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ON EXTENDING HIGHER DERIVATIONS
GENERATED BY CUP PRODUCTS
TO THE INTEGRAL CLOSURE

JOSEPH BECKER AND WILLIAM C. BROWN

Let A=k[xlt -' , xg] be a finitely generated integral domain
over a field k of characteristic zero. Let A denote the integral
closure of A in its quotient field. A well known result due
to A. Seidenberg says that any first order /^-derivation of A
can be extended to A. This result is known to be false for
higher order derivations. In this paper, the authors inves-
tigate what types of higher derivations on A can be extended
to A. The main results are for higher derivations which are
cup products. Set Der£ {A) = Der| (A)o and inductively define
Der£(A)0 as follows:

" A)o U DerJΓ'Wy .

The authors show that if φe Der£ (A)09 then φ{A) £ A. Various
examples are given which indicate that the above mentioned
result is about as good as possible.

Introduction* Throughout this paper, A = k[xlf , xg] will
denote a finitely generated integral domain over a field k of charac-
teristic zero. We shall let Q denote the quotient field of A and
A the integral closure of A in Q. For each n = 1, 2, •••, we shall
let Όern

k(A) denote the A-module of all nth order ^-derivations of A
to A. Thus, φeΏerϊ(A) if and only if φeΉ.omk(A, A), and for
all α0, , an e A we have

( 1 ) φ(aoaL - - - O = Σ ( - I ) 8 " 1 Σ «<!-•• aiaφ(a0 άh - ά<β αw) .

The authors refer the reader to [3] for the various facts about
Der^(^l) used in this paper. Of particular importance is the fact
that any nth order derivation φ 6 Deri (A) can naturally be extended
to an nth order derivation of any localization of A [Thm 15; 3].

We shall need the Hochschild coboundary operator A which is
defined as follows: If φeΉ.omk(A, A), then Δψ\ A x A—>A is the
ά-bilinear mapping defined by Aφ(αu α2) = φ{αtα^ — <Lιφ{α^ — α2φ{α^).
We shall also need the cup product φ U Ψ of two Λ-linear mappings
φ and f of A. ^ U + : 4 x i ^ A is the fc-bilinear mapping defined
by φ U ψ(αl9 α2) — φ{α^)ir(α^ If P and P are two A-submodules of
Horn*. (A, A), then P U P will denote the set of all ά-bilinear mappings
of A x A into A which are finite A-linear combinations of mappings
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of the form ψ (J f for φeP, feP'. Thus, if φ is an nth order k-
derivation of A such that Δφ e Σ ^ 1 Der£ (A) U DerΓ' (A), then there
exist constants eueA and fc-derivations ^pΊ, λ^ e Der((A) such that
for all a and 6 in A, we have

2 ^(«δ) =
+ Σβ^_ 1fr i )(α)λί 1 )(6).

Now the purpose of this paper is to study which nth order k-
derivations φ: A—+A can be extended to A. In [4], A. Seidenberg
showed that any 1st order derivation of A must map A to A. In
[1], an example was given which shows that 2nd order derivations
φ e Der£(A) need not have the property that φ{A) c A. Since we shall
have use of this example latter, we present it here

EXAMPLE 1. Consider the curve X2 = Y3 over the rational numbers
Q. Let A be the coordinate ring of this curve i.e. A — Q[x9 y] —
Q[X, Y]/(X2 — Γ3). One can easily check that A is a domain whose
integral closure is given by A = A[x/y]. Since the quotient field of
A is a finite separable extension of Q(y), it follows that any 2nd
order derivation φ 6 Der|>(A) is determined by its values on y and y2.
A simple calculation shows that if φ(y) = α, and φ{y2) — b (where a
and b lie in the quotient field of A), then

φ{x) = Zy_
8

and

φ{xy) =
8 V x /

If we set a = 1 and 6 — —2?/, then φe Der^(A), and one easily checks
that φ(x/y) — x\y2 ί A.

Thus, higher derivations on A need not extend to A. At the
end of [1], the author conjectured that any <peDer|(A) such that
Δφ G Deri(A) U Deri(A) must map A to A. In this paper, we shall
show that this conjecture is correct. We shall also formulate suf-
ficient conditions on ψ 6 Der^(A) in order that φ{A) c A. We assume
the reader is familiar with [1].

Main results*

THEOREM 1. Let A = k[xu , xg] be a finitely generated integral
domain over a field k of characteristic zero. Let A denote the
integral closure of A in its quotient field Q. Let φ e DerΙ(A) and
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assume Δφ e Der^(A) U Deri (A). Then φ(A) c A.

Proof. Let Min (A) denote the collection of height one primes
in A. Since 1 is a Krull domain, we have A— f\{Aq\qe Mm (A)}.
Here as usual Aq means A localized at the prime q. Let qeMm(Ά).
Then p = q D A e Min (A). Let us set R — Ap and R = (A)p = Ap

the integral closure of R in Q. Let q denote the extended prime
ideal qR in R. Then Rj = Aq. Now since R is a localization of
A, we see that φ e Deri (R). Suppose we could show that φ(R) £
R. Then φ(Rj) £ Rj or equivalently φ(Aq) £ Aq. Since A is the
intersection of the Aq, the theorem would be proven. Thus to prove
Theorem 1, it suffices to prove the following assertion:

"Under the same hypotheses as Theorem 1, let peMin(A), R —
Ap and R = Ap. Then φ(R) £ R."

So fix a minimal prime p e Min {A), and set R = Ap, R — Ap. We
have already noted that φeΌerl(R), and one easily sees that Jφe
Όeτl(R) U Όevi(R). Now if A = A, there is nothing to prove. Hence,
we may assume A Φ A. Then the conductor C of A in A is a proper
ideal in A. If C ς£ p, then R = R and again there is nothing to
prove. Hence we may assume Cap. In this case, CR is the con-
ductor of R in R.

We now follow the proof of Theorem 3 in [1]. Let the tran-
scendence degree of A over k be r, and let m denote the maximal
ideal in R. Then R/m is the quotient field of A/p and hence has
transcendence degree r — 1 over k. Let {̂ , , αr_J be a transcend-
ence basis of R/m over ά. Pull these ai back to elements at in i? —
m. Then JP7 = A;^, , ar_x) is a field of transcendence degree r — 1
over ά, and FaR.

We know that 5 is a semilocal ring with maximal ideals mlf

•••, mt lying over m in R. Set / = Π*=î <> ^ e Jacobson radical of
R. Each local ring Vt = JBW<, i = 1, , t, is a discrete rank one
valuation ring dominating R. By [Thm 18, p. 45; 6], we can find an
element β e J such that /S generates the maximal ideal in each F<.
Since the Krull dimension of R is one, we.see that J is the radical
of the ideal CR in R. Thus, some power of β, say /2\ lies in CR.
We shall have use of this remark later.

It was shown in [1], that Der£(jβ) is a free ^-module with basis
{d0, 3lt .••, 3r_1}. The derivations δt satisfy the following relations:

( 3 ) δo(β) = 1, ίo(α<) = 0 = δt(β) for ΐ = 1, .., r - 1

and
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0 if ^ =£ 3

We observe that the derivations δi commute on the field F(β). Since
β is a uniformizing parameter for V<, β is transcendental over I*7.
Hence Q is a separable algebraic extension of F(β). Therefore the
derivations on F(β) have a unique extension to Q. It follows that
the δ, commute on Q. It follows from [2; Thm 16, 11. 2] that the
union U?=i D e r * (Q) is a free Q-algebra generated by δ0, , δr_1Λ In
particular, <£> can be written as a unique polynomial of degree two
in δ0, •••, δr_lm The coefficients of this polynomial lie in Q. Let us
write φ as follows:

( 4 ) Σ
4=0

Since Δφ e Deri (ϋ!) U Deri (R), we can write for all a and 6 in R:

( 5 ) <p(ab) = aφ(b) + bφ(a) +

where et e R and ψ,, λ ; e Deri (R). One easily checks that equation
(5) continues to hold for all a and b in Q. Now by [Thm 1; 4], each
ψt and λz extends to R. It then easily follows that CR is differential
under ψt and λ,, i.e. ψt(CR) c Ciϋ and Xι(CR) c Ci2. Thus, CJB remains
differential under ψt and λz when considered as an ideal in R. Hence,
[Thm 1; 5] implies that each mt in R is differential under ψt and Xt.
Write each ψx and Xt as a linear combination of δ0, δl9 •••, δy^:

( 6 ) t i = Σi«iA λ, = Σ ^ A -

Here the coefficients ^ H and 7Zί lie in R. Then ψ^J") c J and λz(J) c J
imply that μi0 and Tzo lie in J. If we now substitute the expressions
in equations (6) and (4) into equation (5) and then make various
substitutions of the form a,b = al9 , ar-lf β, we see that all the
coefficients, except possibly α0, appearing in (4) lie in R. We further
get that aQi e J for i — 1, , r — 1, and aQ0 e J2.

Thus, to complete the proof of the assertion φ(R) g R, we must
show that α0 in (4) lies in R. We shall show this by arguing that
aQ e Vt for every i = 1, , t.

So fix an i — 1, , t, and let vt: Vt —> Z be the valuation of Vi
given by vt(0) = 1. We wish to show that v t̂to) ^ 0. Let us assume
vt(α0) < O We need the following lemma:

LEMMA 1. There exist two elements x and y in R such that
(a) The value N — vt(x) of x is the smallest positive value of
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any element in R.
(b) The value v^y) of y is not a multiple of N.

Proof. Since RczViy we have vt(z)^ 0 for every element z in
R. So we can certainly find an element x in R which satisfies (a).
As pointed out earlier, βn e CRa R. Thus, βn+ι e R for any nonnega-
tive integer I.

Now suppose no ye R can be found satisfying (b). Then for
every nonnegative integer I, we must have n + I — Vi(βn+ι) is a
multiple of N. This can only happen if N = 1. We shall show this
is impossible.

If N = 1, then x — 7/9 for some unit 7 in Vt. We want to consider

Ψ(x) = T,aA(%) + Σ ajβjix) +
^ j ^ 1

jβjix) +
— 1

which is an element of R. Now we have

-, r -

δQ(χ) = /9<50(7) + 7

305*(a?) - iSW*(7) + δt(7) i = 1

and

δo

2(x) - βS2

0(Ύ) + 2δo(7) .

Since the δ, are derivations on β, they naturally extend to V*. Thus,
the elements in equation (7) are all elements of Vιf and clearly δo(x)
is a unit in Vt. If we now use the facts that aί9 •• ,α r _ 1 ,α 1 i e f i ,
aQί G J and α00 6 J 2, we see that

( 8 ) VJΣ «Λ(«) +
L l

Σ α*Λ«i(») + Σ
i<^^r- l ^=0

Thus, vt(φ(x)) = ^ί(α0) + Vi(δo(x)) — vτ(a0) < 0. But, £>(sc) e i2 means the
value of φ{x) must be nonnegative. Thus, we have reached a con-
tradiction and the proof of Lemma 1 is complete.

Now among all the elements z of R such that v^z) is not a
multiple of N pick one, say y, of smallest value M. Lemma 1 guaran-
tees that such an element y e R exists. Then M — N > 0, and M —
N is not the value of any element of R. Since vt(x) — N, x = ΎβN

for some unit 7e F*. An argument similar to that in Lemma 1
shows that vt(φ(x)) = v4(α0) + iV— 1. Now there are two cases to
consider. Either φ(x) is a unit in R or it is not. If φ(x) is a nonunit,
then ^(^(cc)) ^ N. But this implies ^(α0) Ξ> 1 which is contrary to
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our assumption. Thus, φ{x) is a unit. So Vi(a0) — 1 — N. But now
a similar computation applied to y gives us that vi{φ{y)) = Vi(a0) +
M — 1 = M — N. Since φ{y) e R, and M — iV is not the value of
anything in R, we have reached a contradiction.

Thus, ^i(α0) ^ 0 and the proof of Theorem 1 is complete.

In our proof of Theorem 2 below, we shall need the fact that
the coefficient α0 in equation (4) actually lies in J. The proof of
Theorem 1 shows that a0 e R. To see that a0 e J, we proceed as
follows: Since φ(R) £ R, equation (5) immediately implies that φ{CR) S
CR. In the notation of Theorem 1, we wish to argue that ^(αo) ^
1. Suppose Vi(a0) — 0. Let N be the minimum positive value of any
element in CR, and let x e CR have value N. Then as in Lemma 1,
Viiφix)) — Vi(a0) + N—1 = N— 1. Since φ(x)e CR this is impossible.
Thus vτ(a0) ^ 1.

For Theorem 2, we shall need the following definition:

DEFINITION. Set Deri (A)o = Der^A) and inductively define Όern

k(A)0

as follows:

Der? (A)o - j φ e Der; (A) \ Δφ e Σ Deri (A)o U DerΓ' (A)

Thus, Theorem 1 states that if φeΌeτl(A)Q, then ^ ( 4 ) c l We
can now prove the general result.

THEOREM 2. Let A = fefx^ , xj be a finitely generated integral
domain over a field k of characteristic zero. Let A denote the
integral closure of A in its quotient field Q. Let φ e Der?c (A)o.
Then φ{A)aA.

Proof. The proof proceeds along the same lines as in Theorem
1. It suffices to show that for every prime p of height one in A,
φ{R) c R. Here, as in Theorem 1, R denotes the integral closure of
R = Ap in Q. One easily checks that φ e Όeτt (R)o. We shall adopt
all the notation used in Theorem 1. Thus, CR is the conductor of
R in R.

For the purposes of this proof, let us define Der^ (R)^ inductively
as follows:

(9) Deri (22h = Deri (22)

Όerl (Rh = \ψ e Der£ (22) | Δφ e ΣDerί (Rfe U DerΓ1 (22fe
( ί = l

and φ(R)czR\ .



ON EXTENDING HIGHER DERIVATIONS 331

Then we have already proven that Der| (R)o — Der| (R)^ in Theorem
1, and we shall show that Der£ (R\ = Der£ (Rh for all n.

Now we know that \JnΌevl(Q) is a free Q-algebra generated
by δ0, , δr_,. Thus iίφe Όert (R), then φ = £(δ0, , δr-i) for some
polynomial 9f(I0, •• , I r _ 1 ) e Q [ I 0 , •• ,Xr_1] of degree less than or
equal to n. We further know this polynomial is unique. We now
need the following lemma:

LEMMA 2. Let φ e Όevt (iϋh, and write φ = g(δ0, ., δ,^). 2%ew
£&# coefficients of any monomials of g which contain δ3

0(l ̂  j ^ n)
lie in J5.

Proof. We proceed by induction on n. The case n — 1 was
proven in Theorem 1. The case n — 2 was proven in Theorem 1 and
the remarks following Theorem 1. Thus, we may assume Lemma
2 has been proven for all elements of Der^(i2)^ with m <n.

Let φ e Όenl (R)R. Then there exist constants eu e R and deriva-
tions f lj), X{ιj) e Όeri (R)R, j = 1, , n — 1, such that for all a and b
in Q equation (2) is satisfied. Our induction hypothesis applies to
the derivations ψ\j) and λpλ So we can write:

Ψϊj) = Σ cl»δt + Σ cι

t[i2δhK + + Σ <#.-*, A δtj
( ) λί̂  = Σ d\-δt + Σ < W A + + Σ «;?...A ^ .

In (10), the coefficient of any monomial in either expression which
contains δj

Q will lie in Jj. We note that since ψlj), λ{y): R~+R, all the
coefficients of (10) lie in R.

Now write out the polynomial g(δ0, , δ^) which gives us φ
as follows:

(11) φ = Σ α A + Σ aht2δtδt2 + . . . + Σ ^ . - A •••*..-

Since φ(R) c 5, one easily checks that all the coefficients at, ahH, ,
ah...tn of (11) lie in R. We now substitute equations (10) and (11)
into (2) and get:

Σ atδt(ab) + Σ atlt2δhδt2(ab) + . . . + Σ αtl...* A

- α{Σ αA(δ) + + Σ αtι...t A <

(12)

+

+

+

+

ί>{Σ atδ

i ' I

Σ dιt'*~i

L<V t(α)J

{Σ cί ""^^

+ Σfi

1 «

? ί w i (6)

a) ~f"

f i Λ •

-W) +
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After simplifying (12) and comparing coefficients, we see that any
coefficient of (11) (except possibly for a0) in a monomial containing
δj

0 lies in J3. Thus, the lemma will be complete if we show a0 e J.
Since φ(R) c R, one easily sees using (2) that φ(CR) c CR. Thus,

to argue a0 e J, one can proceed exactly as in the remarks following
Theorem 1. Pick an element x e CR of minimum value N = vt(x).
If Vi(a0) = 0, then Vi(φ{x)) = N — 1 which is a contradiction. This
completes the proof of Lemma 2.

We now proceed to prove Theorem 2 by induction on n. A.
Seidenberg's original result [Thm; 4], and Theorem 1 give us the
case n = 1 and n = 2. Thus, assume Theorem 2 is correct for all
m < n, and let φ e Der^ (i?)0. We can expand φ as in equation (2)
for some choice of constants eu e R and derivations ψl3), λ(i) e Der£ (i2)0.
By our induction hypothesis, Derj[ (JS)o = Der£ (iϊ)*. So by Lemma
2, each ψp* and λίy) can be written as in equation (10) with the
coefficients of any monomials containing δ3

Q lying in J3. Now write
φ as in equation (11). Following the same substitutions as in Lemma
2, we see that all the coefficients al9 , ar-lf ahh, , ah...tn lie in R.
Further, the coefficients appearing in terms containing δj lie in J3,
except possibly for αo Thus, as in Theorem 1, we have to argue
that vt(a0) ^ 0 for all i = 1, , t. But this argument is exactly the
same as in Theorem 1. Assume v<(α0) < 0. The coefficients of (11)
lying in the right powers of / exactly mean that v^φiz)) — Vt(a0) +
Vt(z) — 1 for any nonunit z of R. Thus we proceed exactly as before
to argue that Vi(a0) < 0 is impossible. This completes the proof of
Theorem 2.

The reader may be wondering if a slightly weaker hypothesis
on φeΌeτn

k(A) will imply φ(A)czA. In particular, it is natural to
ask the following question: Suppose φ e Der^ (A) such that

Δψ G Σ D e ή (A) U DerΓ'(A) .
i=l

Then is φ(A) g A1 Theorem 1 implies this is true if n = 2. We
shall give an example which shows that for n > 2 the answer to
the above question is in general negative.

EXAMPLE 2. We return to Example 1 at the beginning of this
paper. We may equally well describe the ring A as A = Q[tf, t2].
Set δ = d/dt, a first order derivation on the quotient field of A. One
can easily check that tδ, t2δ, δ2 - (2/ί)δ, tδ2 - δ and <53 - (3/t)δ2 + (3/«2)δ
are all derivations on A. Set
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(13) φ = fδfδ* - Aδ2 + JLή - ^δ(δ2 - — δ) + A/> - 2.δ)(tδ) .

Then ^GDe4(A). If we expand φ out, we get φ = tΨ - 6tδ3 +
15δ2 — (18/t)d. Now the integral closure A of A is just Q[t], and
thus φ(A) ςt A. However one can easily check that

Aψ = 4(V - —δ2 + 4 ^ ) U (fδ) + 6(tδ2 - δ) U (tδ2 - δ)

U (δs - — δ2 + \δ
\ 6 o

Thus

Δφ e Όeτι

Q (A) U Der^ (A) + Der^ (A) U Der^(A) + Der^ (A) U Der^ (A) ,

but 9>(A) ςt A.
This example shows that we really need the stronger statement

φeΌern

k(A)0 in order to conclude the φ(Ά) a A.
Finally, we note that the methods used in Theorems 1 and 2

give a new proof of A. Seidenberg's original theorem for finitely
generated domains:

THEOREM (A. Seidenberg). Let A = k[xlf •• ,xί7] be a finitely
generated ίntegal domain over a field k of characteristic zero. Let
A denote the integral closure of A in its quotient field Q. Let
δ G Der1, (A). Then δ(A) c A.

Proof. Using the same notation as in Theorem 1, we see that
it suffices to prove δ(R) c R. Write δ = aoδo + + a^-fi^ with
the ateQ. Since δ{a^) e R, we see au , ar_xe R. As before, it
remains to argue that Vi(a0) ̂  0 for all i = 1, , t. So fix an i =
1, , t and assume Vi(a0) < 0. Pick x e R such that N = vt{x) is the
minimum positive value of any element of R. Then Vi(δ(x)) = Vi(a0) +
N — 1. Since δ(x)eR, we conclude that ^(αo) = 1 — N. By an
argument similar to that in Lemma 1, we can find an element ye
R such that M = v^y) is the minimum positive value of anything
in R which is not a multiple of N. Then Vi(δ(y)) = M — N which
is impossible.
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