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A SHAPE THEORY WITH SINGULAR HOMOLOGY

FrIEDRICH W. BAUER
Alexander Dinghas in memoriam

A modified concept of a shape of a topological space is
introduced which allows some basic geometric constructions: (1)
One has a convenient homotopy concept which originates from a
cylinder functor. (2) All inclusions of compact metric spaces are
cofibrations. (3) Shape mappings which agree on the intersec-
tion of their counterimages can be pasted together (existence of
push-outs). (4) There exists a singular complex S which has the
same properties for shape mappings as the ordinary singular
complex S for continuous maps. (5) Consequently one has a
singular (shape) homology which for compact metric spaces
turns out to be isomorphic to the (shape-theoretically defined)
homotopical homology (in the sense of G. W. Whitehead) and to
the Steenrod-Sitnikov homology.

0. Introduction. Two. topological spaces X and Y are sup-
posed to be of the same shape whenever they have similar geometric
properties. In order to give this concept a precise meaning one has to
define an appropriate shape category S with topological spaces as objects
but with a new class of morphisms (other than continuous mappings or
their homotopy classes) the so called shape mappings. This categery
should permit most of the geometric constructions which constitute the
value of the category of CW-spaces, to be performed.

The first model of a shape category was introduced 1968 by
K. Borsuk. Four years later S. MardeSi¢ [7] gave a rather simple
characterization of Borsuk’s shape category S. Roughly speaking S
turned out to be the universal category (with topological spaces as
objects) in which two spaces X, Y are equivalent whenever they cannot
be distinguished by those homotopy invariants which are determined by
mappings of X resp. Y into arbitrary CW-spaces. Thus Cech cohomol-
ogy is (but singular homology is not) a shape invariant.

In the present paper we present a modified shape category K which
has the following property:

Let X=X,UX,, D=X,NX,and f € K(X, Y), i =1,2 be mor-
phisms which coincide on D, then there exists a unique f € K(X, Y)which
restricts to f, on X, (Lemma 3.1, 3.2, Proposition 3.3). In other words:
Mappings can be pasted together.

Although K is-not a homotopy category, it does have a natural
notion of homotopy so one can define fibrations and cofibrations within
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K. 1In particular, under some restrictions imposed on the relevant
category of topological spaces, every inclusion turns out to be a cofibra-
tion (Theorem 3.8, Theorem 3.10). There exist nontrivial singular
simplexes in K, therefore we can define a singular complex S(X) which
although generally not equivalent to S(X), nevertheless exhibits all
properties of the ordinary singular complex S(X) (Proposition 3.5,
Theorems 3.6,4.7). In particular S(X) gives rise to a new kind of singular
homology

H"(X;E)=H,(|S(X)|;E)

where E ={E,|n € Z, v,: 3 E, — E,,,} is a spectrum [4] and | - | denotes
Milnor’s geometric realization of a Kan set.

On the other hand one can perform in K all the constructions that
lead to homology groups in the sense of G. W. Whitehead [11]:

H,(X;E)= lim [$™% X a Ee].

Theorem 5.4 asserts that these two homology theories are isomor-
phic.

We have a functor h: Top—)K hence each functor ¢: K—>T
(T = any category) gives rise to a functor ¢ h: Top— T.

In particular H, can be considered as a homology functor on Top,
and one can therefore attempt to recognize H, as one of the already
known, classical homology functors. This is settled in §7 where H, is
shown to be isomorphic to the Steenrod-Sitnikov homology theory [1],
[10] H: on the category of connected compact metric pairs (Theorem
7.7). This functor Hj itself is one of the most important homology
concepts in algebraic topology: In 1951 Sitnikov established his version of
the Alexander-Pontrjagin duality theorem [1] for arbitrary subsets of
S". However the homology needed for this theorem turned out to be
isomorphic (up to a shift of dimension) to a contruction of N, Steenrod
[10], given in 1940. Recently it was discovered that a homology con-
struction by A. A. Kolmogoroff from 1936 is also isomorphic to H3
[8]. Thus, although H i does not enter into any textbook on algebraic
topology, it is in fact not only one of the most important but also one of .
the oldest homology concepts in topology, moreover H j is the universal
exact homology which originates from Cech homology [2].

For the proof of Theorem 7.7. We avoid an explicit construction of
H3 and use Milnor’s axiomatic characterization [8]; in fact this is the
reason that we have to confine ourselves to a category of compact metric
spaces.

Theorem 7.7 in combination with Theorem 5.4 expresses the fact
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that the Steenrod-Sitnikov-homology is both the intrinsic singular
homology in the shape category K and simultaneously the homotopy-
homology theory in the sense of G. W. Whitehead. Finally we have
evidently a concept of homotopy groups 7 .(X) in K and a Hurewicz-
theorem (Theorem 5.6) with H, as the canonical homology in K.

The construction of K is very similar to that of Mardesi¢ for
Borsuk’s shape category: We simply replace ordinary categories by
3-categories, taking into account the changes which are consequences of
this modification. The abstract procedure (feasable for any pair of
3-categories P C K) is outlined in §2, while §1 contains some well known
facts from topology and category theory which are indispensable for the
following sections. In 8§83, 4 we provide some geometric constructions
such as that of smash-product, of push-outs, cofibrations and of the
singular complex together with proofs of the related theorems. Singular
homology and homotopy groups are introduced in §5, and we prove that
Whitehead’s homology [11] is isomorphic to singular homology; though
this assertion already holds in Top it has a different meaning in Top, the
corresponding shape category.

§6 is devoted to the construction of a second kind of a singular
complex functor S’ (which is homotopy equivalent to §). This section is
of an entirely auxiliary character.

The isomorphism theorem 7.7 is prepared, stated and proved in §§7
and 8.

Although the reader is not assumed to be familiar with any explicit
construction of H§ (as we pointed out already everything is deduced
from J. Milnor’s axiomatic characterization) the following remark might
be useful as background information: For compact metric spaces Cech
homology is isomorphic to Vietoris homology [1] which operates with
“true cycles”. Such a “true cycle” is related to a “Sitnikov cycle” in
formally the same way as a Borsuk—Mardesi¢ shape mapping is to a shape
mapping in our category K. On the other hand there exists a formal
connection between the two different shaping constructions and the
problem of developing a good stable category in stable homotopy theory:
The Borsuk-Mardesié category starts from the homotopy category Top,
just as the Spanier-Whitehead S-category, while the more effective
stabilizations (see, e.g. [4] for further reference) pass to the homotopy
category only after stabilization has been effected.

1. Preliminaries. In this section we collect some facts from
category theory and general topology which are relevant for our subject:

(a) 2-categories: The reader is assumed to be familiar with the
definition of a 2-category and a 2-functor [4]. A category K is a
2-category whenever it carries the following additional structure: for any
X, YEK, K(X,Y) is again a category and the induced maps
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Kf,Y)=f*"K(X,Y)—— K(X',Y)
for f € K(X', X) resp.
KX, g)=g+ K(XY)—— K(X,Y")
for g € K(Y, Y’) are functors on K(X, Y). The morphisms f € K(X, Y)
are called 1-morphisms and the morphisms in the category K (X, Y) (for
fixed X, Y) are called 2-morphisms. We will henceforth simply write

of resp. g instead of K(f, Y)(w) resp. K(X, g)(w) for any 2-morphism
o € K(X,Y). Since the diagram

K(.Y)

K(X,Y) K(X',Y)
K(X g) K(X',g)
K(X, Y Ke¥) | K(X', Y

is commutative, we have

1) g(of) = (gw)f,

where w € K(X, Y)(r,s) and r,s € K(X, Y).
A 2-functor ¢: K— L for two 2-categories is an ordinary functor
such that the assignment

f ()

is a functor; in particular this implies the existence of a transformation of
the 2-morphisms. Moreover this functor is supposed to have the
following properties:

b(gw)=d(g)d(w), 0 EK(X Y)(rs)
d(of)=d(w)d(f)

for f, g as above.

The most important examples of 2-categories originate from
categories of categories (with functors as morphims and functor transfor-
mations as 2-morphisms) and categories with homotopy. This second
kind of example will be basic-for the rest of this paper.
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(b) 2-categories and homotopy: We will assume once for all in this
paper, that all 2-morphisms are isomorphims (but of course not necessar-
ily identities). In all those cases where this is not true ab initio we form
the appropriate quotient categories K(X, Y)/K(X, Y) (thus we convert
all maps into isomorphisms [3]). The homotopy category K, for a
2-category K is an ordinary category which has the same objects as K but
classes [f] of maps which are equivalent in the category K(X,Y)
(f € K(X, Y)) as morphisms. Any 2-functor ¢: K — L resp. any trans-
formation of 2-functors ¢: ¢ — ¥ induces a functor

&K, — L, resp. ¢n:¢,—>V,.
In any 2-category we have the concept of a fibration and of a cofibration.

DerINITION 1.1, (a) A map p: E— B in K is a fibration if for any
fo,fit X—=B, fo: X—E, and ¢: f,— f, with

Pfo =fo
there exists a f;: X — E, and ¢: f,— f, such that
pe = ¢.

(b) A mapi: B—E is a cofibration if for any f: E— X in K, and
¢: fi—f,, there exists a f, € K(E, X), and ¢: f— f, such that

¢i = ¢.

We will return to this notion of a cofibration very soon. The most
interesting example of a 2-category is Top:

(c) The category Top as a 2-category: The category Top carries
the structure of a 2-category in the following form: Let fy, f, €
Top(X, Y), then a homotopy H from f, to f, is a mapping H: X X
[0,a]— Y for suitable a =0 such that H(x,0)= f,, H(x,a)=f,. Let
H': X X[0,b]— Y be a homotopy from f; to f, (which implies H(x, a) =
H'(x,0) for any x € X); then we define a composition H'- H: X X
[0,a +b]— Y by

H(x,t)---t=a
H’OH(x,t)={
H'(x,t—a)---t=a.

This yields a homotopy from f, to f,. The trivial homotopy
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1,: XX[0,00— Y  feTop(X,Y)
(x,0)— f(x)

operates evidently as the identity. We can summarize:

ProprosiTION 1.2.  The previous construction makes Top into a
2-category (with the H’s as 2-morphisms).

REMARK. We can of course reformulate the whole construction for
any suitable category of topological spaces (e.g. for Top, instead of Top)
and also for the category ¥ of Kan-complexes. There exists an
alternative way of defining the 2-morphisms in Top (which is equivalent
to the preceding one): If we agree to identify (the formal 2-morphisms)
H™' with H(x,a —t) and accept the “cancellation law” H-H™'=
H™'oH =1, then every 2-morphism (which originally is a class of words
of homotopies according to the construction of a quotient category [3]),
turns out to be represented by a single homotopy.

(d) Mappings having the homotopy extension property (HEP) for
polyhedra: an inclusion i: A C B in Top has the HEP (with respect to a
space X) if for any map f: B— X and for any homotopy H: A X
[0,s]— X, H(a,0) = fi there exists a homotopy H: B X [0,s]— X such
that H|A x[0,s]=H, H(b,0)=f, b€ B. A map i is a cofibration if i
has the HEP for any X € Top. This is of course in accordance with
definition 1.1.b.

Let i: A C B be any inclusion of a closed subset A into B and let
(K, P) be any of the following pairs of categories, where P is a full
subcategory of K:

(1) K = metric spaces, P = CW-spaces.

(2) K = paracompact spaces, P = locally finite polyhedra.

(3) K = binormal spaces (i.e. X and X X I are normal), P = finite
polyhedra. We have the following assertion:

THEOREM 1.3. Let (K, P) be any of the three pairs mentioned above,
then any inclusioni: A C B for closed A in K has the HEP for any P € P.

Proof. The theorem is classical [S]. In any of these cases we have
the following situation: Let f: A — P be a mapping in K, P € P, then
there exists an open neighborhood U of A in B and an extension
f:U—P of f Now the HEP for P is equivalent to the following
extension property: For any map f: BX0U A X I— P there exists an
extension F: B X I — P. This extension can be established in the fol-
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lowing way: Extend f over an open neighborhood U of B X0U A X I in
B X I, and find a neighborhood V O A with V X I C U; by normality
there is a continuous p: B—1I with p(A)=1, p(B—V)=0, and
F(x,t)=f(x,tp(x)) is the desired extension.

(e) For later purposes we need a simple category theoretical
concept:

DerINITION 1.4. Let T be any category. (1) A morphism a €
T(X, Y)is called indecomposable whenever @ = By implies that either 8
or v is an identity.

(2) A category T is a strong tree category (st-category) whenever
each @ €T allows a unique decomposition into indecomposable ele-
ments.

(3) A category T is a tree category whenever there exists an
st-subcategory T'CT and a right adjoint ¢: T— T’ to the inclusion.

In case T is a 2-category, we will always assume that T' is a
subcategory with all 2-morphisms identities.

The concept of a tree category is basic for our future work. We will
frequently use the following simple

PropoSITION 1.5. Let T be a tree category with T' C T as st-category,
let K be any category, and let A: T — K be an assignment (not necessarily
a functor) sending objects to objects and each morphism f € T(X,Y) to a
morphism A(f) € K(A(X), A(Y)). Then there exists a unique functor
A: T — K such that A = A on the objects of T' and on the undecompos-
able morphisms of T'.

Proof. Set A (a, - a,)=A(a) - A(a,) for each composition of
undecomposables «; - - - @,. This defines a functor A: T'— K which, by
using the right adjoint, is extendable over T.

Here we present the following example:

1. Let Q be a fixed Hilbert-cube and let P be the category of all
compact ANR, embedded in Q with continuous maps as morphisms.
Any compact metric X can be embedded in Q. For X C Q let {K.,},
n=1,2,--- be the following sequence of compact ANR neighborhoods
of X in Q: Set K;=Q and assume K, ,CK,,C--- CK, already
defined. We take for any x € X the family {K(x,1/n)} of all 1/n-
neighborhoods of x. Since X is compact, there exists a finite subcover-
ing K(x,,1/n), -+, K(x,1/n). Let K, be U/, K(x;,1/n) N K, _,. This is
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certainly an ANR and we have M7_, K, = X. We denote by i : K,, —> K,,
m = n respectively i, = i;: X — K, the inclusion. Observe that iy =

rm+l ym+2  osn
m lm+l Lot

Now let f: X— P € P be any continuous map, then Dugundji’s
extension theorem ([5] p. 188, Theorem 6.1) provides us with a canonical
extension f': U— P, X CU. Let n be the smallest possible n (conse-
quently K, is the largest possible K,) for which one can extend f to a
o(f): K,—P. If f=gr, r: P,— P, then we have ¢(f): K, — P,,
¢(g): K,— P, and m = n and we define ¢(r)=1iy. If f=i.: X CK,
then ¢(f)=1: K, — K,. We take the category T' whose objects are
inclusions i, with mappings i as morphisms, m = n, and the category T
with mappings f: X— P € P as objects and commutative triangles
r: fi— fo, rfi=f, as morphisms. Then the assignment ¢: T—T'is a
functor which is right adjoint to the inclusion T'CT and T’ is an
st-category.

Details of the proof are simple and left to the reader. The
preceding construction works for the category Com of compact metric
spaces.

(f) n-categories: A category K is an n-category whenever
K(X,Y) for any X, YEK is an (n— 1)-category and the induced
mappings f*, g« (from (a)) are (n — 1)-functors, which render some
diagrams commutative. We are not going into the details. Since we
can define in Top (as well as in Top, etc.) homotopies of homotopies, Top
becomes a 3-category. In fact this can easily be iterated giving Top the
structure of an n-category for arbitrary n.

At one place in §2 there will be need for the following explicit
construction for an n-category K:

DEFINITION 1.6, The category K, i=2,---.n has (i—1)-
morphisms as objects and triples (w,, w,, u): v,— v, as morphisms, where
Wi, Wy, Uy, 0, are (i —1)-morphisms such that the diagram

Wy
 —_—

v, (%)
W,

 —

exists (the dots are (i —2)-morphisms resp. objects of the category if
i =2) and u is an i-morphism such that
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U: Wr0, =0, W,.
Composition of morphisms is defined in the following way:
(wi,whu)o(w, wy,u)=(w,wi,wowi, wiuow,u').
This defines a category K®.

For the sake of completeness we set K= K®. We assume from
now on that all i-morphisms for i >1 will be isomorphisms. In Defini-
tion 2.3 we will explicitely need K®.

2. The construction of K. Let P CK be a full embedding
of one 3-category into another. The category K which we are going to
construct will have the structure of a 2-category, however the procedure
can easily be iterated giving a n-category K for an arbitrary n. As we
have already stated, all 2- and 3-morphims will be isomorphisms.

DeFiNITION 2.1. For each X € K we construct a 2-category Py as
follows:

(1) The objects: all morphisms in K, g: X—>P € P.

(2) A morphism g,— g, is a pair (r,w) where r € P(P,, P,) and
w:rg, =g, is a 2-morphism in K.

(3) Composition of morphisms:

(ry, @) (r2, w3)

& 82 83

is the morphism
(rz"l, a)2°r3w1): 81— 85

(4) A 2-morphism (7, £): (r, )= (r', »') is a pair, where 7:r=r'is
a 2-morphism in K and ¢ a 3-morphism such that

& w'o(rg) = w.

It is straightforward to verify that this definition does in fact
determine a 2-category. Clearly each 7 is an isomorphism because by
our standard assumption all 2-morphisms in K are isomorphisms.
Evidently the definition of Py is in close relation to Definition 1.6.

ProrosiTION 2.2. Any fE€ K(X,Y) gives rise to a 2-functor
P;: Py — Py by setting P;(g) = gf, P;(r,w) = (r, of ), and similarly on the
2-morphisms. These functors A = P; have the following properties :
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(1) g€K(Y,P),PEP > A(g)EK(X,P)
(2) (r,w)€E Py(g1,g) > A(r, ) = (1, w,) for suitable ;.

The proof is immediate by checking the list of properties required by
the definition of a 2-category and of a 2-functor. The 2-morphism o, in
(2) 1s clearly w, = wf.

We come now to the category with which we will be mainly
concerned in this paper:

DEeriniTION 2.3. Let K be the following category:

(1) Objects: Those of K.

(2) Morphisms f: X — Y: 2-functors f = A: Py — Py satisfying
conditions (1), (2) of Proposition 2.2.

(3) Composition of morphisms: Composition of functors.

(4) A 2-morphism 7: f,— f, in K is an assignment 7: P, — K®
such that

v(g): f1(g)= fA8)

and such that for any (r,w): g,— g, fi(r, ) = (r, ®,) one has
v(r,w) = (o1, w5, w): 17(81) = P(g2)
for a suitable 3-morphism w (cf. Definition 1.6) in a functorial way.

REMARK. (1) If K is a 2-category (hence a 3-category in which all
3-morphisms are identities) a 2-morphism in K is simply a family

5(g): f1(8)= fa(8)

of 2-morphisms satisfying the naturality condition
v(g)ow, = wyorv(g).

(2) The condition (1) is strictly speaking a cosequence of the
second, because f(r,w)= (r, ') makes sense only if (1) is fulfilled. It
may happen that r= 1: P,— P, and therefore we can compose
(1, w:)o (1, w,) = (1, w,° w,), for two 2-morphisms w,, w,. This implies in
particular that A behaves functorially on the 2-morphisms in K.

PROPOSITION 2.4.  Definition 2.3 determines a 2-category. There
exists a 2-functor h: K — K which is the identity on the object and
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h(f)(g)=g¢f, g EK(XP)
on the morphisms.
The proof is immediate.
To aid the reader in keeping the morphisms of this category in mind

the following diagram scheme (not necessarily commutative) may be
useful:

It is essential to observe that rg, may equal g, (so that the morphism
(r, w): g1— g» has as second component the identity 2-morphism in K but
this does not automatically imply that

’f(gl) = f_(gz),

becauce one must consider the well defined morphism w': rf(g,) = f(g.)
which may not be trivial.

The reader who is familiar with K. Sitnikov’s definition of his
homology [1] will easily see the analogy.
We have the subclasses:

K, ={fEK(X,P)|PEP,XEK]}CK
K, ={fEK(X,P)|PEP,XEK}CK

and an assignment

h': Ko— Ky

f—— f(1), 1€ K(P,P).
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ProprosITION 2.5. For fixed X €K, and PEP, h' is a functor
h'|K(X, P): K(X, P)—> K(X, P). Moreover h'|Py: Px > Hy, XEK is a
2-functor (where Py is constructed as Py after P, K have been replaced by P,
K). For any f € K(X, P) one has

M h'h(f)=f
and for any f € K(X, P)
) hh'(f)=F.

If fi. . € K(X, P), h(f,)~h(f.), then we have f, = f..

Proof. The functorial properties of h' are immediate. Let f€
K(X, P), then we have

h

fi (g —> gf) —— h(f)()=f.

Let e =h h'(f), f € K(X, P), then evaluation of e on a fixed g € P,
leads to the natural 2-morphism

e(g)=gf (V=f(g),
which proves (2).
Finally let f,, f.€ K(X, P), h(f,)= h(f.), g € Py, then we have

gfhi=h(f)(g)=h(f.)(g)=2gf.

Putting g =1 into this equivalence, we get a proof of fi=f,. As an
immediate consequence of 2.5 we have:

THEOREM 2.6. The homotopy categories P, and P, are equivalent.
REMARK. (1) Let P = the homotopy category of CW-spaces consid-
ered as the full subcategory of the homotopy category K = Top,, both
as trivial 2-categories with no 2-morphisms other than identities; then K

is easily seen to be Borsuk’s shape category [7].

(2) Even in the case P =K the preceding construction gives
something new.

The general construction of K can be achieved in two steps: First we
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form the category K,= K for K =P. Then we apply the ‘‘shaping
construction’ in the sense of [7] applied to general categories (rather
than only to the category of topological spaces). In fact the general
construction of [7] is the special case of our construction in which all
2-morphisms are identities (and P is arbitrary).

(3) In order to avoid clumsy notation we will in most cases avoid
explicit mention of the functor h. For example if f€ K(X,Y) and
r € K(Y, Z) then we will simply write rf € K(X, Z) instead of h (r)f. This
will never cause any ambiguity.

3. Push-outs, the singular complex and cofibrations.
In this section we deal with the category of topological spaces K = Top or
Top, (based spaces) and the corresponding subcategory of CW-spaces
without (with) basepoints. Our first aim is to show that mappings in K
which fit together on the intersection of their counterimages can be
pasted together:

Lemma 3.1. If

f

X‘_.._.___l___—)X

(1) tl] I f

D X
2

is a push-out diagram in K, then the image of (1) under h: K — Kisa
push-out diagram in K.

r
X].____——-—-————)

@ h(f. )I sz
D — X,

h(f2)

For a fixed g € K(Y, P), P € P we get aunique s: X — P in K such
that

-

Fi(g)h(fi) = h(sti fi) = h(st.f.) = F(8) h(f2).

Hence d(g)=s seems to be a candidate for a §€ K(X,Y): Let
gE€K(Y,P), g'€K(Y,0Q), d€ K(P,Q) and w: dg = g', then we can
lift w to a unique w': ds(g)=s(g’) becauce of the following observation:
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We have
X = X] U Xz/""

where x, ~ x, whenever f,(d) = x, forsome d € D. The connecting map
§(g) : X — P has the following explicit form:

S(Hx)=F(g)(x1),  5(8")(x2) = Fa(g) (x2),

analogously

5(8)(x) = Fi(g)(x),  5(8")(x2) = FAg")(x2).
Hence we have
ds(g)n=dr(g)=r(g’)
ds(g)=dr(g)=rAg"),
where the homotopy comes from 7,(d, ) = (d, ,) resp. F(d, ) = (d, ).

Because of the commutativity of (1) and (2) these homotopies
respect the equivalence relation in X, U X, and we obtain a homotopy

w' ds(g)=35(g8).

This ' is certainly natural and makes §: X — Y a morphism in K by
defining

5(d, )= (d, ).

The 2-morphisms 7: (r, w)— (r', ') are settled in the same way. The
verification of the functorial properties of § as well as the proof of (1), (2)
in 2.2 is routine.

We have 5h(t)h(f)=Fh(f); if §€ K(X,Y) is any other mor-
phism with this property, the uniqueness of the connecting map (which is
part of the definition of a push-out diagram) shows § = §’. This proves
the Lemma.

Lemma 3.1 is basic for numerous constructions in K. Moreover we
can immediately extend it to an arbitrary number of morphisms:

LEMMA 3.2. Let f,: D— X, be any family of morphisms in K
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a €J (= any indexing set) t,: X, = X a push-out of the f,, then this
property remains true after application of h.

This yields at once

“PASTING” PRoPOsITION 3.3. Let X = UX, € Top, f. € K(X,, Y)
any family of morphisms such that f,|X. N X, = f,| X, N X,, then there
exists a unique f € K(X,Y) with f| X, = f..

Here, by any abuse of notion, we write f | A for fh(i),i: A C X.

Though the construction of $(X) is completely analogous to that of
the singular complex S(X) for X € Top, these are not in general
isomorphic.

A singular simplex ¢" € §(X), is a map ¢" € K(A", X) where A" is
the standard simplex.

DEerFINITION 3.4. For each X € K the singular complex S(X) con-
sists of all singular simplexes with face and degeneracy operators defined
in the usual way. If fEeK(X, Y), ¢"€S(X), we set f(¢")=
fa"eS(Y).

Recalling that every category with homotopy can be regarded as a
2-category (cf. 1.c), we can summarize some basic facts about this
construction:

ProposITION 3.5. (a) S: Top— ¥: is a_covariant 2-functor. (b)
There is a natural transformation v x: S(X)— S(X) by setting h(¢")(g) =
G"g, 6" € S(X) X €K. (c) Let |-|: $r > Top be J. Milnor’s geometric
realization and v = |v'|: | S |— S, then there exist natural transformations

(3) w:’Sl—_—)lTopa a_):lglh—-—)lTop
such that
4) @°ov=h(w).

Proof. The functorial properties of S follow exactly as the corre-
sponding assertions for S [3], [6]. The definition of »': § — S given in
the proposition clearly yields a natural transformation of functors. The
transformations w: |S|— 1, @: | §|— 1 (where of course the first already
belongs to the classical theory) are both constructed in the same way: For
each nondegenerate simplex ¢": A" — X in S(X) we have a cell |¢" | C
|S(X)| in the cell structure of |[S(X)| induced by the realization
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functor. This cell |@" | is mapped by ¢" into X. Now we can apply 3.3
and paste together all these morphisms, obtaining a morphism
@:|S(X)|— X. The contention (4) is now an immediate consequence
of the construction of |v'| = v, ® and w.

THEOREM 3.6. On P CK the transformation @,: | S(P)|— P yields a
homotopy equivalence. Furthermore for any f € K(P, X), and P € P we
have up to homotopy a factorization:

1S(x)]

r}:;
=

F W,

In other words: Every morphism starting from a P € P in K factors in
the homotopy category over |S(X)].
For the proof of Theorem 3.6 we need a lemma:

LEmMMma 3.7. For each X €P . the natural tranformation
v: |S(X)|—|S(X)| is a homotopy equivalence. In fact, assuming this
Lemma, 3.6 can be established as follows: For any P € P we have the
commutative diagram:

|S(P)| —E—=|S(P)]

ho)| 2

P

where v (by Lemma 3.7) and » (by a well known classical argument) are
homotopy equivalences.

Since h is a 2-functor, the morphism h(w) is a homotopy equiva-
lence and therefore, so also is .

The existence of a diagram (5) is established by standard arguments:
We have the commutative diagram

~n)

Any homotopy inverse g: P—|S(P)| of @, provides us with an
f: P—|S(X)| in K and then
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F=15(f)lg
fits into (5). It remains therefore to establish the Lemma.

Proof of Lemma 3.7. Let 6" € S(H), then we have a p'(6")=
6"(1)€ S(P). This assignment determines a simplicial mapping and
furthermore a natural transformation p’: $—'S (om P). Thus

lw'| = p:|S|—— S|

is a natural transformation on P. Since u’ on &": A" — X is simply h',
we deduce from h'ch =1 that pv =1.

On the other hand let ¢" € K(A", P) be any singular simplex in
S(P). Using the transformation v’ of Proposition 3.5, we find for any
g € H(P, Q) that we have

v'u'(6")(g)=ga"(1) € K(A" Q).

Because hh'=1 (Proposition 2.5) we obtain a natural homotopy
between |¢" | and [v'u’(¢")|, which commutes with the cell structure in
[S(P)|. We can paste together these homotopies, accomplishing a
homotopy between vi and 1: | S(P)|— | S(P)|. This completes the proof
of Lemma, 3.7, thereby establishing Theorem 3.6.

One of the basic properties of CW-complexes is the result that every
cellular inclusion is a cofibration. This is no longer true for arbitrary
topological spaces. In order to prove a cofibration theorem for K we
have to impose the following two restrictions on the categories P and K :

P 1) P resp. K are subcategories of P, resp. K,, where (K,, P,)
is one of the three pairs listed at the beginning of §1 (d).

P 2) Foreach X € K (see §2) Py is a tree category (Definition
1.3).

Then we establish
THEOREM 3.8.  Under the conditions P 1) and P 2) any closed
inclusion i: A C B in K is a cofibration in K (i.e. h(i) is a cofibration in

the sense of Definition 1.1. (b)).

Proof. (1) Equivalent to Theorem 3.8 is the following contention:
The inclusion

1) it AXITUBX0CBXI
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is a coretraction in K._ In other words there exists a morphism F: B X
I— A XITUB X0 in K which is the identity on A X I U B X0. Here I
is the unit interval.

We shall now establish (1).

(2) Let geK(AXIUBX0,P), PEP be any map, then
Theorem 1.3 gives an extension F,: BXI—P of g, write X=
AXIUBX0; let ge€K(AXIUBX0,P) i=12 and Ilet
(r,w): g,— g, be a morphism in Px. Consider the inclusion

i"X'=(AXIUBX0UBX1)XIUBXIX0CBXIXI,
for the same reason as before, we obtain a mapping
H,.,=H:BXIX]—>P,
such that
H|AXIXIUBXIX0=wo

(where we assume without loss of generality that w is itself a homotopy
(see §1(c))). Since

H,|BXx0XI=rF,
H|BX1xI=F,,

this construction provides us with a morphism:
(nHy): rFg, —> F, .

However this does not necessarily give a functor F:Hy—>Hy., (ie. a
morphism F: B XI— X in K) which extends the identity on X =
A X 1TU B X0, because we cannot expect functoriality.

(3) To rectify this we need condition P 2): There exists a strong
tree category Py C Py and a functor ¢ : Px — P which is right adjoint to
the inclusion. We then carry out the constructions in (2) for P%: To each
indecomposable (r, w) we get a H,,,, and (since each morphism in P
allows a unique decomposition into indecomposable factors) we can
make the construction functorial for Px. On the other hand we have a
transformation ¢,: ¢(g)— g (we omit the inclusion PxCPx from our
notation) and consequently we can define
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F(g)= ¢.F'(¢(8))

where F' is the functor on P%.
For any (r,w): g,— g, we define

ﬁ(r,w)= (r, @) ’F(gl)“‘)ﬁ(&)

in the following way: _
Let ¢ (r0)=(F, @), @:Fd(g:)= ¢(g) and F'(7, &) = (7, @)

@ FF($(g1) = F'(6(g2)-

We then have

po(@): o, FF $(8) = p,o, F'(d(g2).

However because of the adjointness of ¢ and the inclusion PxC Py,
¢: ¢ —1 is a natural transformation. Therefore there exists a natural
homotopy

Po, T = TPy,

which finally provides us with a homotopy

o rF(g) = F(g,).

For the 2-morphisms in Py we proceed analogously. Since this
construction is clearly functorial Theorem 3.8 is proved.

Observe that the third part of the proof is essentially an application
of 1.5 in the topological case. In fact this third part can be reformulated
more generally as follows:

LEmMA 3.9. Let Px be any category satisfying P 2) and let PxC Py
be the corresponding st-category. Then for any 2-functor f': Px— Py, X,
Y € K there exists an extension over P yielding f € K(Y, X).

We can use Theorem 3.8 to establish a cofiber theorem for several
different pairs of categories. The verifications are in all cases
similar. We will confine ourselves to the following case:

THEOREM 3.10. Let K = Com be the category of compact metric
spaces and P the subcategory of all polyhedra. Then every inclusion
i: A CBin K is a cofibration in K.
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The theorem follows immediately from the following

LEmMMA 3.11. For any X € K = Com the category Px is a tree
category.

Proof. 'This is established in precisely the same way in which we
proved that the category T in §1 (e) is a tree category with the notations
used there. The subcategory T'CPx is the same as that for
T. Because the pair (K, P) is contained in all three pairs listed in §1 (d),
we deduce that P 1) is fulfilled. Lemma 3.11 is thereby proved.

This also completes the proof of Theorem 3.10.

Finally the following question will be of some importance in the
beginning of the next section:

Let P’ CTop be the full subcategory of all spaces having the homotopy
type of a CW-complex. We recall that the category K was originally
constructed rel. to P. We will prove that I_~(_ can also be regarded as
being achieved from P'D P. To this end let f € K(X, Y), f: Py — Px a
2-functor. We are now attempting to extend f to a functor

f': Py— P}

in the following way: For a given P € P’ we have the homotopy
equivalence wp: |S(P)|— P hence a homotopy inverse 7, of wp. The
latter is in general not canonical, however there can be fixed a homotopy
Ly: wpomp =1.

We define
f'(g)= wrf(mrg)
forge P(Y,P),PEP'.

Letting g € K(Y,P,), P, €EP' and (r,w): g,— g, we then have a
homotopy

(Mm2rw)(mig)=(m:82)

where we simply write 75, instead of N, etc. This shows

(n2rw) f("h g1) = f_(”flz g2)-

Finally (by multiplying with w,) we obtain a homotopy

rew, f—('fll g1)= rOf_'(g1)= wa—(")zgz)z f’(82)~
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On the basis of these constructions the proof of-the following
assertion is technical and straightforward:

ProposiTiON 3.12.  Every f € K(X, Y) (where K is constructed rel.
P = category of CW-spaces) can be extended to a morphism of K
(constructed rel. P'). In other words: If we replace P by P' we obtain
isomorphic categories K.

This assertion is proved by simply checking that the f' constructed
above is indeed a functor. Details are left to the reader. The value of
3.12 lies in the fact that in the future we can quite freely turn from P to P’
and vice versa.

It should be observed that the isomorphism mentioned in 3.12 is not
necessarily unique (because of the choices of 7, and of L, involved in the
construction).

4. The smash-product in K. In this section all spaces and
mappings are with basepoints. Our aim is the definition of a smash-
product

firnfa Xin Xo—> YA Y, for fi Xi—>Y, i=1,2

where X, Y, are in P.

This can be accomplished by establishing a smash-product
frAl: XAZ—>YAZ for fEK(X,Y), ZEP (resp. 1rf€EK
(ZAX,Z1Y)): for if we assume that X, X, E P then we can obtain
firnf2€ K(X, A X,, Y, A Y,) by the composition

XlAXZ*—‘_'_—“)X‘/\ Yz‘—"—_-_’ Y]/\ Y2.

1/\f2 fl/\I

Now the construction of f— A1, can be reduced to the case Z = n-cell,
since every Z € P can be built up by successively attaching n-cells,
n =0,1,---and we can then apply the “‘pasting lemma” (Proposition 3.3)
to construct f A1, for arbitrary Z € P.

Thus we need only define f/\ 1., whenever Z = n-cell.
LEmMA 4.1.  Every morphism g € K(Y A Z, P), P € P can be fac-
tored in natural way (with respect to g) over a suitable

g'Al: YANZ—->QnNZ

Proof. Let g": Y — P? be the transposed of g, e: P“ A Z— P the
evaluation map
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(¢,2)EP* A Z— ¢(2)
then one has
e(g'rl)=g.

Due to a well known result by J. Milnor, P# has the homotopy type
of a CW-space (cf. 3.12). The naturality is immediate.

We are now prepared for:

DeriNiTION 4.2, Let f € K(X, Y) and let Z be an n-cell. Then

(falz)(g)=e(fg")n1z).
The naturality of the factorization in Lemma 4.1 ensures that f A1, €

K(XAZ Y AZ).
By the preceding discussion we have established a smash-product

fl/\f-QEK(Xl/\Xz, Y AY))
for f,EK(X, Y\, i=1,2, X,, Y,EP.

The main properties of this product given in the following lemmas,
are analogous to those of the smash-product in P.

LemMmA 43. Let fEK(X,Y) and Z € P. Then

h(f)alz=h(fnaly).
In other words: The functor h is compatible with the smash-product.

Proof. Let gEK(YAZ,P), PEP. If g': Y— P? is the trans-
posed map to g, then one has

(h(f)nlz)(g)=e(h(f)(g)r1z)=e(g'fr1).

Now for (x,z) € X A Z the last map is
e(g' frl)(x,z)=e(g'f(x),z) = g'(f (x))(z)
=g(f(x),z)=g(frl,(x,2));

on the other hand,

h(fA1))(g)=g(fr1)

and this completes the proof.
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LEmma 4.4. (a) Let fo, i €E K(X,Y); fo=fi, Z EP, then

f_o/\lzzfl/\lz.

(b) Let fEK(X,Y), g=gAlEK(YANZPANZ), ZEP (ie.
g, € K(Y, P)), then there is a homotopy

(FAal)(g)=f(g)r1l, natural rel. g

(c) Let fEK(X,Y) i=12 X,Y,EP, g=gnArgE
K(Y,AY,, PiAP,), then we have a homotopy

(fin f)(8) = Fig:) A fx(g2),
natural with respect to g, and g,.
Proof. Ad (a): Using the preceding notations we have
(g = fi(g"
for the transposed g’ of a g€ K(Y A Z,P), PEP. Thus
(for1)(g) = e(fu(g)n 1) =e(fi(g) 1)
= (fir1)(g).
This induces a homotopy foal=f,a1lin K.

Ad (b): Letting £&: P— (P AZ)”? be the map £(p)=(z» (p, 2)),
pEP, z € Z, it is easily checked that

(gin1) =¢&g.

Consequently

(fir)(@)=e(f((ginl)ynl)=e(f(£g)n1)
= e(ff(gl)/\ )= f_(g1)/\ L

the last equality being true because it is seen to be true for each
(x,z)EXnAZ

This proof works for Z = n-cell and can be extended to any Z € P
using 3.3 as usual.

Ad (c): We have the following sequence of homotopies:
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(f—l A ]?2)(81 Ag)=(finf)(1ng)(ginl)
=(finDAAF)(1Ag)(ginl)
=(1rg)(dA fz)(f—l n1)(ginl)
= (1 ag) (1A F)(Fig) A (A A fo(g)) (filg) A 1).

Here we have abbreviated with “1”’ the corresponding identities.

Lemma 4.5. Forf € K(X, Y, A Y)) Ya, X € P we have a homotopy

(1) o(f): (pifApfd = f.
Forf = f.f, f€ H(X, X") we have
@) (P fifapfif)d=(p finp.f)d'f

where d: X - X 2 X, d': X'—> X'A X' are the diagonal maps and p, €
K(Y.\nY, Y.), i =1,2 are the projections.

Furthermore the following naturality condition holds:

o(fif)=o(fi)f
Proof. At first we prove (2): One has d'f=(faf)d and

(pifinp.f)d f=(p finp: f1)(f A f)d. Therefore to establish (2) it is
enough to verify that

3) (P:f_lf/\szlf)=(P1f_1/\P2!F1)(f’\f)~
We evaluate the left hand side of (3) at a g € K(Y, A Y,, P), PEP:
(Plf—lf/\szlf)(g)z(Plflf/\1)(1/\P2f—1f)(8)

=@ np.fif)(elp: fi ) (g) A1)
=1apfiH)elp: f)(g)f A1)

As for the right hand side we obtain:
(P finp F)EAN@) = fia DA apfi )(F A 1)(8)
=(ap:fif)(e(p filg")f 1 2).

This proof works as usual for Y, = n-cell and can be extended for an
arbitrary Y, by applying 3.3. Relation (2) is thereby proved.
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Proof of (1). Let g =g, A g€ K(Y,A Y, PiAP,), q € K(P AP, P,)
the projections, then from Lemma 4.4 we find

(i fapf)d(g)=(p: fap.f)(g)d =(a f(g)ra:f(g))d
however the last mapping is equal to f(g) because (1) is true for any map
f(g)€ K(X,P,AP,). The general case (g € K(Y,A Y, P)) follows
from Definition 4.2 and 3.3 in the usual way.

Finally the naturality condition for w(f) is immediate.
This completes the proof of Lemma 4.5.

As a corollary we have

LEMMA 4.6. Letf€K(X,Y)),i=1,2, X, Y,EP, p asin 4.5 then
we have

flf\fz Pl(fl /\fZ)d /\PZ(fl/\fz)d

where as in 4.5 the homotopy is natural with respect to f,, f, in an obvious
sense.

Proof. We introduce the diagonal map d': X A X — X A X A X for
the space X A X and deduce from Lemma 4.5 that

(0i(Fin ) ApAfin F2))d' = fin fo
On the other hand we have d'=d A d and therefore

pi(Fin F)d a po(Fi(n F)d = (pi(Fi 8 F) A pa(Fin Fo))(d 1 d)
=((fin ) rpAfinfo))d'.

Since the naturality can easily be formulated as in Lemma 4.5 the
proof is complete.

The following theorem is basic for our work on homology in K:

THEOREM 4.7. For X € K, Y € P there exists a natural homotopy
equivalence in P (therefore a fortiori in P)

IS AlS(Y)] = [S(X nY)].
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Proof. We use the fact that for any K,L € $-|KAL| and
|[K|A|L| are homotopy equivalent, where KAL =K XL/KvL (cf.

[6]).

What remains is is an assertion (in %) that
S(XAaY)=S8(X)rS(Y).

We use the same method as that leading to the corresponding contention
for S (instead of §).
(a) There exists a natural transformation

(6) @: S(X)AS(Y)—— S(XrY)

(6" 7")—— (" rT")d,
d: A" — A" A A" the diagonal map. In fact from Lemma 4.5 (2) it follows
immediately that the map is compatible with face and degeneracy
operators. The smash-product involved in (6) exists by definition.
Furthermore (6" A 7")d is a degeneracy of the basepoint whenever 6", 7"
are of this form. Hence the natural transformation ¢ exists.

(b) We have a natural transformation going into the opposite
direction:

(7) U: S(XAY)——— S(X)ArS(Y)
G" ——> (pxG ", pyG ")

where py, py are the projections.
(c) We have

U (67, 7) = (px (67 A 7")d, pyr (3" 7 7)d)

so Lemma 4.6 assures us that there is a natural (i.e. with face and
degeneracy operators compatible) homotopy between the right pair in
S(X)AS(Y) and (6",7"). By standard arguments this yields a
homotopy between ¢ and the identity. In order to prove the analog-
ous result for ¢y we observe:

Yo (a")= (pxa" A pyd")d.

From Lemma 4.5 and the preceding argument we deduce

Yo =1.

This completes the proof of Theorem 4.7.
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COROLLARY 4.8. Let ¢:|S(XAY)|=|S(X)|A|S(Y)| be the
homotopy equivalence from Theorem 4.7 then the following compatibility
condition holds:

Dx,y= (a-)x A Cl—’Y)"‘wlL

The proof is an easy consequence of the construction of ¢ and of
Ox,v: |S(XAY) =X AY resp. ax Aay: [S(X)[A|S(Y)|— X Y. De-
tails are left to the reader.

While the construction of the smash-product in K is of some
delicacy, there occurs no such trouble for the wedge of two maps:
Let f €EK(X,Y.), g: Y,vY,— P€EP, we define

(fiv £)(8) = Filgin v fAgiv),

where j: Y,— Y,v Y, are the inclusions. This produces a mapping
fivh€ K(X,vX,, Y,vY,) which has all properties expected of a
wedge. No restrictions on X, Y, are necessary. In particular the
wedge has the following properties:

Lemma 4.9. (@) h(f)vh(f)=h(fivf), fi. LEK

(b) Let fEK(X\vX,Y), ji: Xi = X,v X, k =1,2 the inclusions
and ¢: YvY—Y the folding map [3], then we have an equality:
o(fivv fi)=f.
Proof. Because (a) is trivial, we only prove (b): Let g € K(Y, P),
P € P be any map, then
(firv fi)(g) = (firv fi) (g$)
= fi(gein) v fi(gei)
= fi(g)v fiAg)
= f(&)v f(g)i-= f(g)-

LEMMA 4.10. Let X be a cogroup object in Top,, (the ordinary
homotopy category), then X is also a cogroup object in K,.

In particular (Top), (X, Y) carries a natural group structure for any
Y € Top,.

The proof is an exact repetition of the corresponding statement for
Top, (ct. [3]).
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In the future we will constantly make use of the following assertion:

ProrposiTioN 4.11.  Two mappings fo, fi € K(X, Y) are homotopic
(in K) if and only if there exists a map in K F: X X I =Y such that

Fi():fm Filzfl
where as usual i,;: X C X X I denotes the standard inclusion (j =0, 1).

The proof follows immediately from the Definition 2.3 (4) and the
observation that in Top (as well as in Top, ) a 3-morphism is a homotopy
of homotopies.

Details are left to the reader.

S. Homotopy groups and singular homology. We deal
with the category K = Top, and P = full subcategory of based CW-
spaces. For any two objects X, Y € K we define

(X, Y]= K. (X, Y)
7 (X, x0) = [S™, X].

Lemma 4.10 assures that 7, (X, x,) = 7, (X) is a group for n >0 and
that 7, is a functor from K to the category of graded groups (n > 0).
Some facts concerning 7, are summarized in the following

THEOREM 5.1. (a) 7,(X) is abelian for n > 1.
(b) There exists an isomorphism of functors

Th=~a on P.
(c) The transformation &: |S(-)|— 1% induces an isomorphism
@, (@): 7, (| S(X)]) = 7 (X).

Proof.  Ad (a): This assertion follows from well known properties of
§", n>1 which are not affected by the transition from K to K.

Ad (b): We deduce from 2.6 that P, and P, are isomorphic through
the isomorphism h. Hence 7 h and 7 are isomorphic on P.

Ad (c): Let f € K(S", X) be given then 3.6 ensures the existence of
an r € K(S",|S(X)]|) with [@][r]*[f], hence 7, (@) is an epimorphism.
For the proof that 7, (&) is a monomorphism we need a simple lemma:
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LEMMA 5.2. (a) A mapping f € K(S®, X) is homotopic to the con-
stant map 0= h(0): S" — X if and only if f has an extension over the
n+1-cell E"' D S™.

(b) Forr € K(S8",|S(X)|) we have &r =0 if and only if r =0.

Proof. Ad (a): Let g € K(X, P), P € P, then f(g) has an extension
F,: E"'— P. However the definition of a homotopy in K (see 2.3)
amounts to the fact that these F, fit together, giving a morphism
F € K(E"', X) which extends f.

Ad (b): Due to (a) there exists an extension F € K(E"*, X) of
@r. We consider F as a singular n +1 simplex and obtain a map
R: E"'—|8(X)| (the attaching map of F as a cell in, [S(X)]). By
assumption one has @R = F’; and since r = R |S" (because |S(X)|is the

represented by a simplicial sphere in dimension n (i.e. a n-simplex with
completely degenerate boundary) in $(X)) part (a) applies to show r = 0.
From 5.2 we deduce immediately that 7,(®) is a monomorphism, so 5.1 is
thereby proved.

Let E={E,v.:2XE—E,.,,n €EZ} be a spectrum; we assume
henceforth that all E, € P. In [11] G. W. Whitehead defined for any
X€EK

(1) X/\Ez{XI\E,,}

2) 7. (E) = lim 7., (E)
and finally'
®) H,(X;E)=@,(X nE).

All the ingredients which are necessary for these definitions are
available in K as well as in K, so that we obtain two homology theories
H, on K and H, on K. From Theorem 5.1 follows immediately that
both these functors are mappings into the category of graded abelian
groups. Although H, is defined on K we can compose it with h and
consider it as a homology theory on K.

It now makes sense to compare H, with H,: They are not
isomorphic on K; however

! Actually homology is introduced in [11] by H,(X; E)= m.(E » X) which gives of course a
functor isomorphic to that defined in (3).
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ProposITION 5.3. The functors H, and H, are isomorphic on
P. Moreover, for E ={K(G, n)} = Eilenberg—MacLane spectrum and
G = abelian group, H, (X; E)= H.(|S(X)|; G) is singular homology,
X€EP.

Proof. From 4.3 we know that h is compatible with suspension.
Therefore (3) determines in both cases isomorphic homology
theories. The last statement of 5.3 is implicitly contained in [11]: H
fulfills all the Eilenberg-Steenrod axioms (including the dimension-
axiom for this particular coefficient spectrum) on the category of finite
CW-complexes. Thus H , is isomorphic to ordinary simplicial homology
on this category; and since H , is easily seen to have compact carriers it
follows that H , is simplicial homology on P (which on P amounts to the
same as singular).

THEOREM 5.4. The transformation &:|S(X)|— X induces an
isomorphism for all X € K and all n

H,(6): H.(|S(X)|; E)~ H,(X; E).

Proof. We have
H,(X;E) = lim T (X A Ey)
H,(IS(X)[; E) = lim 7. (| S(X)| 1 E).
However 4.7 and 3.6 imply
[S(X)|nEc=|S(X nEV).

According to 4.8 this homotopy equivalence is compatible with
o. Hence 5.1 (c) gives an isomorphism

H,(X;E)=H,(|S(X)|;E),

which is easily seen to be that induced by .

THEOREM 5.5. The transformation w: |S(-)|» 1x induces an
isomorphism

H,(0): H.(IS(X)|; E)~ H,(X; E).
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Thus (3) is for arbitrary X € K (not only for X € P) isomorphic to
singular homology whenever E is an Eilenberg—~MacLane spectrum.

The proof is identical with that of 5.4.

THEOREM 5.6. Let E ={K(Z,n); be the Eilenberg—MacLane-
spectrum for the integers, then there exists a natural transformation

Tiw: F(X)—> H,(X; Z)= H,(X)
(the Hurewicz-homomorphism) such that a Hurewicz -theorem holds:
If #,(X) =0, forq < n, then 7,: 7,(X)~ H,(X) is an isomorphism.

Proof. Let €: 87— K(Z,q) be a_fixed map which determines a
generator of Z = 7,(K(Z,q)) and let f € K(S", X). Define

A ([f1) = [(e A1) 2],

where (e A1)o3%- f € K(5™*% X r K(Z, q)). This yields a natural trans-
formation which behaves in much the same way as the ordinary
Hurewicz-homomorphism.

Now for X = (X, x,) € K, we have the commutative diagram

n -
(X)) ————— H,(X)

@) 7(@)| _ [A.@)
e 7 -
(IS (X)) ——— H.(|S(X))).
The vertical maps are isomorphisms in view of 5.1 (c). Furthermore

one notes that the Hurewicz-homomorphisms 7,, 7, in K resp. K are
compatible with the isomorphisms

7 (SO = 7. (1S(X)))
H.(IS(X))=H.(S(X))),
since in both categories they are constructed in a completely analogous
way. Moreover for | S(X)| the assumptions of the classical Hurewicz-
theorem hold. Hence

7 7 (SO = H.(IS(X)])

and all maps in (4) except the upper 7 being isomorphisms, this implies



56 FRIEDRICH W. BAUER

that 7 is also an isomorphism and therefore the Hurewicz-theorem for K
follows.

ReEmMARK. Theorems 5.4, 5.5 confirm that as long as both definitions
are feasible, singular homology H3" (resp. H3") is in the categories K
(resp. K) isomorphic to the Whitehead homology H,, (resp. H,) which
has been defined in (3). This fact is not so surprising for K but an
interesting phenomenon for K.

6. A modified singular complex. In this section we intro-
duce a second form of a singular complex §': Top— ¥ which turns out
to be more convenient for our purposes.

A singular simplex ¢" € S'(X) consists of:

(1) An ordinary singular simplex 6" € K(A", X) in §(X).

(2) A rule which assigns a simplicial linear subdivision 7, = 7,(")
of A” to each g€ K(X,P), PEP.

Let A" be the standard n-simplex and A"'CA" a face i=
0,---,n. A subdivision 7, of A"! induces a subdivision of A" in the
following way: For each j the order of the vertices of A’™" and A;™
determines a linear isomorphism ¢;: A7"'— A", which transforms to a
subdivision 7, of A’™'; then the cones of the simplexes of all A7,
J =0,---, n over the barycenter * of A" give a subdivision 7 of A". Note
that 7 induces the subdivision 7, on the given face A!™', so that this
construction gives a degeneracy operator 7 = s,(7,)

5:S'(X)y— S(X),, i=0,-,n

On the other hand any subdivision 7,(¢") induces a subdivision of A"
for any subsimplex of A" So we also have a face operator
d,: S'"(X), = S'(X)...

LEMMA 6.1. The assignment S': Top— % is a 2-functor. The
construction of the induced maps and the verification of the 2-functoriality
is immediate.

Every ¢" € §'(X) is converted into an ordinary singular simplex
" € S(X) simply by forgetting the subdivisions of A" This gives a
natural functor transformation p: §'(X)— S(X). On the other hand
one has an inclusion i: S(X) C $'(X), by sending each ¢" € §(X) to the
pair (o, 7,), where o " is taken with the identity subdivision. This is also
a functor transformation and we have

_LeEMMA 6.2.  There exist natural functor transformations p: S'— S,
i: $—S' such that
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pi=1:8->S8
holds.

The main objective pf this section is to establish the following
assertion:

PROPOSITION 6.3. There exists a natural homotopy
ip=1.8§8—§"

Proof. This homotopy is constructed inductively. For n =0 we
have §'(X), = §(X)o; let us assume that a homotopy A,: ip =1 has been
already established on the k-skeleton for k =n —1.

Let 60" € S'(X).,, g EK(X,P), PEP and * the “barycenter” of
A" X I, be given. The boundary of A” X I has received a triangulation,
consisting of 7,(6") on A" X 0, the identical subdivision on the top A" X 1
(i.e. the subdivision of ipg") and by the inductive hypothesis some
subdivision on (bd A" X I). We now obtain a triangulation 7, of A" X I by
forming the cones over all simplexes of bd(A" X I) with top vertex
*. There is a mapping p": A" X I - P which is induced by p&" and
Au-i. Ordinary semi-simplicial techniques and the definition of semi-
simplicial homotopy can be used to establish a homotopy A,: ip =1 on
the n-skeleton of S'(X).

Proposition 6.3 is thereby proved.

By combining 6.2, 6.3 we have established

THEOREM 6.4.  The functors S, S': K — % are homotopy equivalent.
Hence S(X) and S'(X) as well as |S(X)| and |S'(X)| (X €EK) are
homotopy equivalent.

7. Comparison of H, and the Steenrod—
Sitnikov-homology. In 1940, N. Steenrod introduced [10] a homol-
ogy theory which has become of increasing importance in topology. In
1960 J. Milnor gave an axiomatic description of Steenrod’s homology
functor H§ on the category of compact metric spaces [8]. Many
important results on H3 have been established in the last years (e.g. by
K. Sitnikov [1], Sklarjenko and others). In this paper we do not intend
to give an explicit construction of Hi but we will use the following
axiomatic description which stems from [8]:

THEOREM 7.1. The homology functor on the category of pairs of
compact metric spaces Com’ is up to an isomorphism characterized by the
Eilenberg—Steenrod axioms and the two additional axioms
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(A) (Strong excision). If f:(X,A)—>(Y,B) is a relative
homeomorphism (i.e. f|(X —A): X—A — Y — B is a homeomorphism)
then H{(f): H{(X, A)— H{(Y, B) is an isomorphism.

(B) (Cluster axiom). Let X, X, i =1,2,--- be compact metric
spaces with X =U7X, X, NX =#* (=basepoint) i#j and with
limd(X;)=0 (d(A) = diameter of A). Then the projections p;: X — X,
induce an isomorphism H3(X)— 117, Hi(X)).

In the following we take integer coefficients.

To turn H, (from §5 (3)) into a homology theory on Com?, we will
use the Eilenberg-MacLane spectrum E. In order to get a functor
H.: Com’— graded groups we follow the classical line and define for the
pair (X, A) where A C X

(1) H,(X,A)= H,(X/A,E).

For this we assume that the subcategory P CK = Com is the full
subcategory of all connected (consequently also pathwise connected)
CW-spaces.

Since X and A are compact metric, we observe that

(1): (X/A *), where * is the basepoint stemming from A, is simply
the Alexandroff compactification of X — A and is metrizable, and (2):
each relative homeomorphism f: (X, A)— (Y, B) therefore induces a
homeomorphism f*: (X/A,*)— (Y/B,*). This implies

PrROPOSITION 7.2. For H, on Com’ the strong excision axiom (A)
holds.

The verification of the Eilenberg-Steenrod axioms for H, depends
upon the following

LemMAa 7.3. For any pair (X,A)E Com’ there exists a natural
chain homotopy equivalence

C.(X,A)=C(X)/C«(A)
where C.(Y)=C.(S'(Y)), YEK.
The proof will be given in the next section.

It follows from 7.3 that
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PROPOSITION 7.4. The functor H, fulfills the Eilenberg—Steenrod
axioms.

The proof follows the classical model closely: The homotopy axiom
is true because we repeat the usual argument that a homology theory on a
category of based spaces leads to a homology theory (which fulfills the
homotopy axiom) on a category of pairs. The excision axiom is con-
tained in 7.2. Since a point is an object of P, the dimension axiom
follows from 5.3. What remains is the exactness. But Lemma 7.3 has
the following interpretation: One can exhibit H,(X/A) as the homology
of the chain complex C«(X)/C4(A). Since we have an exact sequence
of chain complexes

3) 0— Cx(A)=> Co(X)® Co(X/A)—0

(i A C X the inclusion, p the projection), the exactness of H, then
follows from homological algebra.

Proposition 7.4 is thereby proved.

We now turn to the cluster axiom (B) in 7.1. To this end we need
some preliminary constructions:

Let a, i =0,---,n be the unit point on the axes in R"*', and let
A" = (a,," "+, a,) be the standard simplex spanned by these points. For
each k belonging to Z*, let A} be the simplex 1/k A" = (1/k ao, - - -, 1/k a,)

and let 2" = ([0, 1],0, - - -,0) U U, A;. With the subspace topology, 2" is
compact metric. We denote by

(1 1
Ye T ([k+17 k]’oa'——’0>7

the segment joining the first vertex of A; with that of Aj.,, and let

=2"N {x e R

Let A" be the standard simplex in another R**'. We shall construct
surjections r.: A" — 2 and r: A" — 3" For each i €EZ" let T, be the
zones

alq_1 __1
{xEA'l i§x0=<—_l i+1}
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and map T,,-, onto A} by a homeomorphism relative to the boundary and
each T, onto v,.

Defining r(a¢)=(0,---,0), the origin, gives us the desired
r: A" — 3" Stopping the above construction with T,_, and mapping
everything remaining onto A; by a PL-homeomorphism gives us the
required r,: A" — 3%,

We now apply this construction to singular homology: Let X be any
path connected space and ¢ = % r,o7, r, € Z be any singular n-chain® in
X. Letting |c|=2]r,| we define a map B,.;: 2, — X as follows: We
map at first the |r,| copies of A" in 3, into X by

o if >0
Bﬁcf]Aln:{ i=1"..’rl

-o! if <0

where — o} means o7 after a change of orientation (permute the first two
vertices of A") and proceed analogously for the next |r,|,|r|-- - etc.
copies of A”. Since X is-path-connected we can extend 3. over whole
3. These constructions allow us to replace each singular chain ¢ €
C«(5'(X)), X €Com, by a single singular simplex ¢(c): In fact let
c=2a,0],a, €EZ and g € K(X, P), P € P, then each simplex A} of %1,
inherits a subdivision from &7(g) and this determines a triangulation 7, of
2%, (which depends on g). Denote by p, a subdivision of A" which
makes r.:A"—Z2[, (the latter with the triangulation 7,)
simplicial. Then the mapping

(€)(g):2y—P
is our B.,. We now have ¢(¢): A" — X in K as the singular simplex
®(¢)(g) =(¢)(g)r. with subdivision p, for any given g E K(X,P) PE
P. This determines a singular simplex in S'(X). Furthermore the
mapping cylinder of r,.| can be mapped into P so that there exists a chain

hgmotopy s between ¢(¢) and ¢.
Summarizing, we have established

LEMMA 7.5. There exists a chain homotopy
st ¢ =1 Cu(S'(X)) — C(S(X)).

Now let X be a cluster consisting of spaces X, as in 7.1 (B) and let
7=1p: C«(S'(X)—=I=I7C.(S'X)) where p:X—>X is the

* We use ordinary singular homology for this construction.
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projection. An element f = {¢,} € Il is a sequence, ¢ € C(S'(X,)). We
set z; = 2/_, ¢,; because X" = U,_, 2f,,, 31, C 3., by defining for each
gEK(X,P), PEP a map f,:3"— P, f, |3, =(z:)(g), we obtain a
consistently defined map 2" X.

Because P is locally contractible, there is a neighborhood U of the
basepoint * € P that is contractible and there exists an index N such that

U Elnz‘l

1ZN

is mapped into U.
Thus the mapping f,r: A"— P, r: A" — X" is homotopic to a map
feiere = @(2)(g), where r,: A" — 2} is as above and

2 CEn

is the inclusion. We have a triangulation p, of A" which is obtained in
the same way as before. The number k =|zy| depends on g and in
particular on the choice of U. _

We intend to define a singular simplex ¢ (f) € S'(X) by ¢(f)(g)=
¢(z.)(g) and the triangulation p,.

For t € P(P, P,), (t, w): g.— &>, & € K(X, P,) we have a homotopy
o' t(z,,)(g) = (z1,) (g2) (Where of course k; belongs to g resp. to the
neighborhoods U, of the basepoints in P;) and the corresponding
deformations of f,| U .y 3[, for sufficiently large N (e.g. N =
max(k,, k,)) to the constant map. We can now repeat the arguments in
§3 which lead to a proof of Theorem 3.8 resp. 3.10 and apply Lemmas 3.9,
3.11in the present situation to show that ¢ (f) can be made functorial (the
necessary tree category is in all cases the same). Thus ¢ (f) becomes a
map in K(A", X) and we obtain a singular simplex ¢(f) € §'(X).

We now prove the existence of a chain homotopy

4 prd=gq

where ¢,(f)=q,({c.})=c¢. To this end let g € K(X, P), P€E€ P be an
arbitrary map. If k(g)=j, then p.¢ = g;; if k(g) <j, the contraction
homotopy of U into the basepoint yields a chain homotopy s: p;-¢ = g
This can again be made functorial’ by using 3.9, 3.11. Now (4) is easily
seen to give a chain homotopy

* In this particular case we can take into account that ¢ has been given originally also on the
iubcategory Py. The extensions of s and ¢ from P to Px using the techniques of Lemma 3.9 and
11 are therefore compatible with each other (i.e. the corresponding functors fit
rgether). However the reader will easily realize that the proof in this case (as well as in all similar
ses which follow) can be established without using this fact.
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®) s: e = 1.

In order to prove that o7 is also homotopic to 1, we make the
following observations:

Let ¢ € C«(S'(X)), w(@)=f={p-c}={¢}, gEK(X,P), PEP
then we have chain homotopies (for different reasons, partly because of
7.5, partly because of the contraction of the neighbourhood U in P)

e(f)(g)= ¢ (z)(g)=z(g)=1C(8),

where k = k(g) and z, = Z,_, ¢, are as before. This leads immediately
(using Lemma 3.9, Lemma 3.11 and the related arguments) to a chain
homotopy

6) s: om=1.
Now we can establish

PROPOSITION 7.6.  For the homology functor H, the cluster axiom
7.1 (B) holds.

Proof. The homology of the chain complex Il1=TII; C4(S'(X)) is,
due to Theorems 7.5, 6.4

H*(n)=f[ H.(X).

However (5), (6) imply that 7 induces an isomorphism in homology.
This leads to

THEOREM 7.7. On the category K = Com, P = subcategory of con-
nected CW-spaces in K, there exists a natural isomorphism

H,~H:.

Since the homology functors H,, H3 can be considered as functors
on Com® (we have used this fact in the proof of Theorem 7.7), the
following corollary (which refers to the category of pairs) holds:

CoROLLARY 7.8. Let H, on Com’ be singular homology (in the
sense of (1)) with integer coefficients (i.e. H(X, Y)= H(X/Y)) and H§
Steenrod-Sitnikov homology (for example in the form of [8]), then both
functors are isomorphic.
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ReEMARK. K. Sitnikov [1] extended I-{i to arbitrary metric spaces
simply by taking compact carriers. Our H, does not necessarily have
compact carriers if K = Top and P = category of connected CW -spaces.

8. Proof of Lemma 7.3. The idea of the proof of Lemma
7.3 is this: At first apply Lemma 7.5 to the effect that a given chain
¢ € C«(X/A) is converted into a singular simplex & = ¢(¢). Now we
modify & to a singular chain ¢, in C,(S'(X)) (simply by cutting out the
counterimage of the basepoint * € P/Q in (1) for any g) and apply again
Lemma 7.5. This gives a singular simplex ¢(d)= ¢e(c)=p(C)E
S'(X)/S'(A) and finally chain homotopies

af =1, Ba =1.
We have the diagram
A—dox T L xa i
(0
() l lg, ] gl/ g
o—S->p—L 5 pio

with ¢ € §'(X/A ), P, Q€ P and denote the counterimage of the
basepoint * € P/Q in A" (under the mapping (g)) by T. Certainly one
has j7'(*)= Q.

We distinguish two different cases: For (g)=* (= constant map
onto the basepoint) we define

@ U(o)(g)=*,

where now * denotes a fixed base point in Q C P.

In the remaining case we have 6(g)2*. Let W'D Q be a neigh-
borhood which can be deformed onto Q, W its image under j and
T=0o(g)'(*) CA" We can find a neighborhood U of T such that
o(g)(U) C W and a subdivision 7, of the given triangulation 7, of A"
such that every closed simplex which intersects T is contained in
U. The subchain of A" in this triangulation, which consists of all
simplexes which are contained in U (with orientation inherited from A")
is denoted by t", the chain consisting of all remaining simplexes of 7, by
u". These chains induce under g a singular chain u"(g) resp. t"(g) €
C.(S(P/Q)).

Moreover there exists by construction a counterimage v"(g’) of
u"(g)under j,: C.(S(P))— C.«(S(P/Q)) which after the application of
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the deformation d': W' —Q becomes a chain u"(g)€E
C.(S(P))/C«(S(Q)). We can convert u"(g') into a singular simplex,
obtaining the simplex ¢(7)(g’).

Let (r, w): gi— g, be a morphism in Px and assume that w:rg,= g,
is a homotopy (c.f. §10) H: A" X I — P,, then we can replace A" by A" X I
in the preceding construction and obtain a homotopy w': re(d)(g:) =
¢ (d)(g.) in precisely the same way as we got () from 4. In case
H == is the trivial homotopy, we take for ' the trivial homotopy. This
enables us to construct a singular simplex (o) € S'(X) by recalling the
fact that Py is a tree category (81 (€) and application of Lemma 3.9, 3.11).

In order to complete the proof of Lemma 7.3, we need chain
homotopies

3) Ba =1: Co(X)/C(A) ——> Co(X)/C4(A)
“4) af =1: Co(X/A) ——— C(X/A).

For this purpose observe that for any ¢" € C,(X), g' € K(X, P) we
have a decomposition

) G"(g) = v (g)+ 1"

where t" is a singular chain in W’ and v"(g’) is a singular chain in
S(P)/S(W'). The deformation d': W'— Q provides us with a chain
homotopy

ba(c")(g)=u"(g)=0v"(g)+t"=05"(g)

Using the standard techniques we obtain a chain homotopy (3).
Let 7" € S'(X/A), then we have

©6) " (g)=u"(g)+t"(g),

where u"(g) resp. t"(g) is induced by the preceding construction of u",
resp. t" as subchains of A" as above.
From (6) we deduce

ay(r")(g)=u"(g)=u"(g)+1"(g)

where the last homotopy equivalence stems from the deformation
d: W—x*€P/Q.

Again this leads to a chain homotopy between a ¢(7") and 7" which
finally gives the chain homotopy (4).

This completes the proof of Lemma 7.3.
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