
PACIFIC JOURNAL OF MATHEMATICS
Vo) 64, No 1, 1976

A GENERALIZATION OF A THEOREM OF CHACON

ROBERT CHEN

A generalization of a theorem of Chacon is proved simply by
an application of a maximal inequality. A pointwise convergence
theorem and the submartingale convergence theorem are
immediate consequences.

Let (Ω, 3F, P) be a probability space, {Xn} be a sequence of integrable
random variables adapted to the increasing sequence {2Pn} of sub σ-fields
of 2F, B be the collection of all bounded stopping times (with respect to
{8Fn})9 and D be the collection of random variables Y which are
measurable with respect to &x = σ({2£n}) and, for each w in Ω, Y(w) is a
cluster value of the sequence {Xn(w)}.

The main purpose of this note is to generalize (in Theorem 1) the
result stated as Corollary 1, due to Chacon ([3]). The result is a
reformulation of a result due to Baxter ([2]) but our method of proof is
much simpler than that in ([2]) and ([3]), and is just a simple application
of a maximal inequality due to Chacon and Sucheston ([4]). A point-
wise convergence theorem and the submartingale convergence theorem
are immediate consequences ([1] and [5]).

THEOREM 1. Suppose that supteBE(\Xt | ) < °o and Y,, Y2 are any
two random variables in D. Then there exist r ΐ , t*n in B such that r* ^ n,
t * g n, and

(1) lim E{\(Xκ-Xr,)-(Y,- Y2)\} = 0.

Proof. By Lemma 1 of [1] and the Borel-Cantelli lemma, for any
two random variables Yu Y2 in D, there exist two strictly increasing
sequences {rn} and {tn} in B such that \imn^xXTn = Y, almost surely and
liπin-.xXfc, = Y2 almost surely. By the condition that supteBE(\Xt\)<<χ>
and the Fatou lemma, Y, and Y2 are integrable.

To prove (1), we need a maximal inequality, which I learned from
Chacon and Sucheston.

(2) λP I sup I Xn I § λ ) g sup E (I Xt \) for each positive constant λ.
\L n J/ teB

To see (2), let M be a fixed positive integer and define a bounded
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stopping time r by τ(w) = inf{n|l ^ n ^ M, |X n (w)|g λ}, τ(w) = Λf + 1
if no such n exists, w E ί l . Then

λP sup

(2) follows immediately on letting M—>oo.
Now, for each positive integer /c and each positive constant d, define

y(/c, d) = inί{n \k ^ n, | X n | § d } , /(/c, d) = °° if no such n exists. Let
A ( M ) = [/(M)<°°]. Since, by (2), for fixed k,P(A(k,d))^>0 as
d-^oc, £"{!(Vj — Y2)*A(fc,d)|}-*0 as d->oo. Therefore, for each positive
integer fc, there exists a dk such that E{\(Yλ- Y2)χA(k,dk)\} = 1/fc. Next,
for each fixed fc, let Z = max{|Xi|,|X2 |, * , |X*-i|, dkχA'(k,dk) +
\Xj(k,dk)XA{k,dk)\h Zn = Xn,j(k,dk) f o r a l l n £ l . T h e n i t is e a s y t o s e e t h a t
\Zn\^Z for all n^ί and£{Z}<oo. Since l i m ^ ^ X ^ - Xtn) = (Y, - Y2)
almost surely and, on A(/c, rffc), limπ_>oC(ZTn - Ztn) = 0 (since {τπ} and {ί j
are strictly increasing). limn_^(ZTrj - Z ίn) = (Yi - Y2)̂ Λc(k,dk) almost
surely. Therefore, by the Lebesgue dominated convergence theorem,
E{\(Zτn-Ztn)-{Yx- Y2)χA<(*,dk)|}-*0 as n->oo. Since j(k,dk)^k and
{^}, R } are strictly increasing, we can and do choose, for each positive
integer fc, two bounded stopping times r* and t* in B such that τt=K
tt^K and £ { | ( X τ r X t 0 - ( y r y 2 k A ' ( U ) | } ^ l / k . Therefore, T U fc,
ίί ^ it, and E{| (Xr - X/;) - (Y, - Y2)|} ^ 2/fc for all fc ^ 1. (1) follows on
letting k —>°c and the proof of Theorem 1 now is complete.

COROLLARY 1 (Chacon). Let {Xn} be a sequence of integrable
random variables such that liminfn_x£(|Xn | ) < <«. Then,

(3) l i m s u p £ ( X τ - X , ) i ^ £ ( X * - X * ) , where X * - l i m s u p X n , and
τ,t£β n-*χ

X* = lim inf Xn.

Further, if supteBE(\Xt\)<<χ>, then X* and X* are integrable.

Proof If supteBE(\Xt\)<°c, then, by Theorem 1, X*, X* are
integrable and lim sup τ / e β £(X τ - X,) ^ £(X* - X*). If supteBE(\Xt\) =
30, without loss of generality, we can and do assume that sup ίeβE(X^) =
00. Since lim infn_x i?(|Xn |) < °°, there exists a strictly increasing sequence
{n,} of positive integers such that E(\Xn, |) = M for all / g 1 and some
constant M. Now, for each bounded stopping time ί in β, let t' — t on
[X;>0} and t'= n on {X; = 0} where n = mi{nl\n}^
sup{t(w)\w£{X; = 0}}}. We then have E{Xt- Xn)^ E(Xΐ)- M and
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supτ,,£(Xτ - Xt) = °°^ E(X* - X*) and (3) follows immediately from
this fact. The proof of Corollary 1 now is complete.

COROLLARY 2 (Theorem 2 of [1]). Under the conditions of Corol-
lary 1 and consider the following two assertions:

(a) The generalized sequence {E(Xt)\t G B} is convergent.
(b) Xn converges almost surely to a finite limit.

Then (a) implies (b).

COROLLARY 3 (the submartingale convergence theorem). Suppose
that {Xn} is a sequence of Lrbounded random variables adapted to the
increasing sequence {&n} of σ-fields. Suppose that £ ( X n + 1 | f n ) ^ X n

almost surely for all n § 1. Then Xn converges almost surely to a finite limit.

REMARK. Corollaries 1 and 2 also hold under any one of the
following two conditions,

(i) supnE(X:)<™.
(ii) supnE(Xn)<cc,
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