ON EXTENDING HIGHER DERIVATIONS GENERATED BY CUP PRODUCTS TO THE INTEGRAL CLOSURE

JOSEPH BECKER AND WILLIAM C. BROWN

Let $A = k[x_1, \dots, x_q]$ be a finitely generated integral domain over a field k of characteristic zero. Let \overline{A} denote the integral closure of A in its quotient field. A well known result due to A. Seidenberg says that any first order k-derivation of Acan be extended to \overline{A} . This result is known to be false for higher order derivations. In this paper, the authors investigate what types of higher derivations on A can be extended to \overline{A} . The main results are for higher derivations which are cup products. Set $\operatorname{Der}_k^1(A) = \operatorname{Der}_k^1(A)_0$ and inductively define $\operatorname{Der}_k^n(A)_0$ as follows:

$$\mathrm{Der}_k^n(A)_0 = \{ \varphi \in \mathrm{Der}_k^n(A) \, | \, \varDelta \varphi \in \sum_{i=1}^{n-1} \mathrm{Der}_k^i(A)_0 \cup \mathrm{Der}_k^{n-i}(A)_0 \} \; .$$

The authors show that if $\varphi \in \operatorname{Der}_k^n(A)_0$, then $\varphi(\overline{A}) \subseteq \overline{A}$. Various examples are given which indicate that the above mentioned result is about as good as possible.

Introduction. Throughout this paper, $A = k[x_1, \dots, x_g]$ will denote a finitely generated integral domain over a field k of characteristic zero. We shall let Q denote the quotient field of A and \overline{A} the integral closure of A in Q. For each $n = 1, 2, \dots$, we shall let $\operatorname{Der}_k^n(A)$ denote the A-module of all nth order k-derivations of A to A. Thus, $\varphi \in \operatorname{Der}_k^n(A)$ if and only if $\varphi \in \operatorname{Hom}_k(A, A)$, and for all $a_0, \dots, a_n \in A$ we have

$$(1) \quad \varphi(a_0a_1\cdots a_n)=\sum_{s=1}^n (-1)^{s-1}\sum_{i_1<\cdots < i_s} a_{i_1}\cdots a_{i_s}\varphi(a_0\cdots \check{a}_{i_1}\cdots \check{a}_{i_s}\cdots a_n) \ .$$

The authors refer the reader to [3] for the various facts about $\operatorname{Der}_{k}^{n}(A)$ used in this paper. Of particular importance is the fact that any *n*th order derivation $\varphi \in \operatorname{Der}_{k}^{n}(A)$ can naturally be extended to an *n*th order derivation of any localization of A [Thm 15; 3].

We shall need the Hochschild coboundary operator Δ which is defined as follows: If $\varphi \in \operatorname{Hom}_k(A, A)$, then $\Delta \varphi: A \times A \to A$ is the *k*-bilinear mapping defined by $\Delta \varphi(a_1, a_2) = \varphi(a_1a_2) - a_1\varphi(a_2) - a_2\varphi(a_1)$. We shall also need the cup product $\varphi \cup \psi$ of two *k*-linear mappings φ and ψ of A. $\varphi \cup \psi: A \times A \to A$ is the *k*-bilinear mapping defined by $\varphi \cup \psi(a_1, a_2) = \varphi(a_1)\psi(a_2)$ If P and P are two A-submodules of Hom_k(A, A), then $P \cup P$ will denote the set of all *k*-bilinear mappings of $A \times A$ into A which are finite A-linear combinations of mappings of the form $\varphi \cup \psi$ for $\varphi \in P$, $\psi \in P'$. Thus, if φ is an *n*th order *k*-derivation of *A* such that $\Delta \varphi \in \sum_{i=1}^{n-1} \operatorname{Der}_k^i(A) \cup \operatorname{Der}_k^{n-i}(A)$, then there exist constants $e_{lj} \in A$ and *k*-derivations $\psi_l^{(j)}, \lambda_l^{(j)} \in \operatorname{Der}_k^j(A)$ such that for all *a* and *b* in *A*, we have

Now the purpose of this paper is to study which *n*th order *k*-derivations $\varphi: A \to A$ can be extended to \overline{A} . In [4], A. Seidenberg showed that any 1st order derivation of A must map \overline{A} to \overline{A} . In [1], an example was given which shows that 2nd order derivations $\varphi \in \operatorname{Der}_k^2(A)$ need not have the property that $\varphi(\overline{A}) \subset \overline{A}$. Since we shall have use of this example latter, we present it here

EXAMPLE 1. Consider the curve $X^2 = Y^3$ over the rational numbers Q. Let A be the coordinate ring of this curve i.e. $A = Q[x, y] = Q[X, Y]/(X^2 - Y^3)$. One can easily check that A is a domain whose integral closure is given by $\overline{A} = A[x/y]$. Since the quotient field of A is a finite separable extension of Q(y), it follows that any 2nd order derivation $\varphi \in \text{Der}_Q^2(A)$ is determined by its values on y and y^2 . A simple calculation shows that if $\varphi(y) = a$, and $\varphi(y^2) = b$ (where a and b lie in the quotient field of A), then

$$arphi(x)=rac{3y}{8}\Big(rac{2ya+b}{x}\Big),\,arphi(x^2)=3yb-3y^2a$$

and

$$arphi(xy) = rac{5y^2}{8} \Big(rac{3b-2ya}{x} \Big)$$

If we set a = 1 and b = -2y, then $\varphi \in \operatorname{Der}^2_0(A)$, and one easily checks that $\varphi(x/y) = x/y^2 \notin \overline{A}$.

Thus, higher derivations on A need not extend to \overline{A} . At the end of [1], the author conjectured that any $\varphi \in \operatorname{Der}_k^2(A)$ such that $\Delta \varphi \in \operatorname{Der}_k^1(A) \cup \operatorname{Der}_k^1(A)$ must map \overline{A} to \overline{A} . In this paper, we shall show that this conjecture is correct. We shall also formulate sufficient conditions on $\varphi \in \operatorname{Der}_k^n(A)$ in order that $\varphi(\overline{A}) \subset \overline{A}$. We assume the reader is familiar with [1].

Main results.

THEOREM 1. Let $A = k[x_1, \dots, x_g]$ be a finitely generated integral domain over a field k of characteristic zero. Let \overline{A} denote the integral closure of A in its quotient field Q. Let $\varphi \in \text{Der}_k^2(A)$ and

327

assume $arDegin{array}{c} arDegin{array}{c} arDegin{array}{c} d arphi \in \operatorname{Der}^{\scriptscriptstyle 1}_{\scriptscriptstyle K}(A) \cup \operatorname{Der}^{\scriptscriptstyle 1}_{\scriptscriptstyle k}(A). & Then \ \ arphi(ar{A}) \subset ar{A}. \end{array}$

Proof. Let Min (\overline{A}) denote the collection of height one primes in \overline{A} . Since \overline{A} is a Krull domain, we have $\overline{A} = \bigcap {\{\overline{A}_q | q \in \text{Min}(\overline{A})\}}$. Here as usual \overline{A}_q means \overline{A} localized at the prime q. Let $q \in \text{Min}(\overline{A})$. Then $p = q \cap A \in \text{Min}(A)$. Let us set $R = A_p$ and $\overline{R} = (\overline{A})_p = \overline{A}_p$ the integral closure of R in Q. Let \overline{q} denote the extended prime ideal $q\overline{R}$ in \overline{R} . Then $\overline{R}_{\overline{q}} = \overline{A}_q$. Now since R is a localization of A, we see that $\varphi \in \text{Der}_k^2(R)$. Suppose we could show that $\varphi(\overline{R}) \subseteq \overline{R}$. Then $\varphi(\overline{R}_{\overline{q}}) \subseteq \overline{R}_{\overline{q}}$ or equivalently $\varphi(\overline{A}_q) \subseteq \overline{A}_q$. Since \overline{A} is the intersection of the \overline{A}_q , the theorem would be proven. Thus to prove Theorem 1, it suffices to prove the following assertion:

"Under the same hypotheses as Theorem 1, let $p \in Min(A)$, $R = A_p$ and $\overline{R} = \overline{A}_p$. Then $\varphi(\overline{R}) \subseteq \overline{R}$."

So fix a minimal prime $p \in Min(A)$, and set $R = A_p$, $\overline{R} = \overline{A}_p$. We have already noted that $\varphi \in \text{Der}^2_k(R)$, and one easily sees that $\varDelta \varphi \in$ $\text{Der}^1_k(R) \cup \text{Der}^1_k(R)$. Now if $A = \overline{A}$, there is nothing to prove. Hence, we may assume $\overline{A} \neq A$. Then the conductor C of A in \overline{A} is a proper ideal in A. If $C \not\subset p$, then $R = \overline{R}$ and again there is nothing to prove. Hence we may assume $C \subset p$. In this case, CR is the conductor of R in \overline{R} .

We now follow the proof of Theorem 3 in [1]. Let the transcendence degree of A over k be r, and let m denote the maximal ideal in R. Then R/m is the quotient field of A/p and hence has transcendence degree r-1 over k. Let $\{\bar{\alpha}_1, \dots, \bar{\alpha}_{r-1}\}$ be a transcendence basis of R/m over k. Pull these $\bar{\alpha}_i$ back to elements α_i in R-m. Then $F = k(\alpha_1, \dots, \alpha_{r-1})$ is a field of transcendence degree r-1over k, and $F \subset R$.

We know that \overline{R} is a semilocal ring with maximal ideals m_1 , \dots , m_i lying over m in R. Set $J = \bigcap_{i=1}^t m_i$, the Jacobson radical of \overline{R} . Each local ring $V_i = \overline{R}_{m_i}$, $i = 1, \dots, t$, is a discrete rank one valuation ring dominating R. By [Thm 18, p. 45; 6], we can find an element $\beta \in J$ such that β generates the maximal ideal in each V_i . Since the Krull dimension of \overline{R} is one, we see that J is the radical of the ideal CR in \overline{R} . Thus, some power of β , say β^n , lies in CR. We shall have use of this remark later.

It was shown in [1], that $\operatorname{Der}_{k}^{\vee}(\overline{R})$ is a free \overline{R} -module with basis $\{\delta_{0}, \delta_{1}, \dots, \delta_{r-1}\}$. The derivations δ_{i} satisfy the following relations:

$$(\ 3\) \qquad \quad \delta_{\scriptscriptstyle 0}(\beta) = 1, \ \delta_{\scriptscriptstyle 0}(\alpha_i) = 0 = \delta_i(\beta) \quad \text{for} \quad i = 1, \ \cdots, \ r-1$$

$$\delta_i(lpha_j) = egin{cases} 1 & ext{if} & i=j \ 0 & ext{if} & i
eq j \end{cases} \ 1 \leq i \leq j \leq r-1 \ .$$

We observe that the derivations δ_i commute on the field $F(\beta)$. Since β is a uniformizing parameter for V_i , β is transcendental over F. Hence Q is a separable algebraic extension of $F(\beta)$. Therefore the derivations on $F(\beta)$ have a unique extension to Q. It follows that the δ_i commute on Q. It follows from [2; Thm 16, 11. 2] that the union $\bigcup_{n=1}^{\infty} \text{Der}_k^n(Q)$ is a free Q-algebra generated by $\delta_0, \dots, \delta_{r-1}$. In particular, φ can be written as a unique polynomial of degree two in $\delta_0, \dots, \delta_{r-1}$. The coefficients of this polynomial lie in Q. Let us write φ as follows:

$$(4) \qquad \qquad \varphi = \sum_{i=0}^{r-1} a_i \delta_i + \sum_{0 \leq i < j \leq r-1} a_{ij} \delta_i \delta_j + \sum_{i=0}^{r-1} a_{ii} \delta_i^2$$

Since $\Delta \varphi \in \operatorname{Der}_{k}^{1}(R) \cup \operatorname{Der}_{k}^{1}(R)$, we can write for all a and b in R:

(5)
$$\varphi(ab) = a\varphi(b) + b\varphi(a) + \sum_{l} e_{l}\psi_{l}(a)\lambda_{l}(b)$$

where $e_i \in R$ and $\psi_i, \lambda_i \in \text{Der}_k^1(R)$. One easily checks that equation (5) continues to hold for all a and b in Q. Now by [Thm 1; 4], each ψ_i and λ_i extends to \overline{R} . It then easily follows that CR is differential under ψ_i and λ_i , i.e. $\psi_i(CR) \subset CR$ and $\lambda_i(CR) \subset CR$. Thus, CR remains differential under ψ_i and λ_i when considered as an ideal in \overline{R} . Hence, [Thm 1; 5] implies that each m_i in \overline{R} is differential under ψ_i and λ_i . Write each ψ_i and λ_i as a linear combination of $\delta_0, \delta_1, \dots, \delta_{r-1}$:

(6)
$$\psi_l = \sum_{i=0}^{r-1} \mu_{li} \delta_i \quad \lambda_l = \sum_{i=0}^{r-1} \gamma_{li} \delta_i .$$

Here the coefficients μ_{li} and γ_{li} lie in \overline{R} . Then $\psi_l(J) \subset J$ and $\lambda_l(J) \subset J$ imply that μ_{lo} and γ_{lo} lie in J. If we now substitute the expressions in equations (6) and (4) into equation (5) and then make various substitutions of the form $a, b = \alpha_1, \dots, \alpha_{r-1}, \beta$, we see that all the coefficients, except possibly a_0 , appearing in (4) lie in \overline{R} . We further get that $a_{0i} \in J$ for $i = 1, \dots, r-1$, and $a_{00} \in J^2$.

Thus, to complete the proof of the assertion $\varphi(\bar{R}) \subseteq \bar{R}$, we must show that a_0 in (4) lies in \bar{R} . We shall show this by arguing that $a_0 \in V_i$ for every $i = 1, \dots, t$.

So fix an $i = 1, \dots, t$, and let $v_i: V_i \to Z$ be the valuation of V_i given by $v_i(\beta) = 1$. We wish to show that $v_i(a_0) \ge 0$. Let us assume $v_i(a_0) < 0$. We need the following lemma:

LEMMA 1. There exist two elements x and y in R such that (a) The value $N = v_i(x)$ of x is the smallest positive value of any element in R.

(b) The value $v_i(y)$ of y is not a multiple of N.

Proof. Since $R \subset V_i$, we have $v_i(z) \ge 0$ for every element z in R. So we can certainly find an element x in R which satisfies (a). As pointed out earlier, $\beta^n \in CR \subset R$. Thus, $\beta^{n+l} \in R$ for any nonnegative integer l.

Now suppose no $y \in R$ can be found satisfying (b). Then for every nonnegative integer l, we must have $n + l = v_i(\beta^{n+l})$ is a multiple of N. This can only happen if N = 1. We shall show this is impossible.

If N = 1, then $x = \gamma \beta$ for some unit γ in V_i . We want to consider

$$arphi(x) = \sum\limits_{\imath=0}^{r-1} a_i \delta_i(x) + \sum\limits_{\scriptscriptstyle 0 \leq \imath < j \leq r-1} a_{ij} \delta_i \delta_j(x) + \sum\limits_{\scriptscriptstyle \iota=0}^{r-1} a_{\imath\iota} \delta^2_i(x)$$

which is an element of R. Now we have

(7)
$$\delta_{\scriptscriptstyle 0}(x) = \beta \delta_{\scriptscriptstyle 0}(\gamma) + \gamma$$

 $\delta_{\scriptscriptstyle i}(x) = \beta \delta_{\scriptscriptstyle i}(\gamma) \qquad i = 1, \ \cdots, r-1$
 $\delta_{\scriptscriptstyle 0} \delta_{\scriptscriptstyle i}(x) = \beta \delta_{\scriptscriptstyle 0} \delta_{\scriptscriptstyle i}(\gamma) + \delta_{\scriptscriptstyle i}(\gamma) \qquad i = 1, \ \cdots, r-1$
 $\delta_{\scriptscriptstyle i} \delta_{\scriptscriptstyle j}(x) = \beta \delta_{\scriptscriptstyle i} \delta_{\scriptscriptstyle j}(\gamma) \qquad 0 < i \leq j \leq r-1$

and

$$\delta_0^2(x) = eta \delta_0^2(\gamma) + 2 \delta_0(\gamma) \; .$$

Since the ∂_j are derivations on \overline{R} , they naturally extend to V_i . Thus, the elements in equation (7) are all elements of V_i , and clearly $\partial_0(x)$ is a unit in V_i . If we now use the facts that $a_1, \dots, a_{r-1}, a_{ij} \in \overline{R}$, $a_{0i} \in J$ and $a_{00} \in J^2$, we see that

$$(8) v_i \left[\sum_{i=1}^{r-1} a_i \delta_i(x) + \sum_{0 \le i < j \le r-1} a_{ij} \delta_i \delta_j(x) + \sum_{i=0}^{r-1} a_{ii} \delta_i^2(x)\right] \ge 1$$

Thus, $v_i(\varphi(x)) = v_i(a_0) + v_i(\delta_0(x)) = v_i(a_0) < 0$. But, $\varphi(x) \in R$ means the value of $\varphi(x)$ must be nonnegative. Thus, we have reached a contradiction and the proof of Lemma 1 is complete.

Now among all the elements z of R such that $v_i(z)$ is not a multiple of N pick one, say y, of smallest value M. Lemma 1 guarantees that such an element $y \in R$ exists. Then M - N > 0, and M - N is not the value of any element of R. Since $v_i(x) = N$, $x = \gamma \beta^N$ for some unit $\gamma \in V_i$. An argument similar to that in Lemma 1 shows that $v_i(\varphi(x)) = v_i(a_0) + N - 1$. Now there are two cases to consider. Either $\varphi(x)$ is a unit in R or it is not. If $\varphi(x)$ is a nonunit, then $v_i(\varphi(x)) \ge N$. But this implies $v_i(a_0) \ge 1$ which is contrary to

our assumption. Thus, $\varphi(x)$ is a unit. So $v_i(a_0) = 1 - N$. But now a similar computation applied to y gives us that $v_i(\varphi(y)) = v_i(a_0) + M - 1 = M - N$. Since $\varphi(y) \in R$, and M - N is not the value of anything in R, we have reached a contradiction.

Thus, $v_i(a_0) \ge 0$ and the proof of Theorem 1 is complete.

In our proof of Theorem 2 below, we shall need the fact that the coefficient a_0 in equation (4) actually lies in J. The proof of Theorem 1 shows that $a_0 \in \overline{R}$. To see that $a_0 \in J$, we proceed as follows: Since $\varphi(\overline{R}) \subseteq \overline{R}$, equation (5) immediately implies that $\varphi(CR) \subseteq$ CR. In the notation of Theorem 1, we wish to argue that $v_i(a_0) \geq$ 1. Suppose $v_i(a_0) = 0$. Let N be the minimum positive value of any element in CR, and let $x \in CR$ have value N. Then as in Lemma 1, $v_i(\varphi(x)) = v_i(a_0) + N - 1 = N - 1$. Since $\varphi(x) \in CR$ this is impossible. Thus $v_i(a_0) \geq 1$.

For Theorem 2, we shall need the following definition:

DEFINITION. Set $\operatorname{Der}_k^{\scriptscriptstyle 1}(A)_0 = \operatorname{Der}_k^{\scriptscriptstyle 1}(A)$ and inductively define $\operatorname{Der}_k^{\scriptscriptstyle n}(A)_0$ as follows:

$$\mathrm{Der}_k^n\left(A
ight)_{\scriptscriptstyle 0} = \left\{arphi \in \mathrm{Der}_k^n(A) \, | \, arphi arphi \in \sum\limits_{\imath=1}^{n-1} \mathrm{Der}_k^i\left(A
ight)_{\scriptscriptstyle 0} \cup \, \mathrm{Der}_k^{n-i}\left(A
ight)_{\scriptscriptstyle 0}
ight\} \, .$$

Thus, Theorem 1 states that if $\varphi \in \operatorname{Der}_k^2(A)_0$, then $\varphi(\overline{A}) \subset \overline{A}$. We can now prove the general result.

THEOREM 2. Let $A = k[x_1, \dots, x_g]$ be a finitely generated integral domain over a field k of characteristic zero. Let \overline{A} denote the integral closure of A in its quotient field Q. Let $\varphi \in \operatorname{Der}_k^n(A)_0$. Then $\varphi(\overline{A}) \subset \overline{A}$.

Proof. The proof proceeds along the same lines as in Theorem 1. It suffices to show that for every prime p of height one in A, $\varphi(\bar{R}) \subset \bar{R}$. Here, as in Theorem 1, \bar{R} denotes the integral closure of $R = A_p$ in Q. One easily checks that $\varphi \in \operatorname{Der}_k^n(R)_0$. We shall adopt all the notation used in Theorem 1. Thus, CR is the conductor of R in \bar{R} .

For the purposes of this proof, let us define $\operatorname{Der}_{k}^{n}(R)_{\overline{k}}$ inductively as follows:

$$\mathrm{Der}_k^n\left(R
ight)_{\overline{R}} = \left\{arphi \in \mathrm{Der}_k^n\left(R
ight) | \, arphi arphi \in \sum_{i=1}^{n-1} \mathrm{Der}_k^i\left(R
ight)_{\overline{R}} \cup \mathrm{Der}_k^{n-i}\left(R
ight)_{\overline{R}}
ight.$$

and $arphi(\overline{R}) \subset \overline{R}
ight\}$.

Then we have already proven that $\operatorname{Der}_{k}^{*}(R)_{0} = \operatorname{Der}_{k}^{*}(R)_{\overline{R}}$ in Theorem 1, and we shall show that $\operatorname{Der}_{k}^{*}(R)_{0} = \operatorname{Der}_{k}^{*}(R)_{\overline{R}}$ for all n.

Now we know that $\bigcup_n \operatorname{Der}_k^n(Q)$ is a free Q-algebra generated by $\delta_0, \dots, \delta_{r-1}$. Thus if $\varphi \in \operatorname{Der}_k^n(R)$, then $\varphi = g(\delta_0, \dots, \delta_{r-1})$ for some polynomial $g(X_0, \dots, X_{r-1}) \in Q[X_0, \dots, X_{r-1}]$ of degree less than or equal to n. We further know this polynomial is unique. We now need the following lemma:

LEMMA 2. Let $\varphi \in \operatorname{Der}_k^n(R)_{\overline{R}}$, and write $\varphi = g(\delta_0, \dots, \delta_{r-1})$. Then the coefficients of any monomials of g which contain $\delta_0^i(1 \leq j \leq n)$ lie in J^j .

Proof. We proceed by induction on n. The case n = 1 was proven in Theorem 1. The case n = 2 was proven in Theorem 1 and the remarks following Theorem 1. Thus, we may assume Lemma 2 has been proven for all elements of $\operatorname{Der}_{k}^{\pi}(R)_{\overline{k}}$ with m < n.

Let $\varphi \in \operatorname{Der}_k^n(R)_{\overline{R}}$. Then there exist constants $e_{ij} \in R$ and derivations $\psi_i^{(j)}, \lambda_i^{(j)} \in \operatorname{Der}_k^j(R)_{\overline{R}}, j = 1, \dots, n-1$, such that for all a and bin Q equation (2) is satisfied. Our induction hypothesis applies to the derivations $\psi_i^{(j)}$ and $\lambda_i^{(j)}$. So we can write:

(10)
$$\begin{aligned} \psi_l^{(j)} &= \sum c_t^{l,j} \delta_t + \sum c_{t_1 t_2}^{l,j} \delta_{t_1} \delta_{t_2} + \dots + \sum c_{t_1 \dots t_j}^{l,j} \delta_{t_1} \dots \delta_{t_j} \\ \lambda_l^{(j)} &= \sum d_t^{l,j} \delta_t + \sum d_{t_1 t_2}^{l,j} \delta_{t_1} \delta_{t_2} + \dots + \sum d_{t_1 \dots t_j}^{l,j} \delta_{t_1} \dots \delta_{t_j} \end{aligned}$$

In (10), the coefficient of any monomial in either expression which contains δ_0^j will lie in J^j . We note that since $\psi_l^{(j)}, \lambda_l^{(j)}: \overline{R} \to \overline{R}$, all the coefficients of (10) lie in \overline{R} .

Now write out the polynomial $g(\delta_0, \dots, \delta_{r-1})$ which gives us φ as follows:

(11)
$$\varphi = \sum a_t \delta_t + \sum a_{t_1 t_2} \delta_{t_1} \delta_{t_2} + \cdots + \sum a_{t_1 \cdots t_n} \delta_{t_1} \cdots \delta_{t_n} .$$

Since $\varphi(\bar{R}) \subset \bar{R}$, one easily checks that all the coefficients $a_t, a_{t_1t_2}, \dots, a_{t_1\cdots t_n}$ of (11) lie in \bar{R} . We now substitute equations (10) and (11) into (2) and get:

$$\sum a_{t}\delta_{t}(ab) + \sum a_{t_{1}t_{2}}\delta_{t_{1}}\delta_{t_{2}}(ab) + \dots + \sum a_{t_{1}\dots t_{n}}\delta_{t_{1}}\dots t_{n}(ab)$$

$$= a\{\sum a_{t}\delta_{t}(b) + \dots + \sum a_{t_{1}\dots t_{n}}\delta_{t_{1}}\dots \delta_{t_{n}}(b)\}$$

$$+ b\{\sum a_{t}\delta_{t}(a) + \dots + \sum a_{t_{1}\dots t_{n}}\delta_{t_{1}}\dots \delta_{t_{n}}(a)\}$$

$$(12) + \sum_{l} e_{l,1}\{\sum_{t} c_{t}^{l,1}\delta_{t}(a)\}\{\sum_{t} d_{t}^{l,n-1}\delta_{t}(b) + \dots$$

$$+ \sum d_{t_{1}^{l,n-1}}\delta_{t_{n}}\dots \delta_{t_{n-1}}(b)\} + \dots$$

$$+ \sum e_{l,n-1}\{\sum c_{t}^{l,n-1}\delta_{t}(a) + \dots + \sum c_{t_{1}^{l,n-1}}\delta_{t_{1}}\dots \delta_{t_{n-1}}(a)\}$$

$$\times \{\sum d_{t}^{l,1}\delta_{t}(b)\}.$$

After simplifying (12) and comparing coefficients, we see that any coefficient of (11) (except possibly for a_0) in a monomial containing δ_0^i lies in J^i . Thus, the lemma will be complete if we show $a_0 \in J$.

Since $\varphi(\bar{R}) \subset \bar{R}$, one easily sees using (2) that $\varphi(CR) \subset CR$. Thus, to argue $a_0 \in J$, one can proceed exactly as in the remarks following Theorem 1. Pick an element $x \in CR$ of minimum value $N = v_i(x)$. If $v_i(a_0) = 0$, then $v_i(\varphi(x)) = N - 1$ which is a contradiction. This completes the proof of Lemma 2.

We now proceed to prove Theorem 2 by induction on n. A. Seidenberg's original result [Thm; 4], and Theorem 1 give us the case n = 1 and n = 2. Thus, assume Theorem 2 is correct for all m < n, and let $\varphi \in \operatorname{Der}_{k}^{n}(R)_{0}$. We can expand φ as in equation (2) for some choice of constants $e_{ij} \in R$ and derivations $\psi_i^{(j)}, \lambda^{(j)} \in \operatorname{Der}_k^j(R)_0$. By our induction hypothesis, $\operatorname{Der}_k^j(R)_0 = \operatorname{Der}_k^j(R)_{\overline{R}}$. So by Lemma 2, each $\psi_{l}^{(j)}$ and $\lambda_{l}^{(j)}$ can be written as in equation (10) with the coefficients of any monomials containing δ_0^j lying in J^j . Now write φ as in equation (11). Following the same substitutions as in Lemma 2, we see that all the coefficients $a_1, \dots, a_{r-1}, a_{t_1t_2}, \dots, a_{t_1\cdots t_n}$ lie in \overline{R} . Further, the coefficients appearing in terms containing δ_0^j lie in J^j , except possibly for a_0 . Thus, as in Theorem 1, we have to argue that $v_i(a_0) \ge 0$ for all $i = 1, \dots, t$. But this argument is exactly the same as in Theorem 1. Assume $v_i(a_0) < 0$. The coefficients of (11) lying in the right powers of J exactly mean that $v_i(\varphi(z)) = v_i(a_0) + v_i(z)$ $v_i(z) - 1$ for any nonunit z of R. Thus we proceed exactly as before to argue that $v_i(a_0) < 0$ is impossible. This completes the proof of Theorem 2.

The reader may be wondering if a slightly weaker hypothesis on $\varphi \in \operatorname{Der}_k^n(A)$ will imply $\varphi(\overline{A}) \subset \overline{A}$. In particular, it is natural to ask the following question: Suppose $\varphi \in \operatorname{Der}_k^n(A)$ such that

$$arDegin{aligned} arDeltaarphi \in \sum\limits_{i=1}^{n-1} \mathrm{Der}_k^i \left(A
ight) \cup \mathrm{Der}_k^{n-i}(A) \ . \end{aligned}$$

Then is $\varphi(\overline{A}) \subseteq \overline{A}$? Theorem 1 implies this is true if n = 2. We shall give an example which shows that for n > 2 the answer to the above question is in general negative.

EXAMPLE 2. We return to Example 1 at the beginning of this paper. We may equally well describe the ring A as $A = Q[t^3, t^2]$. Set $\delta = \partial/\partial_t$, a first order derivation on the quotient field of A. One can easily check that $t\partial_t t^2\partial_t \partial^2 - (2/t)\partial_t t\partial^2 - \partial$ and $\partial^3 - (3/t)\partial^2 + (3/t^2)\partial^2$ are all derivations on A. Set

(13)
$$\varphi = t^2 \delta \Big(\delta^3 - \frac{3}{t} \delta^2 + \frac{3}{t^2} \delta \Big) - \frac{9t}{2} \delta \Big(\delta^2 - \frac{2}{t} \delta \Big) + \frac{3}{2} \Big(\delta^2 - \frac{2}{t} \delta \Big) (t\delta) .$$

Then $\varphi \in \operatorname{Der}_{Q}^{4}(A)$. If we expand φ out, we get $\varphi = t^{2}\delta^{4} - 6t\delta^{3} + 15\delta^{2} - (18/t)\delta$. Now the integral closure \overline{A} of A is just Q[t], and thus $\varphi(\overline{A}) \not\subset \overline{A}$. However one can easily check that

$$egin{aligned} arphi &= 4 \Big(\delta^3 - rac{3}{t} \delta^2 + rac{3}{t^2} \delta \Big) \cup (t^2 \delta) + 6 (t \delta^2 - \delta) \cup (t \delta^2 - \delta) \ &+ (t^2 \delta) \cup \Big(\delta^3 - rac{3}{t} \delta^2 + rac{3}{t^2} \delta \Big) \,. \end{aligned}$$

Thus

 $arphi arphi \in \operatorname{Der}^{\scriptscriptstyle 1}_{arphi}(A) \cup \operatorname{Der}^{\scriptscriptstyle 3}_{arphi}(A) + \operatorname{Der}^{\scriptscriptstyle 2}_{arphi}(A) \cup \operatorname{Der}^{\scriptscriptstyle 2}_{arphi}(A) + \operatorname{Der}^{\scriptscriptstyle 3}_{arphi}(A) \cup \operatorname{Der}^{\scriptscriptstyle 1}_{arphi}(A)$, but $arphi(ar{A}) \not\subset ar{A}$.

This example shows that we really need the stronger statement $\varphi \in \operatorname{Der}_k^n(A)_0$ in order to conclude the $\varphi(\overline{A}) \subset \overline{A}$.

Finally, we note that the methods used in Theorems 1 and 2 give a new proof of A. Seidenberg's original theorem for finitely generated domains:

THEOREM (A. Seidenberg). Let $A = k[x_1, \dots, x_g]$ be a finitely generated integal domain over a field k of characteristic zero. Let \overline{A} denote the integral closure of A in its quotient field Q. Let $\delta \in \operatorname{Der}_k^1(A)$. Then $\delta(\overline{A}) \subset \overline{A}$.

Proof. Using the same notation as in Theorem 1, we see that it suffices to prove $\delta(\overline{R}) \subset \overline{R}$. Write $\delta = a_0\delta_0 + \cdots + a_{r-1}\delta_{r-1}$ with the $a_i \in Q$. Since $\delta(\alpha_i) \in R$, we see $a_1, \cdots, a_{r-1} \in R$. As before, it remains to argue that $v_i(a_0) \geq 0$ for all $i = 1, \cdots, t$. So fix an i = $1, \cdots, t$ and assume $v_i(a_0) < 0$. Pick $x \in R$ such that $N = v_i(x)$ is the minimum positive value of any element of R. Then $v_i(\delta(x)) = v_i(a_0) +$ N-1. Since $\delta(x) \in R$, we conclude that $v_i(a_0) = 1 - N$. By an argument similar to that in Lemma 1, we can find an element $y \in$ R such that $M = v_i(y)$ is the minimum positive value of anything in R which is not a multiple of N. Then $v_i(\delta(y)) = M - N$ which is impossible.

References

^{1.} W. C. Brown, Higher derivations on finitely generated integral domains II, Proc. Amer. Math. Soc., **51** (1975), 8-14.

^{2.} A. Grothendieck, *Elements de Geometrie Algebreque IV*, pt. 4, Pub. Math. de L'IHES #32 Paris, 1967.

^{3.} Y. Nakai, High order derivations I, Osaka J. Math., 7 (1970), 1-27.

4. A. Seidenberg, Derivations and integral closure, Pacific J. Math., 16 (1966), 167-173.

5. ____, Differential ideals in rings of finitely generated type, Amer. J. Math., **89** (1967), 22-42.

6. O. Zariski and P. Samuel, *Commutative Algebra II*, University Series in Higher Math. Van Nostrand, Princeton, N. J. 1958, MR 19 #833. Received March 25, 1975.

Purdue University and Michigan State University

334