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HOMOTOPIES AND INTERSECTION SEQUENCES

J. R. QUINE

For γt: S1—»C, a smooth homotopy of closed curves, the
changing configuration of vertices and cusps is studied by
considering the set in / x 5 * x 5 ι given by
(γ,(z) - γt(ζ))l(z - ζ) = 0. The main tool is oriented intersection
theory from differential topology. The results relate to previous
work by Whitney and Titus on normal curves and intersection
sequences.

Consider a closed curve as a smooth map y: S1-* C. Let γ, for t E /
be a smooth homotopy of closed curves. A vertex of yt is a point w such
that w = yt(z)= yt(ζ) for z/ ζ. A cusp is a point where the tangent
vanishes and changes direction. Let X = / x 5 1 x 5 1 . We study the
changing configuration of vertices and cusps of yt by studying the set
Z = {x ε XI G(x) = 0} where G(ί, z, f) = (γ f(z) - γf(£))/(*.- ζ\ and the
limiting value is taken when z = ζ. If 0 is a regular value for G, then Z
has the structure of an oriented 1-submanifold of X. If for fixed t, Z
intersects t x S1 x S1 transversely, then the oriented intersection gives a
set of pairs in Sιx Sι with corresponding orientation numbers + 1 or
- 1 . If yt is a normal immersion, these pairs and their orientation
numbers give the Titus intersection sequence of yt. The changes in the
intersection sequence are reflected in the behavior of Z If Z crosses
/ x Δ, where Δ is the diagonal of S1 x S\ then we have a cusp and a
change in the tangent winding number. The difference between the
tangent winding numbers of γ0 and yλ is just N(Z, / x Δ), the total
number of oriented intersections of Z with / x Δ.

1. Intersection sequences. In the complex plane, let S1 be
the set |z I = 1. Consider S1 as a 1-manifold with functions θ —> eiθ giving
local coordinate systems. The tangent vector d/dθ is defined indepen-
dently of the choice of coordinate system. On T(5 !), the tangent space,
let d/dθ give the positive orientation at each point. This gives S1 the
structure of an oriented 1-manifold.

Suppose γ: 51->C is a smooth (C00) map. Let β(z) = (dy/dθ)(z) be
the tangent at γ(z). Let S1 x S1 = Y and let the maps (0, φ)-^(eiθ, eιφ)
give local coordinate systems for Y. Let ^ x S 1 have the product
orientation, i.e., T(Sλ x S1) has positive orientation given by the ordered
basis {d/dθ, d/dφ} at each point. Let Δ C Y = {(z, ζ)\z = ζ}.

Let θ->(eιθ,eiθ) be local coordinate systems on Δ and let positive
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orientation be given on Δ by d/dθ. Thus Δ is an oriented 1-submanifold
of Y. Now we define g: Y-»C as follows

z-ζ

We can check that g is a smooth function on Y.
Letting y = (z, ζ), we compute that for y G g"'(0) we have

β(z)dθ - β(ζ)dφ
z-ζ

(1) dgy =
1 Λa

= ζ.

Now let y = ( z , ( ) E g *(()), and consider dgy as a linear map from
Ty(Y) to Γo(C). Then from (1):

(a) If zjέ ζ9 then dgy has rank 2 iff the tangents β(z) and β(f)
are linearly independent. In this case, dgy preserves orientation iff
{j3(z), - β(ζ)} is a positively oriented basis of C (where C has the usual
orientation).

(b) Itz = ζ, then j8(z) = 0 and dgy has rank 1 iff (dβ/dθ)(z)/0.
Otherwise dgy has rank 0. We may check that if (dβ/dθ)(z)^0, then
there is a cusp at γ(z) and the limiting tangential directions at γ(z) are
the directions of ±(dβ/dθ)(z).

The point 0 E C is said to be a regular value for g if dgy has rank 2 at
every point of g"7(0). By remarks (a) and (b) above we see that 0 is a
regular value for g iff γ is an immersion (β(z)τ^ 0 for z E S1), and the
tangents β(z) and β(£) are linearly independent for each point (z, £)E
g"!(0). Also if 0 is a regular value of g, g-1(0) is a finite subset of the
compact set Y (a torus). In this case if y E g'^O) we set λ(y) = + 1 if dgy

preserves orientation and λ(y) = - 1 if dgy reverses orientation. We say
that g-1(0) with the sign λ gives the set of signed intersection pairs for γ.

We say that γ is a normal immersion if γ is an immersion, each point
of C has at most two preimages under γ, and the tangents are linearly
independent at each double point. Another way to say this is that 0 is a
regular value for g, and projection on the first coordinate is one-to-one
on g^O). (g~ι(0) as a set of ordered pairs is a function.) If γ is a normal
immersion, let {zu •• ,z2n} be the preimages under γ of the double
points, numbered sequentially along S1 in a counterclockwise direction
from a point z0 on S\ not a preimage of a double point. Then g~ι(0)
defines an involution * on the integers 1, , 2n, such that (zp zr) E g~ι(0)
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for / = 1, , In. Now define the sign v by v(j) = - λ((z;, z;*)). We say
that the involution * together with the sign v defines the intersection
sequence of γ with respect to z0. Usually z0 is chosen so that γ(z0) is on
the outer boundary, i.e., the boundary of the component of C — yiS1)
containing oo. In this case v and * give the Titus intersection sequence
(see Titus [5] or Francis [1]). We remark that signed intersection pairs are
defined if 0 is a regular value for g. To define the intersection sequence
also, we need in addition that g'^O) is a function.

2. The fundamental theorem. In this context, we would
like to prove what we call the fundamental theorem on intersection
sequences. The use of intersection pairs allows a slightly more general
statement than that of Whitney [6] and Titus [5]. Let γ be a normal
immersion and let [γ] denote the image of γ. For a EC-γ(R) we
define ja on Sa = S1- y~ι{a) by ja = (γ - a)/\ y - a |. We define

ω( μ
u

If agz y, this is just the winding number of γ about a. If a E [γ], we
may check that ω(γ, a) is the average of the winding numbers of γ on the
components near γ(a).

Now, for fixed z0E S\ consider z o x 5 1 and S1* z0 as subsets of
Y. Let θ -> (z0, e

ιθ) and φ -* (eiφ, z0) be coordinate systems on zox Sι

and let these define the orientations. Thus, z0 x S1 and Sιx z0 have the
structures of oriented 1-submanifolds of Y. Now W = zoxSι

+ S] x z o - Δ divides the torus Y into 2 simply connected 2-manifolds
with boundary, Y+ and Y~. Here Y+ denotes the one for which W is a
positively oriented boundary and Y~ the one for which W is a negatively
oriented boundary (see Fig. 1).
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If γ is an immersion, and β = dγ/dθ is the tangent, then the tangent
winding number, twn γ, is defined to be

Iπi Js>2πi Js« β

We now have

THEOREM 1 (Titus-Whitney). // 0 is a regular value for g,z0G S\
and Y+ is the oriented 2-submanifold of S*x Sι with positively oriented

boundary z0x S 1 + S 1 x zQ~Δ,

twny = - 2 λ(y) + 2ω(%

Proof Let g-^Ojn Y+ = {yi, ,yJ. Let Di9 -9Dn be closed dis-
joint coordinate discs in Y+ such that D; Π g~1(0)= Y) for / =
1, , n. Let these have orientation inherited from Y and let dD} be the
oriented boundary of Dj for / = 1, , n. Recall that for / = 1, , n,
λ(yj)= + 1 iff rfg preserves orientation at yy. Therefore we may choose
each D} so that

Now dg/g is closed on Y+- U"=1Dy so the integral of dg/g over its
boundary is 0. The boundary is the cycle z0 x Sι + 51 x z0 - Δ - Σ;=1 ^Dy.
From the definition of g,

If
2 π ; J r o X S .

f
g 2τπ Js»xzo g

and (1/2π/) dg/g = ίwπγ - 1. The theorem now follows. We remark
JΔ

that if y(z0) is on the outer boundary of γ and its image is not a multiple
point of γ, then ω(γ, γ(zo))= ±£. In this case, if γ is a normal immersion,
then Theorem 1 is Lemma 3 of Titus [5].

3. Homotopies. Let / = [0,1] considered as an oriented 1-
manifold with boundary having the usual orientation. Let 7x Sι be an
oriented 2-manifold with boundary with the product orientation. A
smooth map F: 7 x Sι->C is called a homotopy. Let γ,(z) = F(t9 z) and
βt(z) = (dyjdθ)(z). Let X = / x S ι x S1 and Yf = t x S1 x S1 C X where
both are given the product orientations. Define G: X->C by
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F(t,z)-F(t,ζ)
z-ζ

Define gi:S
ιxSι-*C by gt(z,ζ)= G(t,z,ζ). Let Z = { x E X | G ( x ) =

0}. We say 0 is a regular value for G if dG has rank 2 everywhere on
Z. In this case, by the implicit function theorem, Z has the structure of
a 1-submanifold of X, with boundary. We intend to study the change in
the intersection sequence under the homotopy F by looking at the
smooth manifold Z C X , therefore we will make the assumption that 0 is
a regular value for G.

To justify this assumption, we prove the following lemma.

LEMMA 1. If F(t, z) = γ,(z) is a smooth homotopy of closed curves
and G ( F ) : / x S 1 x 5 1 - > C is defined by G(F)(t,z9ζ) =
(F(ί, z) - F(ί, £))/(z ~ ζ)* then F may be deformed by an arbitrarily small
amount into a homotopy F for which 0 is a regular value for G(F).

Proof. Let D be the open disc | w | < 1. For w E D, define Fw(t9 z) =
F(f,z)+wz. Note that F0(t, z) = F(t, z). Then G(Fw)(ί,z,f) =
G(F)(ί ,z,0+w Clearly the map (ί, z, ζ, w)-» G ^ ) ^ , z, f)+ w from
(/ x 51 x 51) x D to C is a submersion, and therefore 0 is a regular value
for this function. By the transversality theorem (Guillemin and Pollack
[3] p. 68), 0 is a regular value of G(FW) for almost all w E D. This
proves the lemma.

4. The orientation on Z. Assume that 0 is a regular value of
G so that Z is a 1-manifold with boundary. We will define an orientation
on Z such that we get a set of signed intersection pairs for γ, by
intersecting Z with Yt. At each intersection point, the sign will be
defined by the orientation of Z and Yt.

First we indicate how to define a direct sum orientation on vector
spaces. If V and W are oriented subspaces of a vector space and if the
ordered bases {vu , vn} and {wu , wm) define positive orientation of
V and W respectively, then the sum orientation on V φ W (in that
order) is defined by the ordered basis {υu , υm wu , vvm}.

We now orient Z as follows: If x E Z, write TX(X)= TX{Z)@H.
Then dGx: H -> T0(C) and the mapping is a vector space isomorphism. In
a natural way, this isomorphism induces an orientation on H from the
usual orientation on T0(C). We now choose an orientation on TX(Z) so
that the sum orientation agrees with the prescribed orientation on
Tx (X). In this way Z is given the structure of an oriented 1-manifold.
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Now as before let Yt = t x S1 x S1 with the product orientation.
Suppose x = ( ί , z , ( ) E Z Π Y, and d(g,)(2,0 preserves orientation. Then
dGx preserves orientation on Tx(Yt). Now we can can write TX(X) =
Γ x (Z)0T x (Y ί ) where by definition, the orientations sum to the pre-
scribed orientation on TX(X). In this case the intersection number at
x E Z Π Yt is said to be + 1 (here the order in which we list Z and Yt is
important (see Guillemin and Pollack [3])). Likewise if d(gt)(zζ) reverses
orientation, the intersection number of x E Z Π Yt is - 1 . Thus if
d(gt){Z,ζ) has rank 2 at each point x E Z then the set Z Π Yt along with
the intersection number at each point gives us the set of signed
intersection pairs for γ,.

5. The change in the intersection sequences. The con-
figuration of the oriented 1-manifold Z as a submanifold of X indicates
how the intersection pairs and the intersection sequence changes under
the homotopy F. (We may take the intersection sequence with respect
to a continuously moving point whose image stays on the outer bound-
ary.) We mention here only some general considerations:

(a) Z is symmetric with respect to / x Δ, i.e., (t,z,ζ)EZ iff
(t,ζ,z)ez.

(b) The components of Z are oriented 1-manifolds homeomorphic
to either S1 or / (see Guillemin and Pollack [3] Appendix 2 or Milnor [4]
Appendix).

(c) Each component either crosses / x Δ and is symmetric with
respect to / x Δ or has another component symmetric to it with respect to
I x Δ (see Fig. 2).

(d) When a component of Z crosses / x Δ we have a change in
twnyt. We will describe this fully in the next section.

(e) Each component of Z represents a continuously moving vertex
on γ,. Components homeomorphic to / and joining points on Yo

represent vertices lost in homotopy. Components homeomorphic to /
and joining points in Yx represent vertices gained.

FIG. 2
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Finally, suppose that Π: X = I x Sιx Sι-> I x S1 is the projection
on the first two coordinates. Then Π ( Z ) C / x S 1 consists of smooth
curves. If the intersection sequence of γ, changes at tθ9 then either some
vertices coincide, in which case Π(Z) crosses itself at a point (f0, z) or else
a vertex appears or disappears, in which case the real valued function t
on Z has a relative maximum or minimum at a point (ί0, z, ζ) on Z.

6. C h a n g e in twn γ,. Let I x Δ C X have the usual product
orientation. Say Z intersects / x Δ transversely if T x ( Z ) φ TX(I x Δ) =
TX(X) at each point x E Z Π (/ x Δ). Let JV(Z, / x Δ) be the intersection
multiplicity of Z with / x Δ, i.e., the sum of the intersection numbers at
points of Z Π (/ x Δ). We prove the following theorem concerning the
change in twn γt for the homotopy.

THEOREM 2. // Z intersects I x Δ transversely, then twn yx -
twn y0 = N(Z, / x Δ).

Proof. Let Z Γί (/ x Δ) = {yb , yn}. At y = y, write Ty(X) =
Γ y ( Z ) φ Γy(/ x Δ). By definition of the intersection number at y, and by
definition of the orientation of Z we see that the intersection number at
y = y} is + 1 iff dGy preserves orientation on Γ y ( / x Δ ) . Now we can
choose closed disjoint coordinate discs Du-- ,Dn in / x Δ such that

D ; n Z = y, for / = 1, , n and (1/2TΓ/) dG/G = the orientation
JdD,

number at y; E Z Π (/ x Δ). Now dG/G is closed o n / x Δ - Γ\J=ιD} and

the boundary i s l x Δ - O x Δ - Σ;=1 dDr Now (1/2 TΠ) ί dG/G = twny0

JθxΔ

and (1/2TΓ/) dG/G = twnyu and integration of dG/G over the

boundary gives 0. This proves the theorem.
We have the following well-known:

COROLLARY 1. Regular homotopies preserve the tangent winding
number.

Proof. In this case Z Π(Ix Δ) = 0 .

Finally, we remark that the fundamental theorem of Titus and
Whitney becomes in this context:

THEOREM 3. Suppose for fixed t E I and z0ES\ Y+

t is the oriented
submanifold of I x S1 x S1 with positively oriented boundary t x z0 x S1 +
ί x S1 x Zo- ί * Δ. / / Z intersects Yt transversely,
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N(Z, Yΐ) = ίwn γ, - 2ω(Ύt9 yt(z0)).

Proof. We observe that if x = (f, z,ζ)EZΓ) Yt then the intersec-
tion number is 4-1 iff d(gt)(zζ) preserves orientation. Now the theorem
follows from Theorem 1.
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