HOMOTOPIES AND INTERSECTION SEQUENCES

J. R. Quine

Abstract

For $\gamma_{t}: S^{1} \rightarrow \mathbf{C}$, a smooth homotopy of closed curves, the changing configuration of vertices and cusps is studied by considering the set in $I \times S^{1} \times S^{1}$ given by $\left(\gamma_{t}(z)-\gamma_{t}(\zeta)\right) /(z-\zeta)=0$. The main tool is oriented intersection theory from differential topology. The results relate to previous work by Whitney and Titus on normal curves and intersection sequences.

Consider a closed curve as a smooth map $\gamma: S^{1} \rightarrow \mathbf{C}$. Let γ_{t} for $t \in I$ be a smooth homotopy of closed curves. A vertex of γ_{t} is a point w such that $w=\gamma_{t}(z)=\gamma_{t}(\zeta)$ for $z \neq \zeta$. A cusp is a point where the tangent vanishes and changes direction. Let $X=I \times S^{1} \times S^{1}$. We study the changing configuration of vertices and cusps of γ_{t} by studying the set $Z=\{x \in X \mid G(x)=0\}$ where $G(t, z, \zeta)=\left(\gamma_{t}(z)-\gamma_{t}(\zeta)\right) /\left(z_{t}-\zeta\right)$, and the limiting value is taken when $z=\zeta$. If 0 is a regular value for G, then Z has the structure of an oriented 1 -submanifold of X. If for fixed t, Z intersects $t \times S^{1} \times S^{1}$ transversely, then the oriented intersection gives a set of pairs in $S^{1} \times S^{1}$ with corresponding orientation numbers +1 or -1. If γ_{t} is a normal immersion, these pairs and their orientation numbers give the Titus intersection sequence of γ_{t}. The changes in the intersection sequence are reflected in the behavior of Z. If Z crosses $I \times \Delta$, where Δ is the diagonal of $S^{1} \times S^{1}$, then we have a cusp and a change in the tangent winding number. The difference between the tangent winding numbers of γ_{0} and γ_{1} is just $N(Z, I \times \Delta)$, the total number of oriented intersections of Z with $I \times \Delta$.

1. Intersection sequences. In the complex plane, let S^{1} be the set $|z|=1$. Consider S^{1} as a 1 -manifold with functions $\theta \rightarrow e^{i \theta}$ giving local coordinate systems. The tangent vector $d / d \theta$ is defined independently of the choice of coordinate system. On $T\left(S^{1}\right)$, the tangent space, let $d / d \theta$ give the positive orientation at each point. This gives S^{1} the structure of an oriented 1-manifold.

Suppose $\gamma: S^{1} \rightarrow \mathbf{C}$ is a smooth $\left(C^{\infty}\right)$ map. Let $\beta(z)=(d \gamma / d \theta)(z)$ be the tangent at $\gamma(z)$. Let $S^{1} \times S^{1}=Y$ and let the maps $(\theta, \phi) \rightarrow\left(e^{i \theta}, e^{i \phi}\right)$ give local coordinate systems for Y. Let $S^{1} \times S^{1}$ have the product orientation, i.e., $T\left(S^{1} \times S^{1}\right)$ has positive orientation given by the ordered basis $\{\partial / \partial \theta, \partial / \partial \phi\}$ at each point. Let $\Delta \subseteq Y=\{(z, \zeta) \mid z=\zeta\}$.

Let $\theta \rightarrow\left(e^{i \theta}, e^{i \theta}\right)$ be local coordinate systems on Δ and let positive
orientation be given on Δ by $d / d \theta$. Thus Δ is an oriented 1 -submanifold of Y. Now we define $g: Y \rightarrow \mathbf{C}$ as follows

$$
g(z, \zeta)= \begin{cases}\frac{\gamma(z)-\gamma(\zeta)}{z-\zeta}, & z \neq \zeta \\ \frac{-i \beta(z)}{z}, & z=\zeta\end{cases}
$$

We can check that g is a smooth function on Y.
Letting $y=(z, \zeta)$, we compute that for $y \in g^{-1}(0)$ we have

$$
d g_{y}= \begin{cases}\frac{\beta(z) d \theta-\beta(\zeta) d \phi}{z-\zeta}, & z \neq \zeta \tag{1}\\ \frac{1}{i z} \frac{d \beta}{d \theta}(z)(d \theta+d \phi), & z=\zeta\end{cases}
$$

Now let $y=(z, \zeta) \in g^{-1}(0)$, and consider $d g_{y}$ as a linear map from $T_{y}(Y)$ to $T_{0}(\mathbf{C})$. Then from (1):
(a) If $z \neq \zeta$, then $d g_{y}$ has rank 2 iff the tangents $\beta(z)$ and $\beta(\zeta)$ are linearly independent. In this case, $d g_{y}$ preserves orientation iff $\{\beta(z),-\beta(\zeta)\}$ is a positively oriented basis of \mathbf{C} (where \mathbf{C} has the usual orientation).
(b) If $z=\zeta$, then $\beta(z)=0$ and $d g_{y}$ has rank 1 iff $(d \beta / d \theta)(z) \neq 0$. Otherwise $d g_{y}$ has rank 0 . We may check that if $(d \beta / d \theta)(z) \neq 0$, then there is a cusp at $\gamma(z)$ and the limiting tangential directions at $\gamma(z)$ are the directions of $\pm(d \beta / d \theta)(z)$.

The point $0 \in \mathbf{C}$ is said to be a regular value for g if $d g_{y}$ has rank 2 at every point of $g^{-1}(0)$. By remarks (a) and (b) above we see that 0 is a regular value for g iff γ is an immersion $\left(\beta(z) \neq 0\right.$ for $\left.z \in S^{1}\right)$, and the tangents $\beta(z)$ and $\beta(\zeta)$ are linearly independent for each point $(z, \zeta) \in$ $g^{-1}(0)$. Also if 0 is a regular value of $g, g^{-1}(0)$ is a finite subset of the compact set Y (a torus). In this case if $y \in g^{-1}(0)$ we set $\lambda(y)=+1$ if $d g_{y}$ preserves orientation and $\lambda(y)=-1$ if $d g_{y}$ reverses orientation. We say that $g^{-1}(0)$ with the sign λ gives the set of signed intersection pairs for γ.

We say that γ is a normal immersion if γ is an immersion, each point of \mathbf{C} has at most two preimages under γ, and the tangents are linearly independent at each double point. Another way to say this is that 0 is a regular value for g, and projection on the first coordinate is one-to-one on $g^{-1}(0)$. $\left(g^{-1}(0)\right.$ as a set of ordered pairs is a function.) If γ is a normal immersion, let $\left\{z_{1}, \cdots, z_{2 n}\right\}$ be the preimages under γ of the double points, numbered sequentially along S^{1} in a counterclockwise direction from a point z_{0} on S^{1}, not a preimage of a double point. Then $g^{-1}(0)$ defines an involution * on the integers $1, \cdots, 2 n$, such that $\left(z_{j}, z_{j}\right) \in g^{-1}(0)$
for $j=1, \cdots, 2 n$. Now define the sign ν by $\left.\nu(j)=-\lambda\left(\left(z_{j}, z_{j}\right)^{*}\right)\right)$. We say that the involution ${ }^{*}$ together with the $\operatorname{sign} \nu$ defines the intersection sequence of γ with respect to z_{0}. Usually z_{0} is chosen so that $\gamma\left(z_{0}\right)$ is on the outer boundary, i.e., the boundary of the component of $\mathbf{C}-\gamma\left(S^{1}\right)$ containing ∞. In this case ν and ${ }^{*}$ give the Titus intersection sequence (see Titus [5] or Francis [1]). We remark that signed intersection pairs are defined if 0 is a regular value for g. To define the intersection sequence also, we need in addition that $g^{-1}(0)$ is a function.
2. The fundamental theorem. In this context, we would like to prove what we call the fundamental theorem on intersection sequences. The use of intersection pairs allows a slightly more general statement than that of Whitney [6] and Titus [5]. Let γ be a normal immersion and let $[\gamma]$ denote the image of γ. For $a \in \mathbf{C}-\gamma(R)$ we define j_{a} on $S_{a}=S^{1}-\gamma^{-1}(a)$ by $j_{a}=(\gamma-a) /|\gamma-a|$. We define

$$
\omega(\gamma, a)=\frac{1}{2 \pi i} \int_{S_{a}} \frac{d j_{a}}{j_{a}} .
$$

If $a \notin \gamma$, this is just the winding number of γ about a. If $a \in[\gamma]$, we may check that $\omega(\gamma, a)$ is the average of the winding numbers of γ on the components near $\gamma(a)$.

Now, for fixed $z_{0} \in S^{1}$, consider $z_{0} \times S^{1}$ and $S^{1} \times z_{0}$ as subsets of Y. Let $\theta \rightarrow\left(z_{0}, e^{i \theta}\right)$ and $\phi \rightarrow\left(e^{i \phi}, z_{0}\right)$ be coordinate systems on $z_{0} \times S^{1}$ and let these define the orientations. Thus, $z_{0} \times S^{1}$ and $S^{1} \times z_{0}$ have the structures of oriented 1 -submanifolds of Y. Now $W=z_{0} \times S^{1}$ $+S^{1} \times z_{0}-\Delta$ divides the torus Y into 2 simply connected 2 -manifolds with boundary, Y^{+}and Y^{-}. Here Y^{+}denotes the one for which W is a positively oriented boundary and Y^{-}the one for which W is a negatively oriented boundary (see Fig. 1).

Fig. 1

If γ is an immersion, and $\beta=d \gamma / d \theta$ is the tangent, then the tangent winding number, twn γ, is defined to be

$$
\frac{1}{2 \pi i} \int_{S^{\prime}} \frac{d \beta}{\beta}
$$

We now have
Theorem 1 (Titus-Whitney). If 0 is a regular value for $g, z_{0} \in S^{1}$, and Y^{+}is the oriented 2 -submanifold of $S^{1} \times S^{1}$ with positively oriented boundary $z_{0} \times S^{1}+S^{1} \times z_{0}-\Delta$, then

$$
t w n \gamma=-\sum_{y \in Y^{+} \cap g^{-1}(0)} \lambda(y)+2 \omega\left(\gamma, \gamma\left(z_{0}\right)\right)
$$

Proof. Let $g^{-1}(0) \cap Y^{+}=\left\{y_{1}, \cdots, y_{n}\right\}$. Let D_{1}, \cdots, D_{n} be closed disjoint coordinate discs in Y^{+}such that $D_{j} \cap g^{-1}(0)=Y_{j}$ for $j=$ $1, \cdots, n$. Let these have orientation inherited from Y and let ∂D, be the oriented boundary of D_{i} for $j=1, \cdots, n$. Recall that for $j=1, \cdots, n$, $\lambda\left(y_{j}\right)=+1$ iff $d g$ preserves orientation at y_{j}. Therefore we may choose each D, so that

$$
\frac{1}{2 \pi i} \int_{D_{1}} \frac{d g}{g}=\lambda\left(y_{j}\right)
$$

Now $d g / g$ is closed on $Y^{+}-\bigcup_{j=1}^{n} D_{j}$ so the integral of $d g / g$ over its boundary is 0 . The boundary is the cycle $z_{0} \times S^{1}+S^{1} \times z_{0}-\Delta-\sum_{j=1}^{n} \partial D_{i}$. From the definition of g,

$$
\frac{1}{2 \pi i} \int_{z_{00} \times S^{\prime}} \frac{d g}{g}=\frac{1}{2 \pi i} \int_{s^{\prime} \times z_{0}} \frac{d g}{g}=\omega\left(\gamma, \gamma\left(z_{0}\right)\right)-1 / 2
$$

and $(1 / 2 \pi i) \int_{\Delta} d g / g=t w n \gamma-1$. The theorem now follows. We remark that if $\gamma\left(z_{0}\right)$ is on the outer boundary of γ and its image is not a multiple point of γ, then $\omega\left(\gamma, \gamma\left(z_{0}\right)\right)= \pm \frac{1}{2}$. In this case, if γ is a normal immersion, then Theorem 1 is Lemma 3 of Titus [5].
3. Homotopies. Let $I=[0,1]$ considered as an oriented 1 manifold with boundary having the usual orientation. Let $I \times S^{1}$ be an oriented 2-manifold with boundary with the product orientation. A smooth map $F: I \times S^{1} \rightarrow \mathbf{C}$ is called a homotopy. Let $\gamma_{t}(z)=F(t, z)$ and $\beta_{t}(z)=\left(d \gamma_{t} / d \theta\right)(z)$. Let $X=I \times S^{1} \times S^{1}$ and $Y_{t}=t \times S^{1} \times S^{1} \subseteq X$ where both are given the product orientations. Define $G: X \rightarrow \mathbf{C}$ by

$$
G(t, z, \zeta)= \begin{cases}\frac{F(t, z)-F(t, \zeta)}{z-\zeta}, & z \neq \zeta \\ \frac{-i \beta_{t}(z)}{z}, & z=\zeta\end{cases}
$$

Define $g_{t}: S^{1} \times S^{1} \rightarrow \mathbf{C}$ by $g_{t}(z, \zeta)=G(t, z, \zeta)$. Let $Z=\{x \in X \mid G(x)=$ $0\}$. We say 0 is a regular value for G if $d G$ has rank 2 everywhere on Z. In this case, by the implicit function theorem, Z has the structure of a 1 -submanifold of X, with boundary. We intend to study the change in the intersection sequence under the homotopy F by looking at the smooth manifold $Z \subseteq X$, therefore we will make the assumption that 0 is a regular value for G.

To justify this assumption, we prove the following lemma.
Lemma 1. If $F(t, z)=\gamma_{t}(z)$ is a smooth homotopy of closed curves and $\quad G(F): I \times S^{1} \times S^{1} \rightarrow \mathbf{C} \quad$ is defined by $G(F)(t, z, \zeta)=$ $(F(t, z)-F(t, \zeta)) /(z-\zeta)$, then F may be deformed by an arbitrarily small amount into a homotopy F for which 0 is a regular value for $G(F)$.

Proof. Let D be the open disc $|w|<1$. For $w \in D$, define $F_{w}(t, z)=$ $F(t, z)+w z$. Note that $F_{0}(t, z)=F(t, z)$. Then $G\left(F_{w}\right)(t, z, \zeta)=$ $G(F)(t, z, \zeta)+w$. Clearly the map $(t, z, \zeta, w) \rightarrow G\left(F_{w}\right)(t, z, \zeta)+w$ from $\left(I \times S^{1} \times S^{1}\right) \times D$ to \mathbf{C} is a submersion, and therefore 0 is a regular value for this function. By the transversality theorem (Guillemin and Pollack [3] p. 68), 0 is a regular value of $G\left(F_{w}\right)$ for almost all $w \in D$. This proves the lemma.
4. The orientation on Z. Assume that 0 is a regular value of G so that Z is a 1-manifold with boundary. We will define an orientation on Z such that we get a set of signed intersection pairs for γ_{t} by intersecting Z with Y_{t}. At each intersection point, the sign will be defined by the orientation of Z and Y_{t}.

First we indicate how to define a direct sum orientation on vector spaces. If V and W are oriented subspaces of a vector space and if the ordered bases $\left\{v_{1}, \cdots, v_{n}\right\}$ and $\left\{w_{1}, \cdots, w_{m}\right\}$ define positive orientation of V and W respectively, then the sum orientation on $V \oplus W$ (in that order) is defined by the ordered basis $\left\{v_{1}, \cdots, v_{n}, w_{1}, \cdots, w_{m}\right\}$.

We now orient Z as follows: If $x \in Z$, write $T_{x}(X)=T_{x}(Z) \oplus H$. Then $d G_{x}: H \rightarrow T_{0}(\mathbf{C})$ and the mapping is a vector space isomorphism. In a natural way, this isomorphism induces an orientation on H from the usual orientation on $T_{0}(\mathbf{C})$. We now choose an orientation on $T_{x}(Z)$ so that the sum orientation agrees with the prescribed orientation on $T_{x}(X)$. In this way Z is given the structure of an oriented 1-manifold.

Now as before let $Y_{t}=t \times S^{1} \times S^{1}$ with the product orientation. Suppose $x=(t, z, \zeta) \in Z \cap Y_{t}$ and $d\left(g_{t}\right)_{(z, \zeta)}$ preserves orientation. Then $d G_{x}$ preserves orientation on $T_{x}\left(Y_{t}\right)$. Now we can can write $T_{x}(X)=$ $T_{x}(Z) \oplus T_{x}\left(Y_{t}\right)$ where by definition, the orientations sum to the prescribed orientation on $T_{x}(X)$. In this case the intersection number at $x \in Z \cap Y_{t}$ is said to be +1 (here the order in which we list Z and Y_{t} is important (see Guillemin and Pollack [3])). Likewise if $d\left(g_{t}\right)_{(2, \zeta)}$ reverses orientation, the intersection number of $x \in Z \cap Y_{t}$ is -1 . Thus if $d\left(g_{t}\right)_{(2,5)}$ has rank 2 at each point $x \in Z$ then the set $Z \cap Y_{t}$ along with the intersection number at each point gives us the set of signed intersection pairs for γ_{t}.
5. The change in the intersection sequences. The configuration of the oriented 1 -manifold Z as a submanifold of X indicates how the intersection pairs and the intersection sequence changes under the homotopy F. (We may take the intersection sequence with respect to a continuously moving point whose image stays on the outer boundary.) We mention here only some general considerations:
(a) Z is symmetric with respect to $I \times \Delta$, i.e., $(t, z, \zeta) \in Z$ iff $(t, \zeta, z) \in Z$.
(b) The components of Z are oriented 1-manifolds homeomorphic to either S^{1} or I (see Guillemin and Pollack [3] Appendix 2 or Milnor [4] Appendix).
(c) Each component either crosses $I \times \Delta$ and is symmetric with respect to $I \times \Delta$ or has another component symmetric to it with respect to $I \times \Delta$ (see Fig. 2).
(d) When a component of Z crosses $I \times \Delta$ we have a change in $t w n \gamma_{t}$. We will describe this fully in the next section.
(e) Each component of Z represents a continuously moving vertex on γ_{t}. Components homeomorphic to I and joining points on Y_{0} represent vertices lost in homotopy. Components homeomorphic to I and joining points in Y_{1} represent vertices gained.

Fig. 2

Finally, suppose that $\Pi: X=I \times S^{1} \times S^{1} \rightarrow I \times S^{1}$ is the projection on the first two coordinates. Then $\Pi(Z) \subseteq I \times S^{1}$ consists of smooth curves. If the intersection sequence of γ_{t} changes at t_{0}, then either some vertices coincide, in which case $\Pi(Z)$ crosses itself at a point $\left(t_{0}, z\right)$ or else a vertex appears or disappears, in which case the real valued function t on Z has a relative maximum or minimum at a point $\left(t_{0}, z, \zeta\right)$ on Z.
6. Change in twn γ_{t-} Let $I \times \Delta \subseteq X$ have the usual product orientation. Say Z intersects $I \times \Delta$ transversely if $T_{x}(Z) \oplus T_{x}(I \times \Delta)=$ $T_{x}(X)$ at each point $x \in Z \cap(I \times \Delta)$. Let $N(Z, I \times \Delta)$ be the intersection multiplicity of Z with $I \times \Delta$, i.e., the sum of the intersection numbers at points of $Z \cap(I \times \Delta)$. We prove the following theorem concerning the change in twn γ_{t} for the homotopy.

Theorem 2. If Z intersects $I \times \Delta$ transversely, then twn $\gamma_{1}-$ twn $\gamma_{0}=N(Z, I \times \Delta)$.

Proof. Let $Z \cap(I \times \Delta)=\left\{y_{1}, \cdots, y_{n}\right\}$. At $y=y_{\text {, }}$ write $T_{y}(X)=$ $T_{y}(Z) \oplus T_{y}(I \times \Delta)$. By definition of the intersection number at y_{j} and by definition of the orientation of Z we see that the intersection number at $y=y_{j}$ is +1 iff $d G_{y}$ preserves orientation on $T_{y}(I \times \Delta)$. Now we can choose closed disjoint coordinate discs D_{1}, \cdots, D_{n} in $I \times \Delta$ such that $D_{,} \cap Z=y_{l}$ for $j=1, \cdots, n$ and $(1 / 2 \pi i) \int_{\partial D,} d G / G=$ the orientation number at $y_{f} \in Z \cap(I \times \Delta)$. Now $d G / G$ is closed on $I \times \Delta-\bigcap_{j=1}^{n} D$, and the boundary is $1 \times \Delta-0 \times \Delta-\sum_{j=1}^{n} \partial D_{j}$. Now $(1 / 2 \pi i) \int_{0 \times \Delta} d G / G=t w n \gamma_{0}$ and $(1 / 2 \pi i) \int_{1 \times \Delta} d G / G=t w n \gamma_{1}$, and integration of $d G / G$ over the boundary gives 0 . This proves the theorem.

We have the following well-known:
Corollary 1. Regular homotopies preserve the tangent winding number.

Proof. In this case $Z \cap(I \times \Delta)=\varnothing$.
Finally, we remark that the fundamental theorem of Titus and Whitney becomes in this context:

Theorem 3. Suppose for fixed $t \in I$ and $z_{0} \in S^{1}, Y_{t}^{+}$is the oriented submanifold of $I \times S^{1} \times S^{1}$ with positively oriented boundary $t \times z_{0} \times S^{1}+$ $t \times S^{1} \times z_{0}-t \times \Delta$. If Z intersects Y_{t}^{+}transversely,

$$
N\left(Z, Y_{t}^{+}\right)=t w n \gamma_{t}-2 \omega\left(\gamma_{t}, \gamma_{t}\left(z_{0}\right)\right)
$$

Proof. We observe that if $\dot{x}=(t, z, \zeta) \in Z \cap Y_{t}$ then the intersection number is +1 iff $d\left(g_{t}\right)_{(z, \zeta)}$ preserves orientation. Now the theorem follows from Theorem 1.

References

1. G. Francis, Null genus realizability criterion for abstract intersection sequences, J. Combinatorial Theory, 7 (1969), 331-341.
2. ——, Titus' homotopies of normal curves, Proc. Amer. Math. Soc., 30 (1971), 511-518.
3. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
4. J. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, 1965.
5. C. J. Titus, A theory of normal curves and some applications, Pacific J. Math., 10 (1960), 1083-1096.
6. H. Whitney, On regular closed curves in the plane, Comp. Math., 4 (1937), 276-284.

Received November 5, 1975 and in revised form February 24, 1976.
The Florida State University

