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HOMOTOPIES AND INTERSECTION SEQUENCES
J. R. QUINE

For v,: S'— C, a smooth homotopy of closed curves, the
changing configuration of vertices and cusps is studied by
considering  the set in IXxS'xS§' given by
(v:(2) = v(O)/(z — ¢) = 0. The main tool is oriented intersection
theory from differential topology. The results relate to previous
work by Whitney and Titus on normal curves and intersection
sequences.

Consider a closed curve as a smooth map y: S'—=C. Let y, fort €1
be a smooth homotopy of closed curves. A vertex of vy, is a point w such
that w = y,(z) = y({) for z# ¢ A cusp is a point where the tangent
vanishes and changes direction. Let X =1X S'X S'. We study the
changing configuration of vertices and cusps of y, by studying the set
Z ={x € X|G(x)= 0} where G(t,z,{) = (y.(z) = y.()/(z-— {), and the
limiting value is taken when z = {. If 0 is a regular value for G, then Z
has the structure of an oriented 1-submanifold of X. If for fixed ¢, Z
intersects t X §' X S transversely, then the oriented intersection gives a
set of pairs in $'X §' with corresponding orientation numbers +1 or
—1. If y, is a normal immersion, these pairs and their orientation
numbers give the Titus intersection sequence of y. The changes in the
intersection sequence are reflected in the behavior of Z. If Z crosses
I'x A, where A is the diagonal of S'X S', then we have a cusp and a
change in the tangent winding number. The difference between the
tangent winding numbers of vy, and vy, is just N(Z, I X A), the total
number of oriented intersections of Z with I X A.

1. Intersection sequences. In the complex plane, let S' be
the set |z|= 1. Consider S' as a 1-manifold with functions § — e* giving
local coordinate systems. The tangent vector d/d6 is defined indepen-
dently of the choice of coordinate system. On T(S'), the tangent space,
let d/df give the positive orientation at each point. This gives S' the
structure of an oriented 1-manifold.

Suppose y: §'— C is a smooth (C*) map. Let B(z) = (dy/df)(z) be
the tangent at y(z). Let S'xX S'= Y and let the maps (6, ¢)— (e* e'*)
give local coordinate systems for Y. Let S'X S' have the product
orientation, i.e., T(S' X S') has positive orientation given by the ordered
basis {3/36, 3/d¢} at each point. Let ACY ={(2,{)|z = ¢}.

Let 6 — (e®, e”) be local coordinate systems on A and let positive
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orientation be given on A by d/df. Thus A is an oriented 1-submanifold
of Y. Now we define g: Y — C as follows

z)—y(
ey St
g(z,0) = '
—if(z _
5 , z={
We can check that g is a smooth function on Y.
Letting y = (z, {), we compute that for y € g7'(0) we have

B(z)do — B(§)de
z—¢ ’ 274

) dg, =
= gg (2)(d6 +db), z=¢

Now let y = (z,{) € g7'(0), and consider dg, as a linear map from
T,(Y) to Ty(C). Then from (1):

(a) If z# ¢ then dg, has rank 2 iff the tangents B(z) and B({)
are linearly independent. In this case, dg, preserves orientation iff
{B(z), — B({)} is a positively oriented basis of C (where C has the usual
orientation).

(b) If z = ¢ then B(z)=0 and dg, has rank 1 iff (dB/d6)(z) # 0.
Otherwise dg, has rank 0. We may check that if (dB/d6)(z) # 0, then
there is a cusp at y(z) and the limiting tangential directions at y(z) are
the directions of *(dB/d6)(z).

The point 0 € C is said to be a regular value for g if dg, has rank 2 at
every point of g7'(0). By remarks (a) and {(b) above we see that 0 is a
regular value for g iff y is an immersion (B(z) # 0 for z € §'), and the
tangents B(z) and B({) are linearly independent for each point (z, {) €
g7'(0). Also if 0 is a regular value of g, g7'(0) is a finite subset of the
compact set Y (a torus). In this case if y € g7'(0) we set A(y)= + 1if dg,
preserves orientation and A(y)= — 1 if dg, reverses orientation. We say
that g~'(0) with the sign A gives the set of signed intersection pairs for y.

We say that vy is a normal immersion if y is an immersion, each point
of C has at most two preimages under vy, and the tangents are linearly
independent at each double point. Another way to say this is that 0 is a
regular value for g, and projection on the first coordinate is one-to-one
on g7'(0). (g7'(0) as a set of ordered pairs is a function.) If y is a normal
immersion, let {z,,---, z,,} be the preimages under y of the double
points, numbered sequentially along S' in a counterclockwise direction
from a point z, on S, not a preimage of a double point. Then g'(0)
defines an involution * on the integers 1, - - -, 2n, such that (z, z;-) € g 7'(0)
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for j =1,---,2n. Now define the sign v by »(j)= — A((z, z;-)). We say
that the involution * together with the sign v defines the intersection
sequence of y with respect to z,. Usually z, is chosen so that y(z,) is on
the outer boundary, i.e., the boundary of the component of C— y(S")
containing . In this case » and * give the Titus intersection sequence
(see Titus [5] or Francis [1]). We remark that signed intersection pairs are
defined if 0 is a regular value for g. To define the intersection sequence
also, we need in addition that g7'(0) is a function.

2. The fundamental theorem. In this context, we would
like to prove what we call the fundamental theorem on intersection
sequences. The use of intersection pairs allows a slightly more general
statement than that of Whitney [6] and Titus [5]. Let y be a normal
immersion and let [y] denote the image of y. For a € C— y(R) we
define j, on S, =S'— vy (a) by j,=(y—a)/|y—a|. We define

_ 1 [ di
@)= ) G

If ag v, this is just the winding number of y about a. If a €[y], we
may check that w(y, a) is the average of the winding numbers of y on the
components near y(a).

Now, for fixed z, € S!, consider z,X S' and S'X z, as subsets of
Y. Let 80— (z0,€") and ¢ — (e, z,) be coordinate systems on z, X S!
and let these define the orientations. Thus, z,X S' and S' X z, have the
structures of oriented 1-submanifolds of Y. Now W =z,XxS§!'
+ §'X z,— A divides the torus Y into 2 simply connected 2-manifolds
with boundary, Y* and Y-. Here Y"* denotes the one for which W is a
positively oriented boundary and Y~ the one for which W is a negatively
oriented boundary (see Fig. 1).
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If y is an immersion, and B = dy/d# is the tangent, then the tangent
winding number, twn v, is defined to be

1 [ 4B
2mi g B

We now have

THEOREM 1 (Titus—Whitney). If 0 is a regular value for g, z,€ S’,
and Y* is the oriented 2-submanifold of S'X S*' with positively oriented
boundary z,x S'+ S'X z,—~ A, then

twny =~ 2 A(y)+20(y, y(20).

YEY NgTH0)

Proof. Let g7'(0O)N Y ={y,,---,y.}. Let D,,---,D, be closed dis-
joint coordinate discs in Y* such that D,Ng'(0)=Y, for j=
1,-+-,n. Let these have orientation inherited from Y and let 4D, be the
oriented boundary of D; for j=1,---, n. Recall that for j=1,---,n,
A(y;)= +1iff dg preserves orientation at y,. Therefore we may choose
each D, so that

1 [ dg_

2 b & - A(Y})~
Now dg/g is closed on Y*— U, D, so the integral of dg/g over its
boundary is0. The boundary is the cycle z, X $'+ §' X z,—A—-27_, 4D,
From the definition of g,

L Ly e)-1p

2 7Ti 20xS! g 27Ti S'xz0 g

and (I/Zm’)f dg/g = twny — 1. The theorem now follows. We remark
A

that if y(z,) is on the outer boundary of y and its image is not a multiple
point of v, then w(y, y(z,)) = *1. In this case, if y is a normal immersion,
then Theorem 1 is Lemma 3 of Titus [5].

3. Homotopies. Let I =0, 1] considered as an oriented 1-
manifold with boundary having the usual orientation. Let I X S' be an
oriented 2-manifold with boundary with the product orientation. A
smooth map F: I X §'— C is called a homotopy. Let y,(z) = F(t, z) and
Bi(z)=(dy./dB)(z).Let X =1X S'X S"and Y, =t X S'X §'C X where
both are given the product orientations. Define G: X — C by
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F(tz)-F(t{)
e Ay

—iB(2) =t

Z 9

G(t,z,{) =

Define g: S'XxS'—>C by g(z,{)=G(t,2,{). Let Z={x EX|G(x)=
0}. We say 0 is a regular value for G if dG has rank 2 everywhere on
Z. In this case, by the implicit function theorem, Z has the structure of
a 1-submanifold of X, with boundary. We intend to study the change in
the intersection sequence under the homotopy F by looking at the
smooth manifold Z C X, therefore we will make the assumption that 0 is
a regular value for G.
To justify this assumption, we prove the following lemma.

Lemma 1. If F(t,z) = y.(z) is a smooth homotopy of closed curves
and G(F):IxXS'XS'—->C is defined by G(F)(tz{)=
(F(t,z)— F(t,{))/(z — {), then F may be deformed by an arbitrarily small
amount into a homotopy F for which 0 is a regular value for G (F).

Proof. Let D be the open disc|w|<1.For w € D, define F,(t,z) =
F(t,z)+wz. Note that Fytz)=F(tz). Then G(F,)(tz/{)=
G(F)(t,z,{)+ w. Clearly the map (t,z,{,w)— G(F,)(t,z,{)+w from
(I x S'"xS")X D to C is a submersion, and therefore 0 is a regular value
for this function. By the transversality theorem (Guillemin and Pollack
[3] p. 68), 0 is a regular value of G(F,) for almost all w € D. This
proves the lemma.

4. The orientation on Z. Assume that 0 is aregular value of
G so that Z is a 1-manifold with boundary. We will define an orientation
on Z such that we get a set of signed intersection pairs for vy, by
intersecting Z with Y. At each intersection point, the sign will be
defined by the orientation of Z and Y.

First we indicate how to define a direct sum orientation on vector
spaces. If V and W are oriented subspaces of a vector space and if the
ordered bases {v,, -+, v,} and {w,, - - -, w,, } define positive orientation of
V and W respectively, then the sum orientation on V&G W (in that
order) is defined by the ordered basis {v,, ", v,, Wy, - * -, Wn }.

We now orient Z as follows: If x € Z, write T.(X)= T.(Z)® H.
Then dG,: H— T,(C) and the mapping is a vector space isomorphism. In
a natural way, this isomorphism induces an orientation on H from the
usual orientation on To(C). We now choose an orientation on T,(Z) so
that the sum orientation agrees with the prescribed orientation on
T.(X). Inthisway Z is given the structure of an oriented 1-manifold.
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Now as before let Y, =1t X S'X S' with the product orientation.
Suppose x =(t,z,{)E ZN Y, and d(g). ., preserves orientation. Then
dG, preserves orientation on T,(Y,). Now we can can write T,(X)=
T.(Z)® T.(Y.) where by definition, the orientations sum to the pre-
scribed orientation on T,(X). In this case the intersection number at
x € ZNY, issaid to be + 1 (here the order in which we list Z and Y, is
important (see Guillemin and Pollack [3])). Likewise if d(g,).. . reverses
orientation, the intersection number of x€ ZNY, is —1. Thus if
d(8). p has rank 2 at each point x € Z then the set Z N Y, along with
the intersection number at each point gives us the set of signed
intersection pairs for v,

S. The change in the intersection sequences. The con-
figuration of the oriented 1-manifold Z as a submanifold of X indicates
how the intersection pairs and the intersection sequence changes under
the homotopy F. (We may take the intersection sequence with respect
to a continuously moving point whose image stays on the outer bound-
ary.) We mention here only some general considerations:

(a) Z is symmetric with respect to I XA, ie., (tz ()€ Z iff
(t¢z)E Z

(b) The components of Z are oriented 1-manifolds homeomorphic
to either S' or I (see Guillemin and Pollack [3] Appendix 2 or Milnor [4]
Appendix).

(c) Each component either crosses I X A and is symmetric with
respect to I X A or has another component symmetric to it with respect to
I XA (see Fig. 2).

(d) When a component of Z crosses I X A we have a change in
twny,. We will describe this fully in the next section.

(e) Each component of Z represents a continuously moving vertex
on v. Components homeomorphic to I and joining points on Y,
represent vertices lost in homotopy. Components homeomorphic to I
and joining points in Y, represent vertices gained.

IxS'xS!

FiG. 2
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Finally, suppose that I1: X = I X §'X §'— I X §' is the projection
on the first two coordinates. Then II(Z)C I X S' consists of smooth
curves. If the intersection sequence of vy, changes at f,, then either some
vertices coincide, in which case I1(Z) crosses itself at a point (¢, z) or else
a vertex appears or disappears, in which case the real valued function ¢
on Z has a relative maximum or minimum at a point (¢, z, {) on Z.

6. Change in twn y,. Let I XA C X have the usual product
orientation. Say Z intersects I X A transversely if T,(Z)@® T.(I X A) =
T.(X) at each point x € Z N (I X A). Let N(Z, I X A) be the intersection
multiplicity of Z with I X A, i.e., the sum of the intersection numbers at
points of Z N (I X A). We prove the following theorem concerning the
change in twny, for the homotopy.

THEOREM 2. If Z intersects I XA transversely, then twnry,—
twn y,=N(Z,IXA).

Proof. Let ZN({IXA)={y, - -, y.}). At y=y, write T,(X)=
T,(Z) T,(I x A). By definition of the intersection number at y; and by
definition of the orientation of Z we see that the intersection number at
y =y, is +1 iff dG, preserves orientation on T,(I X A). Now we can
choose closed disjoint coordinate discs D,,---, D, in I XA such that

DnNZ=y for j=1,---,n and (1/27Ti)f dG /G = the orientation
aD,
number at y, € Z N (I X A). Now dG /G isclosed on I X A— M7, D, and
the boundary is 1 X A—=0X A —2"_, 4D, Now (1/27ri)J’ dG/G = twny,
0xA

and (1/27ri)f dG/G = twny,, and integration of dG/G over the
1XA

boundary gives 0. This proves the theorem.
We have the following well-known:

CoroOLLARY 1. Regular homotopies preserve the tangent winding
number.

Proof. 1In this case ZN(IXA)=.

Finally, we remark that the fundamental theorem of Titus and
Whitney becomes in this context:

THEOREM 3.  Suppose for fixed t € I and z, € S', Y is the oriented
submanifold of I X S' X S' with positively oriented boundary t X z, X S'+
t X S'X zo—t X A. If Z intersects Y, transversely,
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N(Z, Y7)=twny, —20(y, v.(20)).

Proof. We observe that if x = (t,z,{)€ Z N 'Y, then the intersec-
tion number is + 1 iff d(g )., preserves orientation. Now the theorem
follows from Theorem 1.
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