PACIFIC JOURNAL OF MATHEMATICS
Vol. 64, No. 1, 1976

ON EMBEDDING A COMPACT CONVEX SET INTO A
LOCALLY CONVEX TOPOLOGICAL VECTOR SPACE

R. E. JamisoN, R. C. O’BRrRIEN AND P. D. TAYLOR

If a compact convex subset of a topological vector space is
strongly locally convex then it is affinely homeomorphic to a
convex subset of a locally convex topological vector space.

Throughout this paper, a convex set X will be a convex subset of a
real Hausdorff topological vector space endowed with the relative
topology. If the relative topology is (locally) compact we will say that X
is a (locally) compact convex set.

Usually, when one proves results about compact convex sets, for
example in the Krein-Milman and Ryll-Nardzewski Theorems, one
requires that the containing vector space be locally convex. It is not
known whether this requirement is necessary. It would not be neces-
sary, for example, if every compact convex set could be embedded by an
affine homeomorphism into a locally convex topological vector
space. But it is not known whether such embeddings always exist." In
this paper we show that if a compact convex set satisfies a certain local
convexity condition, then it can be so embedded.

A convex set X is strongly locally convex if, for each x in X and
neighborhood U of x contained in X there is an open convex neighbor-
hood of x contained in U. In other words, X is strongly locally convex
if its topology has a base of open convex sets. A convex subset of a
locally convex topological vector space is evidently strongly locally
convex. The principal result of this paper is the converse statement
above.

An extension of this to the locally compact case is also given.

In §2 we show that the real-valued lower semicontinuous affine
functions on a convex set always separate disjoint open convex sets. If
X is a compact convex set which is strongly locally convex, then we show
in §3 that a “barycentre map” can be defined for X. This allows us to
prove the main theorem which we extend to locally compact topologies in
§4. In §5 we give some open questions and partial results.

2. Affine functians on convex sets. We now commence

' Note Added in Proof. An example has been constructed by James W. Roberts of a compact
convex set with no extreme points, which cannot therefore be embedded in a locally convex TVS.
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the step leading to the proof of the main theorem with an investigation of
affine functions on a convex set X. For any affine function f: X — R, let

Z(f)={x€X: f(x)=0}

ProrosiTION 1. Let X be a convex set. If f: X — R is an affine
function such that (i) for some two points p, and q, of X, f(p,) <0 and
f(q0)>0, and (ii) for each x in clZ(f), f(x)=0, then f is lower
semicontinuous on X.

Proof. As f may be altered by any positive scalar multiple without
changing the sense of the proposition, we may suppose that f(p,) < — 1
and f(qo)>1. Thus we may select on the line segment from p, to g, two
points p and g with f(p)= —1 and f(q)=1.

We are required to show that, for each r in R, L, = {x € X: f(x)=
risclosed in X. If x is a limit point of L,, there is a net {x,} of points in
X converging to x with f(x,)=r for each y. By passing to subnets, if
necessary, we may break the argument into two cases: (1) f(x,) > 0 for all
¥, or (2) f(x,)=0 for all y. Passing to subnets again, we further obtain
two ancillary cases: (a) f(x,) converges in R to some value, say s, with
s=r or (b) f(x,)—> — .

In case (1), the subcase (a) must obtain since the net {f(x,)} is
bounded below by 0. In this situation define for each vy, y, =
(1+f(x,))"'(x, +f(x,)p), a convex combination of x, and p such that
f(y,)=0. By continuity of convex combination, y, converges to
(1+s)"'(x +sp). Since y, € Z(f), hypothesis (ii) guarantees that
f(1+s]'(x +sp))=0. Since f is affine, this yields f(x)= —sf(p)=s =
r, as desired.

In case (2), set y, = (1 = f(x,)) '(x, — f(x,)q) for each y. Theny, is
a convex combination of x, and q such that f(y,)=0. If (b)obtains, the
coefficient [1 — f(x,)]”" of x, in the definition of y, tends to 0 as f(x, ) goes
to —. Thus y,—0-x+1-g =gq. This is untenable, as it would force
q €clZ(f) and hence f(q)=0, contrary to the choice of q. Thus (a)
must again hold, so {y,} converges to (1 —s)'(x —sq). (Note that s =0
since f(x,)=0forall y.) Using the hypothesis on clZ(f)once more, we
get

f((1=s]'(x —sq))=0 whence f(x)=sf(q)=s=r.
Therefore, in this case as well, x € L,, so L, is closed.
ProposITION 2. If X is a compact convex set, then every lower

semicontinuous affine function on X is bounded both from below and above
on X.
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Proof. A lower bound follows immediately from routine considera-
tions. To establish an upper bound, let us suppose in contradiction that f
is a lower semicontinuous affine function on X which is not bounded
from above. Then X is the countable union of the closed sets {x €
X: f(x)=n}. Since X is compact, it is of the second Baire category in
itself [2, p. 201]. Hence, for some N >1, {x: f(x)= N} has nonempty
interior. Choose a point p in the interior. ~Since by supposition f is not
bounded above, we can pick, for each n > N, some x, in X with
f(x,)>n.  Letting A =(n—=N)/(n—f(p)), set Vo = Ap +
(1—A,)x,.. Then

f)>Af@)+A-A)n=n—A(n—f(p))=N.

Since f(p)and N are fixed numbers, A, — 1 as n — . The compactness
of X allows us to find a convergent subnet x,,,— x whence {y..}
convergestol-p+0-x =p. Butf(y.,)> N for each vy, contrary to the
choice of p in the interior of {x € X: f(x)= N}.

ProprosITION 3. Suppose that X is a convex set and that K is a closed
convex subset of X. If K has nonempty interior and X ~ K is nonempty
and convex, then there is an affine function f on X such that {x €
X: f(x)=0}=K.

Proof. Since the result is obvious if the linear space E containing X
is one dimensional, we shall assume that the dimension of E is at least
2. Let p be any fixed point in the interior of K. For any point u of
U = X ~ K, define g(u) =sup{A: Au + (1 — A)p € K}. Since p is interior
to K, it follows that g(u)>0. Since K isclosed, g(u)<1. Thus setting
f(u)y=(0-g(u))/g(u), we have f'(u)>0 for all u in U.

We claim that f’ is affine on U. To see this, suppose v and w are
points in U and B€[0:1]. Let z=pBv+(1-B)w, and let F be a
2-dimensional flat containing v, w and p. The convex slice X N F'is the
union of two disjoint convex subsets K N F and U N F. It follows that
the common boundary (in the usual sense) of K N F and U N F is the
intersection of X N F with some line L in F. Since p is interior to K
and hence not linearly accessible from U, p does not lie on
L. Therefore there is a unique affine function A on F which vanishes on
L andis —1at p. For any point u in U N F, the definition of g implies
that r = g(u)u + (1 — g(u))p belongs to the bounding line L, so

0=nh(r)=g)h)+(1-gu)h(p)

Using h(p)= —1 and solving vyields h(u)=f'(u) for any u in
UNF. Since v, w and z all belong to UNF,
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f'(z)=h(z)=Bh(v)+ (1= B)h(w)=Bf'(v)+(1—-B)f'(w).
It follows that f is affine on U.

We now wish to extend the domain of definition of f' to all of
X. Since f' is an affine function on the convex subset U of E, there is
some (purely algebraic) affine extension of f’ to all of E. By choosing
some such extension and restricting it to X, we obtain an affine function f
on X which agrees with f' on U.

It remains to show that {x € X: f(x) =0} = K. As already noted at
the definition of f', f(u)=f'(u)>0 for all u in U = X ~ K. Thus we
need to show now that if x € K, then f(x)=0. To do so, consider any
point u of U and set e =f'(u)=f(u)>0. Solving for g(u) in the
definition of f’, we get g(u)=(1+¢€)’, so that the point q=
(1+€)'u +[e/(1+€)]p is the last point of K on the segment from p to
u. Now for any point u’= Au +(1—A)g, where A €(0,1], it is a
straightforward albeit tedious computation to check that, by definition of
f', f'(u")= e = Af(u). Because f is affine on X it can be deduced from
this that f(q)=0 and f(p)= — 1.

It is an easy conclusion from the above discussion that if x € K is
colinear with p and a point of U, then f(x)=0. Thus suppose x does
not lie on a line through p and a point of U, and assume, contrary to our
desire, that f(x)>0. Since f(p)= —1, there is a unique point y on the
line segment from p to x with f(y)=0. Select a point u of U, and let w
be a point other than u in the intersection of U with the segment from x
to u. Choose g as above on the segment from p to u. The line segment
from w to p is then cut at a point x' by the segment from x to g and at a
point y' by the segment from y to gq. Since x # y, it follows that x" # y".

p

Since f(y)=f(q)=0, f(y')=0. Clearly y’ lies between x’ and p, so
f(x)>0. But x' lies in K since x and g are in K and K is
convex. Thus f(x')=0 since it is colinear with p and the point w of
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U. Because of this contradiction, we are forced to conclude that
f(x)=0, and the proposition is proved.

PROPOSITION 4. Let X be a convex set. If U and V are disjoint
nonempty convex open sets in X, then there is a lower semicontinuous affine
function f: X — R such that f(x) <0 forallxin Uand f(y)>0 forall y in
V.

Proof. By Zorn’s lemma, there is a maximal convex subset K of X
with UCK and VNK=@. The closure K of K is again
convex. Since V isopen, K NV =@, so by maximality of K, it follows
that K = K. As V is convex, the maximality of K in X ~ V implies that
X ~ K is convex [3, p. 17]. Thus from Proposition 3, there is an affine
function f: X =R with K ={x € X: f(x)=0}. Because K is closed,
Proposition 1 implies that f is lower semicontinuous. Since VN K =(J,
f(y)>0forally in V. Because U is open and included in K, it follows
readily that f(x)<O0 for all x in U.

If at this point we could demonstrate the full continuity of the affine
function produced above, the main theorem would follow immediately
(since then the natural embedding of X into the dual space of the
real-valued affine continuous functions on X with the weak* topology
would be a continuous affine injection). Unfortunately, as the next
example shows, this affine function may fail to be continuous.

ExampLE A. Let X denote the set of all real-valued sequences
(x)n-0 such that

(i) -2=x=0,

(i) 0=x, for n=1, and

() Ziox, =1.
Then X is a convex subset of [, which is compact in the topology of
co-ordinatewise convergence and the function f: (x,)i-¢—>Zn-0X, IS a
lower semicontinuous affine function on X. Let K = {x € X: f(x)=0}.
Any sequence (x,),-, with —2=x,< —1 is in the interior of K and
X ~ K is nonvoid and convex. The function f (or some positive
multiple of it) is the function which Proposition 3 would associate with K,
but f is not continuous on X.

3. The Barycentre map. Throughout this section X will be
a compact convex set. M (X) will denote the space of Radon measures
on X with the weak* topology (from C(X)) and P(X) the compact
convex subset of probability measures on X. Let A(X) be the set of
real-valued affine continuous functions on X, and L(X) be the set of
real-valued affine lower semicontinuous functions on X.
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A barycentre map for X is an affine continuous map r: P(X)— X
such that r(8,)=x. (8, denotes the unit mass at x.) Let us call a
measure discrete if it lives on a finite set of points. Then a barycentre
map is uniquely determined on discrete measures: r(2 a8, )= a,x,.
Since the discrete measures are weak™ dense, and r is required to be
continuous, there is at most one barycentre map on X. If A(X)
separates points of X, one can use A (X) to define a barycentre map for
X; indeed this is how we obtain the usual resultant map [6, p. 2]. The
main tool of this section is the result that if we can define a barycentre
map on X, then A (X) must separate points.

The following proposition gives us the technical result we need to
define a barycentre map. If u = 2 a;4, is a discrete probability measure
on X, the resultant of u is 2 a,x,.

PROPOSITION 5. Suppose that X is strongly locally convex. Let {u,}
be a net of discrete probability measures on X converging to p in P(X). If
X, is the resultant of w., then the net {x,} converges to some x € X.

Proof. The following lemma gives us a candidate for x.

LEMMA. For any u € P(X), there exists x € X such that f(x)=
w(f) for every f € L(X).

Proof. Suppose u € P(X) is fixed. By lower semicontinuity
{x: u(f)=f(x)} is closed for each f€ L(X). Hence by compactness
we need only show that given f,, - - -, f, € L(X), we have M {x: u(f)=
f(x)}#D.

So suppose f,,- -+, f, in L(X) are fixed. Define K CR" by

K={(y, ", y.): forsome xE X andalli=1,---,n,
y Z fi ()b

Since the f,’s are affine, it follows easily that K is convex. Moreover, we
claim K is closed. For suppose &" = (¢7,--+,éY)EK and é" — ¢ =
(&1, -+, &). Then for each m, there exists x,, € X such that f;(x,) = &/ for
all i. Let x, — x be a convergent subnet of {x,}. For all i, by lower
semicontinuity, lim f, (x,) = f, (x), and thus f,(x)=lim,_. ", implying
that f,(x)=¢. So £ € K and K is closed.

Now write £ = (u(f1), -+, n(f.)). By Proposition 2, w(f;) is finite
for every i. To prove the lemma, we must show ¢ € K.

If £Z K, then since K is closed and convex there is on R" a linear
functional T: (y,,---,y.)— 2/ a,y, which strictly separates K and
¢ Thatis, T(x)> T(¢) for each x in K. Since T is bounded below on
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K, it is clear from the definition of K that no «, can be negative. Thus
a, = 0 for all i so that the linear function g = 2/, a.f, belongs to L (X).

Choose y € X such that u(g)= g(y). (Any y at which g achieves
its infimum will do.) Then

n

16)= 3 ani)=u |3 af] = @)=z

B

=> af (y)=TFHQY)LO), - fi(y)

1=1

= inf T(k)> T(£).

This contradiction proves the lemma.

We turn now to the proof of the proposition.

The lemma gives us an x € X such that f(x)=u(f) for every
feL(X). Itis well-known (and easy to show) that for any f € L(X),
the map u — u(f) is lower semicontinuous on P(X). So for every
f € L(X), we have:

lim £ (x,) = lim . (/) 2w (f) 2 f (x).

If {x,} does not converge to x, then there exists a subnet {xz} which
converges toa point y € X, y# x. Since X is strongly locally convex, by
Proposition 4 there exists a neighborhood U of y and f € L (X)) such that
f(U)<0<f(x). But then for this particular f, we have

lim f (x,) = lim f (%) =0 < f (x).
This contradiction implies {x,}— x.

CoroLLARY. If X is strongly locally convex, for any u € P(X) there
is a unique x € X such that for any net {u,} of discrete probability
measures converging to wu, the net {x.} of resultants converges to x.

PROPOSITION 6. Suppose that X is strongly locally convex. Then
there is a barycentre map for X.

Proof. For any p € P(X), define r(n) to be the unique x € X
given by the Corollary to Proposition 5.

Clearly r(8.)=x and it is easy to show that r is affine.

To prove that r is continuous suppose {u, } is a net converging weak*
to u. Let B index a weak™ neighborhood basis N; of 0 in M(X). For
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each a and B choose a discrete probability measure v,z € p, + Ng. Let
r(w)=x,r(u.)= x, and r(v,s) = x,5. Foreach a, v,z converges to u,, so
by Proposition 5, x,; converges to x,. Now the product set of all pairs
(a, B), with the product order, is directed and the net {v,} converges
along this ordered set to u. By Proposition 5, {x,;} converges to x. It
follows that any closed neighborhood of x eventually contains all x,g,
hence eventually contains all x,. Thus {x,} converges to x.

It remains to show that the existence of a barycentre map allows us
to embed X in a locally convex topological vector space. This follows
from a general result (Proposition 7 below) about compact sets which
says that if X is a compact Hausdorff space with a “‘barycentre” map,
then we can introduce a convex structure with lots of continuous affine
functions and the given map as its resultant map.

ProrosiTiION 7. Suppose X is a compact, Hausdorff space and
r: P(X)— X has the following properties:

(i)  ris continuous,

(i) r(8,)=x for all x € X,

(i) if u,vE€P(X) and w = ap +Bv for a, 3 >0, a + B =1 then
any one of the elements r(w ), r(v) and r(w) is determined by the other two.
Then there is a continuous injection ¢: X — F which maps X onto a
convex subset Y of a locally convex TVS F, such that if we denote by ¥ the
resultant map for Y then for any u € P(X), r(n - ¢7")= ¢ (r(n)).

Proof. Define
A ={feCX): u(f)=f(r(u)) for all u € P(X)}.
Then A is a uniformly closed subspace of C(X) which contains the

constants. Our first task will be to show that A separates points of
X. If we let

K={p—v:pvEPX)r(u)=r)h
then K is weak™® compact since it is a continuous image of

Q ={(u, v) E P(X) X P(X): r(u)=r(v)}

which is compact by (i). Also K is symmetric and convex. Indeed if
w—vEK and u'-v'EK and o, >0, a + B =1, then r(n)=r(v),
r(w)y=r(v')and a(u —v)+B(n'—v')=(ap + Bn')— (av + Br') which
is in K by (iii).
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If L =U;_ nK, then L a linear subspace of M(X) since K is
radial. We shall show that L is weak* closed. By the
Banach-Krein-Smulyan Theorem, it is enough to show that L N B, is
weak* compact where B, = {A € M(X): |A | =2}. We will show, in fact,
that L N B,= K. Take A = n(u —v)E L N B, and suppose |[A[=2.
(The case ||A || <2 will follow since K is radial.) Let @ =A* and v = A",
Since [|[£ [ +] 7] =[|A =2 and @ | ~[7]l= £(1)~ #(1) = A(1) = 0, it fol-
lows that g, 7 € P(X). Denote w = n(u Av)/(n—1). (If n =1, we are
finished.) Then w =0 and

p=@=-v)+uarv)=(@/n)+(n-Do/n

Similarly v = (¥/n)+ (n — 1)w/n. Since these are affine combinations,
o € P(X) and since r(u)=r(v), it follows from (iii) that r(a)=
r(v). Hence A =g — v € K. We have shown that L is weak™ closed.

Now to show that A separates points of X, take two distinct points
x,y in X. Then by (ii) r(8,) # r(3,), hence 6, — §,& K = L N B,. Since
|8 — 8, || =2, it follows that 8§, — 8, & L. Since L is weak* closed we can
use the Hahn-Banach Theorem to construct a weak* continuous linear
functional ' on M(X) such that F(8,—46,)>F(L). Since L is a
subspace, F(L)=0, and F(§,)> F(5,). If we let f=Fo°§ (where
8: x — §, is the natural homeomorphism), then f& C(X) and f(x)=
F(8,)>F(8,)=f(y). To show that fE A, observe that for any u €
P(X), u — 6., € K by (ii), hence F(u — §,,,) =0 and so

p(f)=F(p) = F(8.)=f(r(p))

Since A separates points of X, the natural map ¢: X —> A* is an
injection. If we give A * the weak* topology (which is locally convex),
then ¢ is continuous (since members of A are continuous on X). Since

ad(x)+ Bo(y) = & (r(ad, + B3,))

(evaluate each side on any f in A), we deduce that ¢(X) is
convex. Now let 7 denote the resultant map in ¢ (X) and for any f in A
let f denote the weak* continuous linear functional obtained when f acts
on A*. Then if u € P(X),

fF o) = (- )(F)=p(f)=fr)=F@®)).

Proposition 7 is quite interesting. There is a category-theoretic
version of the theorem which was first proved by Swirszcz [8] using the
machinery of category theory. In categorical language it says that the
category Compconv is algebraic over the category Comp. These ideas
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are laid out in [7] where essentially our proof of Proposition 7 is
presented [7, Prop. 7.3].

Now we will prove the main theorem.

THEOREM 1. Suppose X is a compact convex set which is strongly
locally convex. Then there is an affine homeomorphism mapping X onto
a convex subset of a locally convex topological vector space.

Proof. If X is strongly locally convex, then by Proposition 6, there
is a barycentre map r for X. Such a map clearly satisfies (i), (ii) and (iii)
of Proposition 7 ((iii) since r is affine), and so there is a continuous
injection ¢ of X onto a convex subset Y of a locally convex topological
vector space. The condition F(u - ¢~ ') = ¢(r(r)) applied to measures
which live on two points tells us that ¢ is affine.

4. The locally compact case. It is not difficult to extend
the main embedding theorem proved in the preceding section to locally
compact convex sets. The argument proceeds from the following simple
continuity criterion for affine functions.

LEMMA. Suppose X is a convex set and F: X —R an affine
function.  Suppose x, p and y are distinct points of X with p on the line
segment joining x and y.  If f is continuous at p, then f is continuous at x.

Proof. Suppose x,— x. By hypothesis on p, there is some A in
(0,1) with p=Ax+(1—A)y. Since the topology is linear, the net
p, = Ax, + (1 — A)y converges to p. Since f is affine and continuous at p,
M(x,)+(1=1)f(y)=f(p,) converges to f(p)=Af(x)+(1-A)f(y).
This is a statement about convergence of real numbers, so cancelling
(1= A)f(y) and then dividing by A # 0, we get f(x,)— f(x).

THEOREM 2. Suppose X is a locally compact convex set which is
strongly locally convex. Then there is an affine homeomorphism mapping
X onto a convex subset of a locally convex TVS.

Proof. Let K be a compact convex neighborhood of a point x in
X. Then any f' in A(K) can be extended algebraically to an affine
function f on all of X since X is contained in the affine span of
K. Moreover by the lemma since f is continuous on K, it will be
continuous on all of X. Thus there is a one-to-one correspondence
between A(K) and the affine continuous functions on X, denoted
A(X). By Theorem 1, since K is strongly locally convex, A (K)
separates the points of K. Hence A (X) separates the points of X.



ON EMBEDDING A COMPACT CONVEX SET 203

Let A (X)* denote the algebraic dual of A (X) with the weak*, i.e.
g (A(X)* A(X)), topology. Then A (X)* is a locally convex topologi-
cal vector space. Since A (X) separates the points of X, the map
x b (f» f(x)) is an affine one-to-one embedding of X into A(X)*. It
only remains to show that the weak™ topology restricted to X is the same
as the original topology on X.

First if {x,} converges to x in X with the original topology, then
{f (x.)} converges to f (x) for all f in A(X) and so {x,} converges to x in
the weak* topology restricted to X. On the other hand, suppose {x,}
converges to x in the weak* topology but not in the original
topology. Then there is a compact neighborhood U of x in the original
topology and a subnet {x,;} of {x,} such that x, & U for all . For each g
choose A, in (0, 1) such that y, = Agx,; + (1 — Ag)x isin Ulint U. Since in
the original topology Ulint U is compact, {ys} has a convergent subnet
{y,} converging to y € U\int U. Thus from above {y,} converges to y in
the weak* topology, and since in the weak™ topology {x,} converges to x,
we deduce {y,} converges to x also. But y € Ulint U, so that y is
distinct from x. This contradiction forces the topologies to be identical
and the proof is complete.

5. Wesay that a convex set X is weakly locally convex if every x in
X has a neighborhood basis of convex sets. This is formally weaker
than strong local convexity (where we require the neighborhoods to be
open) but it is not known whether the two notions coincide. To
emphasize the formal difference between them, let us remark that it is
not generally true that the interior of a convex subset of X is convex. In
fact one has the following proposition.

ProposITION 8.  Suppose X is a compact convex set which is weakly
locally convex. If the set of extreme points of X is not closed in X, then
there exists a convex subset K of X whose interior is not convex.

Proof. Suppose lim x, = x, where x, are extreme but x € X is
not. Then x =y/2+ z/2 for some distinct y, z € X. Choose disjoint
closed convex neighborhoods U of y and V of z such that x U U
V. Then K =conv(U U V) is a convex subset of X containing
x. Certainly y and z are in the interior of K, but since x,& U U V for
sufficiently large a (since UU V is closed and x UU V), x, is
eventually outside K (since x, extreme), and hence x is not in the interior
of K.

As is well-known, there exist examples, even in R’, of compact
convex sets whose extreme points are not closed. In infinite dimen-
sional spaces the situation is even more striking since compact convex
sets exist whose extreme points are dense. In fact, if we regard the



204 R.E.JAMISON, R. C. O'BRIEN AND P. D. TAYLOR

compact convex subsets of an infinite dimensional Banach space as points
in a complete metric space under the Hausdorff metric, then the results of
Klee [4] show that the set of compact convex sets whose extreme points
are not dense is of the first Baire category.

There are some partial results which suggest that strong and weak
local convexity may be equivalent for compact convex subsets of a
topological vector space. Let us extend the notion of local convexity of
a compact convex set X by saying that a closed convex subset K of X is
regular if every open set containing K contains a convex neighborhood
of K. Thus, X is weakly locally convex if each point of X is regular. If
every closed convex subset of X is regular, then it can be shown that X is
strongly locally convex. Also if X is a compact convex subset of a TVS,
and the relative topology on X is weakly locally convex, then it is known
that every finite dimensional closed convex subset of X is regular.

Another result is that if X is a compact convex subset of a
topological vector space and the compact convex set X — X is weakly
locally convex at 0, then X is strongly locally convex. This result
together with the Baire category theorem yields the following. (Recall
that a point x is an internal point of X if x is in the one-dimensional
interior of L N X for every line L contained in the affine span of X and
passing through x.) If X is a weakly locally convex compact convex set
in a topological vector space and if X has an internal point, then X is
strongly locally convex.

The outstanding open problem in this area is the question of whether
every compact topological convex set can be embedded in a locally
convex topological vector space.” Of course, if one were to find a
compact convex set which was weakly but not strongly locally convex,
then one would have a counterexample for this open problem. But we
prefer to believe that weak and strong local convexity coincide.*

If one defines a topological convex set as a convex set X of a real
linear space endowed with a Hausdorff topology such that the map
(x,y,t)p tx + (1 —t)y is continuous from X X X X [0, 1] into X, then all
of the results of this paper are true for (locally) compact topological
convex sets. This setting is really no more general, however, since it
follows from Theorem 3.2 of [5] that a locally compact topological convex
set can be embedded by an affine homeomorphism into a topological
vector space. The unpublished dissertation of S. Dubuc [1] contains a
development of general topological convex sets as well as a construction
of affine functions similar to our discussion in §2. He also gives a

? It appeared recently in the Notices.

* These notions do, in fact, coincide. J. W. Roberts has recently shown, using the barycentre
approach of Prop. 7, that Theorem 1 is true with weak local convexity. His paper will appear in the
Canadian Journal of Mathematics.
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concise treatment of the algebraic structure of convex sets as well as a
proof of the expected theorem on embedding abstract convex sets into
linear spaces.
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