In this section, the analysis in [1] on fields with q <; 8 is
generalized to fields whose radical has index t in F of at most eight.
If t = \F/R\ = 1, then u = 2 and such fields are well-known. For
example, see [1, p. 406]. Kaplansky [5] has shown that t Φ 2 for

nonreal fields. By Theorem 3.8 [1] and Theorem 3 [2], m ̂  (l/t)(Vj + 1.
So if ί = 4, then m = 2 and the possible structures can be obtained
from Theorem 1. There are three possibilities (for a fixed q), and
they correspond to s = 2 with — l e J S and — lgR and to s = 1. If
t = 8, then m ^ 8 from the above and u <£ 8 from the corollary to
Theorem 1 [2]. By the discussion preceding Theorem 4 in [2] and
by the same techniques used for Proposition 5.15 in [1], it is easily
seen that for fields with fixed u = t and q, there are only three
possible Witt rings (again corresponding to s — 2 with — leR and
— 1 &R and to s = 1). The case t — 8, u = 8, m = 8 falls into one
of these three types. If t — 8 and u < 8, then Theorem 6 [2] yields
% = 4 and Theorems 3, 4 [2] imply m ̂  4. The cases left to consider
then, are t = 8, u — 4, m = 2 or 4, and s = 1, 2 or 4.

PROPOSITION 1. There are no fields with u = 4, m = 4, s = 4,
cmcϊ ί = 8.

Proof. Suppose F were such a field. By Theorem 2 [2], G(l,l) =
<c, d>i2 where cc? g iϋ. (Note difference of meanings of G(l, 1) in [2]
and here.) Also JF = < —1, c, d>i2. A basis for the group of qua-
ternion algebras is then [ — 1, —1] and [c, d]. Consequently, ±1$
G(c, d) and G(l, -c) - < - l , c>i2, G(l, - d ) = < - l , d)R} G(l, -cd) =
< - l , cd)R, G(l, cd) - (cd)R, G(l, c) - <c>i2, and G(l, d) = (d)R.
Hence G(l, c, d, c)= U^^d.o^e^^o G(a, β) = G(l, c)UG(l, d)UG(c, c)U
G(c, d) = <c, d>i2. But this contradicts u = 4. So ί 7 does not exist.

LEMMA 3. There are no fields with u = 4 αm£ G(l, 1) = J? U — J2.

The proof of this is virtually identical to the one of Lemma
6.5 [1]. Just replace K2 in 6.5 by R here. By continuing as in [1],
it can be shown that fields with m = 4 and s = 1, 2 comprise three
types and are unique up to equivalence (i.e., they have isomorphic
Witt rings, see [1]).

PROPOSITION 2. All fields with fixed q, t = 8, u = 4, s = 2, -leR,
and m = 4 are equivalent.

Proof. By Theorem 4 [2], there is an aeF—R such that
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I G(l, a)/R I > 2. So G(l, a) = <α, 6>i2, and from this, it follows that
G(l, ab) = G(l, 6) = <α, 6>i2. Hence, if F = <α, 6, c>Λ, then G(l, arc) =
<α;c>i2 for all x e <α, b)R. By using Proposition 2.2 [1], it is easy
to see now that any two such fields must be equivalent.

The next two proposition are proved in the same manner. Note
that by Lemma 3, Proposition 3 can be proved by replacing a in
the proof of Proposition 2 with —1.

PROPOSITION 3. All fields with fixed q, t = 8, u = 4, s = 2, — 1 $ R,
and m = 4 are equivalent.

PROPOSITION 4. All fields with fixed q, t — 8, u = 4, s = 1, cmd
m = 4 are equivalent.

Actually the hypothesis of m = 4 in the last 3 propositions is
superfluous because by Theorem 1, it is impossible to have a field
with s = 1 or 2, m = 2, and ί = 8. Theorem 1 also implies the next
result.

PROPOSITION 5. All fields with fixed q, t = 8, u = 4, s = 4, αmZ
m — 2 are equivalent.

This completes all possibilities with £ = 8. The existence of such
fields is only known to the extent of the knowledge dealing with
q = 8 and R == JP2 (see §6 of [1]). Since m = 2 or 4 implies u = 4
for nonreal fields, the specification of u is unnecessary in all of the
above cases. In fact, the parameters q, t, m, s> and whether or not
— 1 eR determine the field with respect to quadratic forms (i.e., Witt
ring). The question of —leR is only relevant, of course, when
s — 2. Theorem 2 is a summary of the results of this section.

THEOREM 2. Let F be a nonreal field, with q < oo, whose radical,
R, has index t ^ 8 in F. Then the parameters q, t, m, s, and whether
or not —leR determine the Witt ring of F. The only possible sets
of these parameters for a fixed q are

(1) t = 1, m = 1, s = 2 or 1
(2) £ = 4, m = 2, s = 2 (with -leR or - 1 gR) or 1
(3) £ = 8, m = 4, s = 2 (with - l e i ? or - 1 gJS) or 1
(4) ί = 8, m = 2, s = 4
(5) £ = 8, m = 8, s = 2 (with - 1 e i2 or - 1 g i2) or 1 .

4* If F is a field and |F/G(1, α)| = p, then it is clear that the
field has at least p quaternion algebras. Thus a (probably) crude
estimate, in terms of the indices of the G(l, a) in F, for the greatest
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lower bound for the number m of quaternion algebras which a field
has is the largest such index. In [1], best possible upper bounds
for m in terms of q were obtained. In this section upper bounds
for m for nonreal fields with q < °o will be found in terms of q and
the maximum index p of the G(l, a) in F. When p — qj2, this result
will yield the same answer as was found in [1].

By Theorem 3.8 [1] and its proof, m — 1 is the number of aniso-
tropic ternary forms of determinant 1 over F; and an estimate for
the number of such forms is what will be sought. Let dί —F2.
Since |FjG(l, d)\ <̂  p, there are at most p — 1 binary forms φd of
determinant d such that the ternary form φd © (d) is anisotropic.
This can be done for all d g — F\ and thus there are at most
(q — ϊ)(p — 1) anisotropic ternary forms of determinant 1 counted
in this way. But, of course, there is some overlap in this count.
Every ternary form φ of determinant 1 represents \G(φ)IF2\d's.

Claim. If φ = (a, b, ab) is anisotropic, then | G(φ)/F2\ ^ 3q/2p.

Proof. There is a c e G(a, 6, ab) — G{a, b). Suppose c = ax2 +
by2 + abz2. Let e = by2 + abz2. Then G(a, e) g G(a, b). Consider
G(α, β)-G(α, 6) - α[G(l, αe)-G(l, α&)] - α[G(l, αβ)- G(l, αδ) n
Since G(a, e) £ G(a, 6), | [G(l, αδ) Π G(l, αe)]/F21 ^ 1/2 | G(l,
Therefore, there are at least 1/21 G(l, ae)/F2\ square classes re-
presented by G(α, e) that are not represented by G(α, 6). But every
binary form represents at least qjp square classes so ] G(φ)/F2 \ Ξ>
3q/2p and the claim is proved.

By the claim and the preceding discussion, it now follows that
the number of anisotropic ternary forms of determinant 1 is at most

THEOREM 3. Let F be a nonreal field with q < oo. If p is the
maximum index of all G(l, a) in F, then the number of nonsplit
quaternion algebras over F is at most (2p(p — l)(q —

This upper bound turns out to be best possible for extreme
values of p. For example, if p = 1, then u ^ 2 and there are no
nonsplit quaternion algebras. If p — 2, then Theorem 3 implies
m — 1 ̂  4(g — l)/3g < 2. So m ^ 2. But p > 1 means m > 1 and hence
m = 2. This was first shown by Kaplansky in [4]. The other extreme
is when p = g/2. Here the theorem yields m — 1 <; ((q — l)(q — 2))/6,
and this agrees with the findings of Proposition 4.3 [1]. However,
it is not known whether the upper bound in Theorem 3 is best
possible for other values of p between 2 and g/2.
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5* The existence of fields with prescribed properties relating
to quadratic forms can frequently be determined by observing what
must happen to the value sets of binary forms. For this reason
the concept of a quadratic form scheme is introduced here. The
idea is to abstract value sets and eliminate the immediate necessity
of a field.

DEFINITION. A quadratic form scheme consists of a (multiplica-
tive) group A of exponent two and a set of subgroups {Xa}a6A which
satisfy the following:

(1) aeXa for all aeA
(2) there is a — l e A and — a == (—l)α
(3 ) for α, b e A, b e Xa if and only if —a e X_b.
The group A then corresponds to F/F2 for fields and the Xa

can be thought of as value sets for the quadratic forms (1, α).
Condition (3) then merely states the fundamental property that
δe(?(l, a) if and only if -aeG(l, -b). The element - l e i cor-
responds to — F2. Notice that —1 could be 1 in A. In order to
determine the quadratic form structure over any field, it is sufficient
to compute the value sets for all of the forms. To do this one only
needs to know the G(l, a); and so knowing the Xa might be enough to
construct a possible value set configuration for some field. Although
this might be the case in general, it is not true if the field is specified
to be nonreal. For example, let A be the group of exponent two
with basis { — 1, α, 6} and consider the quadratic form scheme with
X t = <α, δ>, X_, = <-l, α, δ>, Xa = (a), X.. = <-l, a), Xb = <&>, X.h =

1) U G(l, a) U G(l, 6) U G(l, άb) = <α, 6> = G(l, 1). This is obviously
a contradiction for nonreal fields. Two natural questions to ask,
then, are (1) given a quadratic form scheme, when does there exist
a field corresponding to it and (2) when is there a nonreal field for
the scheme.

In an attempt to analyze nonreal fields with m = 4 by dealing with
value sets, some possible schemes with q = 16 were discovered. The
goal was to show something akin to Theorem 1. However, the
attempt was not successful; and in fact, the following scheme makes
the existence of an analogous result doubtful. Let A be a group
of exponent two with basis { — 1, α, 6, c}. The table lists a possible
scheme associated with A.

This scheme is internally consistent with respect to quadratic
forms. If there is a field corresponding to it, then q = 16, m = 4,
u — 4.f s = 2, and R = i*72. It can also be shown that this scheme
is unique (up to the equivalence of the possible associated fields) with
respect to m = 4 and the indicated Witt group structure. For m = 2,
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this situation did not arise. Even more interesting is that this scheme
cannot be obtained from the quadratic form structure of a power
series field, F((x)), where q(F) = 8. It turns out that this is the
only such scheme with q — 16, m > 2, and trivial radical (i.e., R — K2)
that cannot be so obtained. This will be covered in more detail in
a future paper.

elements y e A

1

- 1

a
— a

b

-b

c

-c

ac

—ac

be

-be

ab

—ab

abc

— abc

associated subgroups Xy

< - l , a, b)

< - l , a, b, c>

<-l,α>
<-l,o,6c>

<-l, b)
<-l, b, c)
(b,c)
(b, - c >

(ac, be)
( — ac, —be)
(a, b, c)
(a, b, -c)
(-l,ab)
( — 1, ab, ac)
(a, be)
(a, -be)
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