ON EXTENDING HIGHER DERIVATIONS GENERATED BY CUP PRODUCTS TO THE INTEGRAL CLOSURE

Joseph Becker and William C. Brown

Let $A=k\left[x_{1}, \cdots, x_{q}\right]$ be a finitely generated integral domain over a field k of characteristic zero. Let \bar{A} denote the integral closure of A in its quotient field. A well known result due to A. Seidenberg says that any first order k-derivation of A can be extended to \bar{A}. This result is known to be false for higher order derivations. In this paper, the authors investigate what types of higher derivations on A can be extended to \bar{A}. The main results are for higher derivations which are cup products. Set $\operatorname{Der}_{k}^{1}(A)=\operatorname{Der}_{k}^{1}(A)_{0}$ and inductively define $\operatorname{Der}_{k}^{n}(A)_{0}$ as follows:

$$
\operatorname{Der}_{k}^{n}(A)_{0}=\left\{\varphi \in \operatorname{Der}_{k}^{n}(A) \mid \Delta \varphi \in \sum_{i=1}^{n-1} \operatorname{Der}_{k}^{2}(A)_{0} \cup \operatorname{Der}_{k}^{n-i}(A)_{0}\right\}
$$

The authors show that if $\varphi \in \operatorname{Der}_{k}^{n}(A)_{0}$, then $\varphi(\bar{A}) \subseteq \bar{A}$. Various examples are given which indicate that the above mentioned result is about as good as possible.

Introduction. Throughout this paper, $A=k\left[x_{1}, \cdots, x_{g}\right]$ will denote a finitely generated integral domain over a field k of characteristic zero. We shall let Q denote the quotient field of A and \bar{A} the integral closure of A in Q. For each $n=1,2, \cdots$, we shall let $\operatorname{Der}_{k}^{n}(A)$ denote the A-module of all nth order k-derivations of A to A. Thus, $\rho \in \operatorname{Der}_{k}^{n}(A)$ if and only if $\varphi \in \operatorname{Hom}_{k}(A, A)$, and for all $a_{0}, \cdots, a_{n} \in A$ we have

$$
\begin{equation*}
\varphi\left(a_{0} a_{1} \cdots a_{n}\right)=\sum_{s=1}^{n}(-1)^{s-1} \sum_{i_{1}<\cdots<i_{s}} a_{i_{1}} \cdots a_{i_{s}} \varphi\left(a_{0} \cdots \check{a}_{i_{1}} \cdots \check{a}_{i_{s}} \cdots a_{n}\right) . \tag{1}
\end{equation*}
$$

The authors refer the reader to [3] for the various facts about $\operatorname{Der}_{k}^{n}(A)$ used in this paper. Of particular importance is the fact that any nth order derivation $\varphi \in \operatorname{Der}_{k}^{n}(A)$ can naturally be extended to an nth order derivation of any localization of A [Thm 15; 3].

We shall need the Hochschild coboundary operator Δ which is defined as follows: If $\varphi \in \operatorname{Hom}_{k}(A, A)$, then $\Delta \varphi: A \times A \rightarrow A$ is the k-bilinear mapping defined by $\Delta \varphi\left(a_{1}, a_{2}\right)=\varphi\left(a_{1} a_{2}\right)-a_{1} \varphi\left(a_{2}\right)-a_{2} \varphi\left(a_{1}\right)$. We shall also need the cup product $\varphi \cup \psi$ of two k-linear mappings φ and ψ of $A . \varphi \cup \psi: A \times A \rightarrow A$ is the k-bilinear mapping defined by $\varphi \cup \psi\left(a_{1}, a_{2}\right)=\varphi\left(a_{1}\right) \psi\left(a_{2}\right)$ If P and P are two A-submodules of $\operatorname{Hom}_{k}(A, A)$, then $P \cup P$ will denote the set of all k-bilinear mappings of $A \times A$ into A which are finite A-linear combinations of mappings
of the form $\varphi \cup \psi$ for $\varphi \in P, \psi \in P^{\prime}$. Thus, if φ is an nth order k derivation of A such that $\Delta \varphi \in \sum_{i=1}^{n-1} \operatorname{Der}_{k}^{i}(A) \cup \operatorname{Der}_{k}^{n-i}(A)$, then there exist constants $e_{l j} \in A$ and k-derivations $\psi_{i}^{(j)}, \lambda_{l}^{(j)} \in \operatorname{Der}_{k}^{j}(A)$ such that for all a and b in A, we have

$$
\begin{align*}
\varphi(a b)= & a \varphi(b)+b \varphi(a)+\sum e_{l 1} \psi_{l}^{(1)}(a) \lambda_{l}^{(n-1)}(b)+\cdots \tag{2}\\
& +\sum e_{l_{n-1}-1} \psi_{l}^{(n-1)}(a) \lambda_{l}^{(1)}(b) .
\end{align*}
$$

Now the purpose of this paper is to study which nth order k derivations $\varphi: A \rightarrow A$ can be extended to \bar{A}. In [4], A. Seidenberg showed that any 1 st order derivation of A must map \bar{A} to \bar{A}. In [1], an example was given which shows that 2 nd order derivations $\varphi \in \operatorname{Der}_{k}^{2}(A)$ need not have the property that $\varphi(\bar{A}) \subset \bar{A}$. Since we shall have use of this example latter, we present it here

Example 1. Consider the curve $X^{2}=Y^{3}$ over the rational numbers
Q. Let A be the coordinate ring of this curve i.e. $A=\boldsymbol{Q}[x, y]=$ $\boldsymbol{Q}[X, Y] /\left(X^{2}-Y^{3}\right)$. One can easily check that A is a domain whose integral closure is given by $\bar{A}=A[x / y]$. Since the quotient field of A is a finite separable extension of $\boldsymbol{Q}(y)$, it follows that any 2 nd order derivation $\varphi \in \operatorname{Der}_{Q}^{2}(A)$ is determined by its values on y and y^{2}. A simple calculation shows that if $\varphi(y)=a$, and $\varphi\left(y^{2}\right)=b$ (where a and b lie in the quotient field of A), then

$$
\varphi(x)=\frac{3 y}{8}\left(\frac{2 y a+b}{x}\right), \varphi\left(x^{2}\right)=3 y b-3 y^{2} a
$$

and

$$
\varphi(x y)=\frac{5 y^{2}}{8}\left(\frac{3 b-2 y a}{x}\right) .
$$

If we set $a=1$ and $b=-2 y$, then $\varphi \in \operatorname{Der}_{\rho}^{2}(A)$, and one easily checks that $\varphi(x / y)=x / y^{2} \notin \bar{A}$.

Thus, higher derivations on A need not extend to \bar{A}. At the end of [1], the author conjectured that any $\varphi \in \operatorname{Der}_{k}^{2}(A)$ such that $\Delta \varphi \in \operatorname{Der}_{k}^{1}(A) \cup \operatorname{Der}_{k}^{1}(A)$ must map \bar{A} to \bar{A}. In this paper, we shall show that this conjecture is correct. We shall also formulate sufficient conditions on $\varphi \in \operatorname{Der}_{k}^{n}(A)$ in order that $\varphi(\bar{A}) \subset \bar{A}$. We assume the reader is familiar with [1].

Main results.
Theorem 1. Let $A=k\left[x_{1}, \cdots, x_{g}\right]$ be a finitely generated integral domain over a field k of characteristic zero. Let \bar{A} denote the integral closure of A in its quotient field Q. Let $\varphi \in \operatorname{Der}_{k}^{2}(A)$ and
assume $\Delta \varphi \in \operatorname{Der}_{\bar{K}}^{1}(A) \cup \operatorname{Der}_{k}^{1}(A)$. Then $\varphi(\bar{A}) \subset \bar{A}$.

Proof. Let $\operatorname{Min}(\bar{A})$ denote the collection of height one primes in \bar{A}. Since \bar{A} is a Krull domain, we have $\bar{A}=\bigcap\left\{\bar{A}_{q} \mid q \in \operatorname{Min}(\bar{A})\right\}$. Here as usual \bar{A}_{q} means \bar{A} localized at the prime q. Let $q \in \operatorname{Min}(\bar{A})$. Then $p=q \cap A \in \operatorname{Min}(A)$. Let us set $R=A_{p}$ and $\bar{R}=(\bar{A})_{p}=\bar{A}_{p}$ the integral closure of R in Q. Let \bar{q} denote the extended prime ideal $q \bar{R}$ in \bar{R}. Then $\bar{R}_{\bar{q}}=\bar{A}_{q}$. Now since R is a localization of A, we see that $\varphi \in \operatorname{Der}_{k}^{2}(R)$. Suppose we could show that $\varphi(\bar{R}) \subseteq$ \bar{R}. Then $\varphi\left(\bar{R}_{\bar{q}}\right) \subseteq \bar{R}_{\bar{q}}$ or equivalently $\varphi\left(\bar{A}_{q}\right) \subseteq \bar{A}_{q}$. Since \bar{A} is the intersection of the \bar{A}_{q}, the theorem would be proven. Thus to prove Theorem 1, it suffices to prove the following assertion:
"Under the same hypotheses as Theorem 1, let $p \in \operatorname{Min}(A), R=$ A_{p} and $\bar{R}=\bar{A}_{p}$. Then $\varphi(\bar{R}) \subseteq \bar{R}$."

So fix a minimal prime $p \in \operatorname{Min}(A)$, and set $R=A_{p}, \bar{R}=\bar{A}_{p}$. We have already noted that $\varphi \in \operatorname{Der}_{k}^{2}(R)$, and one easily sees that $\Delta \varphi \in$ $\operatorname{Der}_{k}^{1}(R) \cup \operatorname{Der}_{k}^{1}(R)$. Now if $A=\bar{A}$, there is nothing to prove. Hence, we may assume $\bar{A} \neq A$. Then the conductor C of A in \bar{A} is a proper ideal in A. If $C \not \subset p$, then $R=\bar{R}$ and again there is nothing to prove. Hence we may assume $C \subset p$. In this case, $C R$ is the conductor of R in \bar{R}.

We now follow the proof of Theorem 3 in [1]. Let the transcendence degree of A over k be r, and let m denote the maximal ideal in R. Then R / m is the quotient field of A / p and hence has transcendence degree $r-1$ over k. Let $\left\{\bar{a}_{1}, \cdots, \bar{a}_{r_{-1}}\right\}$ be a transcendence basis of R / m over k. Pull these $\bar{\alpha}_{i}$ back to elements α_{i} in R m. Then $F=k\left(\alpha_{1}, \cdots, \alpha_{r-1}\right)$ is a field of transcendence degree $r-1$ over k, and $F \subset R$.

We know that \bar{R} is a semilocal ring with maximal ideals m_{1}, \cdots, m_{t} lying over m in R. Set $J=\bigcap_{i=1}^{t} m_{i}$, the Jacobson radical of \bar{R}. Each local ring $V_{i}=\bar{R}_{m_{i}}, i=1, \cdots, t$, is a discrete rank one valuation ring dominating R. By [Thm 18, p. 45; 6], we can find an element $\beta \in J$ such that β generates the maximal ideal in each V_{i}. Since the Krull dimension of \bar{R} is one, we see that J is the radical of the ideal $C R$ in \bar{R}. Thus, some power of β, say β^{n}, lies in $C R$. We shall have use of this remark later.

It was shown in [1], that $\operatorname{Der}_{k}^{1^{\prime}}(\bar{R})$ is a free \bar{R}-module with basis $\left\{\delta_{0}, \delta_{1}, \cdots, \delta_{r-1}\right\}$. The derivations δ_{i} satisfy the following relations:

$$
\begin{equation*}
\delta_{0}(\beta)=1, \delta_{0}\left(\alpha_{i}\right)=0=\delta_{i}(\beta) \text { for } i=1, \cdots, r-1 \tag{3}
\end{equation*}
$$

$$
\delta_{i}\left(\alpha_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array} \quad 1 \leqq i \leqq j \leqq r-1\right.
$$

We observe that the derivations δ_{i} commute on the field $F(\beta)$. Since β is a uniformizing parameter for V_{i}, β is transcendental over F. Hence Q is a separable algebraic extension of $F(\beta)$. Therefore the derivations on $F(\beta)$ have a unique extension to Q. It follows that the δ_{i} commute on Q. It follows from [2; Thm 16, 11.2] that the union $\bigcup_{n=1}^{\infty} \operatorname{Der}_{k}^{n}(Q)$ is a free Q-algebra generated by $\delta_{0}, \cdots, \delta_{r-1}$. In particular, φ can be written as a unique polynomial of degree two in $\delta_{0}, \cdots, \delta_{r-1}$. The coefficients of this polynomial lie in Q. Let us write φ as follows:

$$
\begin{equation*}
\varphi=\sum_{i=0}^{r-1} a_{i} \delta_{i}+\sum_{0 \leq i<j \leqq r-1} a_{i j} \delta_{i} \delta_{j}+\sum_{i=0}^{r-1} a_{i i} \delta_{i}^{2} . \tag{4}
\end{equation*}
$$

Since $\Delta \varphi \in \operatorname{Der}_{k}^{1}(R) \cup \operatorname{Der}_{k}^{1}(R)$, we can write for all a and b in R :

$$
\begin{equation*}
\varphi(a b)=a \varphi(b)+b \varphi(a)+\sum_{l} e_{l} \psi_{l}(a) \lambda_{l}(b) \tag{5}
\end{equation*}
$$

where $e_{l} \in R$ and $\psi_{l}, \lambda_{l} \in \operatorname{Der}_{k}^{1}(R)$. One easily checks that equation (5) continues to hold for all a and b in Q. Now by [Thm 1; 4], each ψ_{l} and λ_{l} extends to \bar{R}. It then easily follows that $C R$ is differential under ψ_{l} and λ_{l}, i.e. $\psi_{l}(C R) \subset C R$ and $\lambda_{l}(C R) \subset C R$. Thus, $C R$ remains differential under ψ_{l} and λ_{l} when considered as an ideal in \bar{R}. Hence, [Thm 1;5] implies that each m_{i} in \bar{R} is differential under ψ_{l} and λ_{l}. Write each ψ_{l} and λ_{l} as a linear combination of $\delta_{0}, \delta_{1}, \cdots, \delta_{r-1}$:

$$
\begin{equation*}
\psi_{l}=\sum_{i=0}^{r-1} \mu_{l i} \delta_{i} \quad \lambda_{l}=\sum_{i=0}^{r-1} \gamma_{l i} \delta_{i} \tag{6}
\end{equation*}
$$

Here the coefficients $\mu_{l i}$ and $\gamma_{l i}$ lie in \bar{R}. Then $\psi_{l}(J) \subset J$ and $\lambda_{l}(J) \subset J$ imply that $\mu_{l 0}$ and $\gamma_{l 0}$ lie in J. If we now substitute the expressions in equations (6) and (4) into equation (5) and then make various substitutions of the form $a, b=\alpha_{1}, \cdots, \alpha_{r-1}, \beta$, we see that all the coefficients, except possibly a_{0}, appearing in (4) lie in \bar{R}. We further get that $a_{0 i} \in J$ for $i=1, \cdots, r-1$, and $a_{00} \in J^{2}$.

Thus, to complete the proof of the assertion $\varphi(\bar{R}) \subseteq \bar{R}$, we must show that a_{0} in (4) lies in \bar{R}. We shall show this by arguing that $a_{0} \in V_{i}$ for every $i=1, \cdots, t$.

So fix an $i=1, \cdots, t$, and let $v_{i}: V_{i} \rightarrow \boldsymbol{Z}$ be the valuation of V_{i} given by $v_{i}(\beta)=1$. We wish to show that $v_{i}\left(a_{0}\right) \geqq 0$. Let us assume $v_{i}\left(a_{0}\right)<0$. We need the following lemma:

Lemma 1. There exist two elements x and y in R such that
(a) The value $N=v_{i}(x)$ of x is the smallest positive value of
any element in R.
(b) The value $v_{i}(y)$ of y is not a multiple of N.

Proof. Since $R \subset V_{i}$, we have $v_{i}(z) \geqq 0$ for every element z in R. So we can certainly find an element x in R which satisfies (a). As pointed out earlier, $\beta^{n} \in C R \subset R$. Thus, $\beta^{n+l} \in R$ for any nonnegative integer l.

Now suppose no $y \in R$ can be found satisfying (b). Then for every nonnegative integer l, we must have $n+l=v_{i}\left(\beta^{n+l}\right)$ is a multiple of N. This can only happen if $N=1$. We shall show this is impossible.

If $N=1$, then $x=\gamma \beta$ for some unit γ in V_{i}. We want to consider

$$
\varphi(x)=\sum_{\imath=0}^{r-1} a_{i} \delta_{i}(x)+\sum_{0 \leqq \imath<j \leqq r-1} a_{i j} \delta_{i} \delta_{j}(x)+\sum_{\imath=0}^{r-1} a_{\imath \imath} \delta_{i}^{2}(x)
$$

which is an element of R. Now we have

$$
\begin{align*}
\delta_{0}(x) & =\beta \delta_{0}(\gamma)+\gamma \\
\delta_{i}(x) & =\beta \delta_{i}(\gamma) \quad i=1, \cdots, r-1 \\
\delta_{0} \delta_{i}(x) & =\beta \delta_{0} \delta_{i}(\gamma)+\delta_{i}(\gamma) \quad i=1, \cdots, r-1 \tag{7}\\
\delta_{i} \delta_{j}(x) & =\beta \delta_{i} \delta_{j}(\gamma) \quad 0<i \leqq j \leqq r-1
\end{align*}
$$

and

$$
\delta_{0}^{2}(x)=\beta \delta_{0}^{2}(\gamma)+2 \delta_{0}(\gamma) .
$$

Since the δ_{j} are derivations on \bar{R}, they naturally extend to V_{i}. Thus, the elements in equation (7) are all elements of V_{2}, and clearly $\delta_{0}(x)$ is a unit in V_{i}. If we now use the facts that $a_{1}, \cdots, a_{r-1}, a_{i j} \in \bar{R}$, $\alpha_{0 i} \in J$ and $a_{00} \in J^{2}$, we see that

$$
\begin{equation*}
v_{i}\left[\sum_{i=1}^{r-1} a_{i} \delta_{i}(x)+\sum_{0 \leqq i<j \leqq r-1} a_{i j} \delta_{i} \delta_{j}(x)+\sum_{i=0}^{r-1} a_{i i} \delta_{i}^{2}(x)\right] \geqq 1 \tag{8}
\end{equation*}
$$

Thus, $v_{i}(\varphi(x))=v_{i}\left(a_{0}\right)+v_{i}\left(\delta_{0}(x)\right)=v_{i}\left(a_{0}\right)<0$. But, $\varphi(x) \in R$ means the value of $\varphi(x)$ must be nonnegative. Thus, we have reached a contradiction and the proof of Lemma 1 is complete.

Now among all the elements z of R such that $v_{i}(z)$ is not a multiple of N pick one, say y, of smallest value M. Lemma 1 guarantees that such an element $y \in R$ exists. Then $M-N>0$, and $M-$ N is not the value of any element of R. Since $v_{\imath}(x)=N, x=\gamma \beta^{N}$ for some unit $\gamma \in V_{i}$. An argument similar to that in Lemma 1 shows that $v_{i}(\mathcal{P}(x))=v_{i}\left(a_{0}\right)+N-1$. Now there are two cases to consider. Either $\varphi(x)$ is a unit in R or it is not. If $\varphi(x)$ is a nonunit, then $v_{i}(\varphi(x)) \geqq N$. But this implies $v_{i}\left(a_{0}\right) \geqq 1$ which is contrary to
our assumption. Thus, $\varphi(x)$ is a unit. So $v_{i}\left(a_{0}\right)=1-N$. But now a similar computation applied to y gives us that $v_{i}(\varphi(y))=v_{i}\left(a_{0}\right)+$ $M-1=M-N$. Since $\varphi(y) \in R$, and $M-N$ is not the value of anything in R, we have reached a contradiction.

Thus, $v_{i}\left(\alpha_{0}\right) \geqq 0$ and the proof of Theorem 1 is complete.
In our proof of Theorem 2 below, we shall need the fact that the coefficient a_{0} in equation (4) actually lies in J. The proof of Theorem 1 shows that $a_{0} \in \bar{R}$. To see that $a_{0} \in J$, we proceed as follows: Since $\varphi(\bar{R}) \subseteq \bar{R}$, equation (5) immediately implies that $\varphi(C R) \subseteq$ $C R$. In the notation of Theorem 1 , we wish to argue that $v_{i}\left(a_{0}\right) \geqq$ 1. Suppose $v_{i}\left(a_{0}\right)=0$. Let N be the minimum positive value of any element in $C R$, and let $x \in C R$ have value N. Then as in Lemma 1, $v_{i}(\varphi(x))=v_{i}\left(\alpha_{0}\right)+N-1=N-1$. Since $\varphi(x) \in C R$ this is impossible. Thus $v_{2}\left(a_{0}\right) \geqq 1$.

For Theorem 2, we shall need the following definition:
Definition. Set $\operatorname{Der}_{k}^{1}(A)_{0}=\operatorname{Der}_{k}^{1}(A)$ and inductively define $\operatorname{Der}_{k}^{n}(A)_{0}$ as follows:

$$
\operatorname{Der}_{k}^{n}(A)_{0}=\left\{\rho \in \operatorname{Der}_{k}^{n}(A) \mid \Delta \varphi \in \sum_{i=1}^{n-1} \operatorname{Der}_{k}^{i}(A)_{0} \cup \operatorname{Der}_{k}^{n-i}(A)_{0}\right\}
$$

Thus, Theorem 1 states that if $\varphi \in \operatorname{Der}_{k}^{2}(A)_{0}$, then $\varphi(\bar{A}) \subset \bar{A}$. We can now prove the general result.

ThEOREM 2. Let $A=k\left[x_{1}, \cdots, x_{g}\right]$ be a finitely generated integral domain over a field k of characteristic zero. Let \bar{A} denote the integral closure of A in its quotient field Q. Let $\varphi \in \operatorname{Der}_{k}^{n}(A)_{0}$. Then $\rho(\bar{A}) \subset \bar{A}$.

Proof. The proof proceeds along the same lines as in Theorem 1. It suffices to show that for every prime p of height one in A, $\varphi(\bar{R}) \subset \bar{R}$. Here, as in Theorem 1, \bar{R} denotes the integral closure of $R=A_{p}$ in Q. One easily checks that $\varphi \in \operatorname{Der}_{k}^{n}(R)_{0}$. We shall adopt all the notation used in Theorem 1. Thus, $C R$ is the conductor of R in \bar{R}.

For the purposes of this proof, let us define $\operatorname{Der}_{k}^{n}(R)_{\bar{R}}$ inductively as follows:

$$
\begin{equation*}
\operatorname{Der}_{k}^{1}(R)_{\bar{R}}=\operatorname{Der}_{k}^{1}(R) \tag{9}
\end{equation*}
$$

$\operatorname{Der}_{k}^{n}(R)_{\bar{R}}=\left\{\rho \in \operatorname{Der}_{k}^{n}(R) \mid \Delta \varphi \in \sum_{i=1}^{n-1} \operatorname{Der}_{k}^{i}(R)_{\bar{R}} \cup \operatorname{Der}_{k}^{n-2}(R)_{\bar{R}}\right.$

$$
\text { and } \varphi(\bar{R}) \subset \bar{R}\}
$$

Then we have already proven that $\operatorname{Der}_{k}^{2}(R)_{0}=\operatorname{Der}_{k}^{2}(R)_{\bar{R}}$ in Theorem 1 , and we shall show that $\operatorname{Der}_{k}^{n}(R)_{0}=\operatorname{Der}_{k}^{n}(R)_{\bar{R}}$ for all n.

Now we know that $\bigcup_{n} \operatorname{Der}_{k}^{n}(Q)$ is a free Q-algebra generated by $\delta_{0}, \cdots, \delta_{r-1}$. Thus if $\varphi \in \operatorname{Der}_{k}^{n}(R)$, then $\varphi=g\left(\delta_{0}, \cdots, \delta_{r-1}\right)$ for some polynomial $g\left(X_{0}, \cdots, X_{r-1}\right) \in Q\left[X_{0}, \cdots, X_{r-1}\right]$ of degree less than or equal to n. We further know this polynomial is unique. We now need the following lemma:

Lemma 2. Let $\varphi \in \operatorname{Der}_{k}^{n}(R)_{\bar{R}}$, and write $\varphi=g\left(\delta_{0}, \cdots, \delta_{r-1}\right)$. Then the coefficients of any monomials of g which contain $\delta_{0}^{j}(1 \leqq j \leqq n)$ lie in J^{j}.

Proof. We proceed by induction on n. The case $n=1$ was proven in Theorem 1. The case $n=2$ was proven in Theorem 1 and the remarks following Theorem 1. Thus, we may assume Lemma 2 has been proven for all elements of $\operatorname{Der}_{k}^{m}(R)_{\bar{R}}$ with $m<n$.

Let $\varphi \in \operatorname{Der}_{k}^{n}(R)_{\bar{R}}$. Then there exist constants $e_{l j} \in R$ and derivations $\psi_{i}^{(j)}, \lambda_{i}^{(j)} \in \operatorname{Der}_{k}^{j}(R)_{\bar{R}}, j=1, \cdots, n-1$, such that for all a and b in Q equation (2) is satisfied. Our induction hypothesis applies to the derivations $\psi_{i}^{(j)}$ and $\lambda_{l}^{(j)}$. So we can write:

$$
\begin{align*}
& \psi_{l}^{(j)}=\sum c_{t}^{l, j} \delta_{t}+\sum c_{t_{1} t_{2}}^{l, j} \delta_{t_{1}} \delta_{t_{2}}+\cdots+\sum c_{t_{1} \cdots t_{j}}^{l, j} \cdot \delta_{t_{1}} \cdots \delta_{t_{j}} \tag{10}\\
& \lambda_{l}^{(j)}=\sum d_{t}^{l, j} \delta_{t}+\sum d_{t_{1} t_{2}}^{l, j} \delta_{t_{1}} \delta_{t_{2}}+\cdots+\sum d_{t_{1} \cdots t_{j}}^{l, j} \delta_{t_{1}} \cdots \delta_{t_{j}}
\end{align*} .
$$

In (10), the coefficient of any monomial in either expression which contains δ_{0}^{j} will lie in J^{j}. We note that since $\psi_{i}^{(j)}, \lambda_{l}^{(j)}: \bar{R} \rightarrow \bar{R}$, all the coefficients of (10) lie in \bar{R}.

Now write out the polynomial $g\left(\delta_{0}, \cdots, \delta_{r-1}\right)$ which gives us φ as follows:

$$
\begin{equation*}
\varphi=\sum a_{t} \delta_{t}+\sum a_{t_{1} t_{2}} \delta_{t_{1}} \delta_{t_{2}}+\cdots+\sum a_{t_{1} \cdots t_{n}} \delta_{t_{1}} \cdots \delta_{t_{n}} \tag{11}
\end{equation*}
$$

Since $\varphi(\bar{R}) \subset \bar{R}$, one easily checks that all the coefficients $a_{t}, a_{t_{1} t_{2}}, \cdots$, $a_{t_{1} \cdots t_{n}}$ of (11) lie in \bar{R}. We now substitute equations (10) and (11) into (2) and get:

$$
\begin{align*}
\sum a_{t} \delta_{t} & (a b)+\sum a_{t_{1} t_{2}} \delta_{t_{1}} \delta_{t_{2}}(a b)+\cdots+\sum a_{t_{1} \cdots t_{n}} \delta_{t_{1}} \cdots{ }_{t_{n}}(a b) \\
= & a\left\{\sum a_{t} \delta_{t}(b)+\cdots+\sum a_{t_{1} \cdots t_{n}} \delta_{t_{1}} \cdots \delta_{t_{n}}(b)\right\} \\
& +b\left\{\sum a_{t} \delta_{t}(a)+\cdots+\sum a_{t_{1} \cdots t_{n}} \delta_{t_{1}} \cdots \delta_{t_{n}}(a)\right\} \\
& +\sum e_{l, 1}\left\{\sum_{t} c_{t}^{l, 1} \delta_{t}(a)\right\}\left\{\sum_{t} d_{t}^{l, n-1} \delta_{t}(b)+\cdots\right. \tag{12}\\
& \left.+\sum d_{t_{1} \cdots t_{n-1}}^{l, n-1} \delta_{t_{n}} \cdots \delta_{t_{n-1}}(b)\right\}+\cdots \\
& +\sum e_{l, n-1}\left\{\sum c_{t}^{l, n-1} \delta_{t}(a)+\cdots+\sum c_{t_{1} \cdots t_{n-1}}^{l, n-1} \delta_{t_{1}} \cdots \delta_{t_{n-1}}(a)\right\} \\
& \times\left\{\sum d_{t}^{l, 1} \delta_{t}(b)\right\}
\end{align*}
$$

After simplifying (12) and comparing coefficients, we see that any coefficient of (11) (except possibly for a_{0}) in a monomial containing δ_{0}^{j} lies in J^{j}. Thus, the lemma will be complete if we show $a_{0} \in J$.

Since $\varphi(\bar{R}) \subset \bar{R}$, one easily sees using (2) that $\varphi(C R) \subset C R$. Thus, to argue $a_{0} \in J$, one can proceed exactly as in the remarks following Theorem 1. Pick an element $x \in C R$ of minimum value $N=v_{i}(x)$. If $v_{i}\left(a_{0}\right)=0$, then $v_{i}(\varphi(x))=N-1$ which is a contradiction. This completes the proof of Lemma 2.

We now proceed to prove Theorem 2 by induction on n. A. Seidenberg's original result [Thm; 4], and Theorem 1 give us the case $n=1$ and $n=2$. Thus, assume Theorem 2 is correct for all $m<n$, and let $\varphi \in \operatorname{Der}_{k}^{n}(R)_{0}$. We can expand φ as in equation (2) for some choice of constants $e_{l j} \in R$ and derivations $\psi_{l}^{(j)}, \lambda^{(j)} \in \operatorname{Der}_{k}^{j}(R)_{0}$. By our induction hypothesis, $\operatorname{Der}_{k}^{j}(R)_{0}=\operatorname{Der}_{k}^{j}(R)_{\vec{R}}$. So by Lemma 2, each $\psi_{i}^{(j)}$ and $\lambda_{l}^{(j)}$ can be written as in equation (10) with the coefficients of any monomials containing δ_{0}^{j} lying in J^{j}. Now write φ as in equation (11). Following the same substitutions as in Lemma 2, we see that all the coefficients $a_{1}, \cdots, a_{r-1}, a_{t_{1} t_{2}}, \cdots, a_{t_{1} \cdots t_{n}}$ lie in \bar{R}. Further, the coefficients appearing in terms containing δ_{0}^{j} lie in J^{j}, except possibly for a_{0}. Thus, as in Theorem 1 , we have to argue that $v_{i}\left(a_{0}\right) \geqq 0$ for all $i=1, \cdots, t$. But this argument is exactly the same as in Theorem 1. Assume $v_{i}\left(a_{0}\right)<0$. The coefficients of (11) lying in the right powers of J exactly mean that $v_{i}(\varphi(z))=v_{i}\left(\alpha_{0}\right)+$ $v_{i}(z)-1$ for any nonunit z of R. Thus we proceed exactly as before to argue that $v_{i}\left(\alpha_{0}\right)<0$ is impossible. This completes the proof of Theorem 2.

The reader may be wondering if a slightly weaker hypothesis on $\varphi \in \operatorname{Der}_{k}^{n}(A)$ will imply $\varphi(\bar{A}) \subset \bar{A}$. In particular, it is natural to ask the following question: Suppose $\varphi \in \operatorname{Der}_{k}^{n}(A)$ such that

$$
\Delta \varphi \in \sum_{i=1}^{n-1} \operatorname{Der}_{k}^{i}(A) \cup \operatorname{Der}_{k}^{n-i}(A) .
$$

Then is $\varphi(\bar{A}) \subseteq \bar{A}$? Theorem 1 implies this is true if $n=2$. We shall give an example which shows that for $n>2$ the answer to the above question is in general negative.

Example 2. We return to Example 1 at the beginning of this paper. We may equally well describe the ring A as $A=\boldsymbol{Q}\left[t^{3}, t^{2}\right]$. Set $\delta=\partial / \partial_{t}$, a first order derivation on the quotient field of A. One can easily check that $t \delta, t^{2} \delta, \delta^{2}-(2 / t) \delta, t \delta^{2}-\delta$ and $\delta^{3}-(3 / t) \delta^{2}+\left(3 / t^{2}\right) \delta$ are all derivations on A. Set

$$
\begin{equation*}
\varphi=t^{2} \delta\left(\delta^{3}-\frac{3}{t} \delta^{2}+\frac{3}{t^{2}} \delta\right)-\frac{9 t}{2} \delta\left(\delta^{2}-\frac{2}{t} \delta\right)+\frac{3}{2}\left(\delta^{2}-\frac{2}{t} \delta\right)(t \delta) \tag{13}
\end{equation*}
$$

Then $\varphi \in \operatorname{Der}_{Q}^{4}(A)$. If we expand φ out, we get $\varphi=t^{2} \delta^{4}-6 t \delta^{3}+$ $15 \delta^{2}-(18 / t) \delta$. Now the integral closure \bar{A} of A is just $Q[t]$, and thus $\varphi(\bar{A}) \not \subset \bar{A}$. However one can easily check that

$$
\begin{aligned}
\Delta \varphi= & 4\left(\delta^{3}-\frac{3}{t} \delta^{2}+\frac{3}{t^{2}} \delta\right) \cup\left(t^{2} \delta\right)+6\left(t \delta^{2}-\delta\right) \cup\left(t \delta^{2}-\delta\right) \\
& +\left(t^{2} \delta\right) \cup\left(\delta^{3}-\frac{3}{t} \delta^{2}+\frac{3}{t^{2}} \delta\right)
\end{aligned}
$$

Thus

$$
\Delta \varphi \in \operatorname{Der}_{Q}^{1}(A) \cup \operatorname{Der}_{Q}^{3}(A)+\operatorname{Der}_{Q}^{2}(A) \cup \operatorname{Der}_{Q}^{2}(A)+\operatorname{Der}_{Q}^{3}(A) \cup \operatorname{Der}_{Q}^{1}(A)
$$

but $\varphi(\bar{A}) \not \subset \bar{A}$.
This example shows that we really need the stronger statement $\varphi \in \operatorname{Der}_{k}^{n}(A)_{0}$ in order to conclude the $\varphi(\bar{A}) \subset \bar{A}$.

Finally, we note that the methods used in Theorems 1 and 2 give a new proof of A. Seidenberg's original theorem for finitely generated domains:

Theorem (A. Seidenberg). Let $A=k\left[x_{1}, \cdots, x_{g}\right]$ be a finitely generated integal domain over a field k of characteristic zero. Let \bar{A} denote the integral closure of A in its quotient field Q. Let $\delta \in \operatorname{Der}_{k}^{1}(A) . \quad$ Then $\delta(\bar{A}) \subset \bar{A}$.

Proof. Using the same notation as in Theorem 1, we see that it suffices to prove $\delta(\bar{R}) \subset \bar{R}$. Write $\delta=a_{0} \delta_{0}+\cdots+a_{r-1} \delta_{r-1}$ with the $a_{i} \in Q$. Since $\delta\left(\alpha_{i}\right) \in R$, we see $a_{1}, \cdots, a_{r-1} \in R$. As before, it remains to argue that $v_{i}\left(a_{0}\right) \geqq 0$ for all $i=1, \cdots, t$. So fix an $i=$ $1, \cdots, t$ and assume $v_{i}\left(a_{0}\right)<0$. Pick $x \in R$ such that $N=v_{i}(x)$ is the minimum positive value of any element of R. Then $v_{i}(\delta(x))=v_{i}\left(a_{0}\right)+$ $N-1$. Since $\delta(x) \in R$, we conclude that $v_{i}\left(a_{0}\right)=1-N$. By an argument similar to that in Lemma 1 , we can find an element $y \in$ R such that $M=v_{i}(y)$ is the minimum positive value of anything in R which is not a multiple of N. Then $v_{i}(\delta(y))=M-N$ which is impossible.

References

1. W. C. Brown, Higher derivations on finitely generated integral domains II, Proc. Amer. Math. Soc., 51 (1975), 8-14.
2. A. Grothendieck, Elements de Geometrie Algebreque IV, pt. 4, Pub. Math. de L'IHES \#32 Paris, 1967.
3. Y. Nakai, High order derivations I, Osaka J. Math., 7 (1970), 1-27.
4. A. Seidenberg, Derivations and integral closure, Pacific J. Math., 16 (1966), 167173.
5. Differential ideals in rings of finitely generated type, Amer. J. Math., 89 (1967), 22-42.
6. O. Zariski and P. Samuel, Commutative Algebra II, University Series in Higher Math. Van Nostrand, Princeton, N. J. 1958, MR 19 \# 833.
Received March 25, 1975.
Purdue University
AND
Michigan State University
