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AVERAGING STRONGLY SUBADDITIVE SET
FUNCTIONS IN UNIMODULAR AMENABLE GROUPS II

W. R. EMERSON

This paper continues work initiated in Part I. The central
question is one of characterizing a net {A.} of Borel sets in the
group G which averages a so-called regular set function S on G
in the sense that A (A.)'S(A.) has a limit (depending only on
S), where A is Haar measure. In Part I a sufficient condition for
{A.} to always average was derived; here we show that a
‘“natural” relaxation of this condition is no longer sufficient for
all regular S, at the same time essentially characterizing those S
which may still be averaged. Moreover, the role of Fglner
summing sequences is considered in this context. Finally, proper-
ties of regular set functions are derived which may be of
independent interest.

1. Definitions, notation, and some generalities. The
notation and terminology is the same as [3]. We also will have frequent
cause to refer to the results and techniques of [3], and consequently there
is a strong dependence. Throughout the topological group G is assumed
locally compact and noncompact and equipped with a fixed right
invariant Haar measure A, # = #(G) is the set of all precompact Borel
subsets of G, X, ={K € ¥: A\(K)>0}, #,={K € %: K open}, and for
A,K C G we define [A]x ={g € G: Kg C A}. Finally as in [3], A(E)
denotes inner measure in case E is not measurable, e.g. some [A ]k or
KA.

DEerINITION 1.1. A net {A,} of sets in ¥, is said to be:

1. Admissible, {A,}€ &, iff lim,A(A.)"A(A.]x)=1 for all
K e X%,

2. Full, {A.} € %, iff lim,A(A,)'A([A.]x) =1 for all K € ¥,,

3. Stable, {A,}€ &, iff limA(KA,)'A(A,)=1 for all K E %,
K#J,

4. Translative, {A,} € 7, iff A(A,)'A(kA,AA,)— 0 uniformly for
k € K, for all K € ¥%,,.

Comment. 3, in the above definition may be equivalently replaced
by any subfamily of # which is cofinal under inclusion.

The following result gives some basic properties of these nets, some
already proved in [3] and the others straightforward and left to the
reader:
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ProrosiTioN 1.2. () AZD iff FAD iff FAD if T#D iff G is
unimodular and amenable.

(i) If G is discrete, f = F =% =7, and otherwise f CF and
S CT properly and no other inclusions hold.

(i) {A.}E€ L(T) iff {A."} is strong (weak) summing (in the sense
of [2]) in unimodular G.

(iv) {A.}E€ o and {B,} from ¥ such that \(A,)'A(B,)— 0 implies
{C,} € oA where C, = A, UB.,.

(v) {A.}€ Fand {B.} from ¥ such that A(A,)'A(B,)— 0 implies
{C.}E F where C, = A, UB,. '

The following definition from [3] is needed:

DerINITION 1.3. ¥, ={K € %: A(K)= A(K)} is called the class of
weak continuity sets in G.

Note. Every compact set is a weak continuity set.

We conclude this section with the definition of the set functions S
which we shall consider as well as the basic “rearrangement” inequality
for such S:

DEFINITION 1.4. (a) A set function S: ¥ — R is said to be regular
iff

i $=0, S©)=0,

(i) S(AUB)+S(ANB)=S(A)+S(B) for all A,BE X,

(i) S(Ag)=S(A) forall A€ X, gE€GC.

(b) A set function S: % — R is said to be upper continuous at
K,e ¥ iff {K,} C ¥ and A(K,AK,)— 0 implies

lim S(K,) = S(K.).

(c) A set function S: ¥ — R is said to be upper continuous on X
iff S is upper continuous at each K, € ¥.

(d) S: 3% — R is said to be continuous at & iff {K,} C ¥ such that
K. D K,., and A(K,)— 0 implies S(K,)— S(J).

Equivalent formulations for regular S are contained in:

ProposiTION 1.5. (i) The regular set function S is upper continuous
at K, iff for every € >0 there corresponds a & = 8(K,, €)>0 such that
Ke i, KCK, and A(K,— K)< 8 implies S(K)< S(K,)+e€.

(i1) The regular set function S is continuous at & iff given K € ¥ and
€ >0 there corresponds a 6 = §(K, €)>0 such that ECK, E € ¥, and
A(E)< 8 implies S(E)> —e.
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Proof. 1If (i) is violated at K, for € = €,> 0 then for § = 1/n we may
choose K = K, C K, with A(K,— K,)<1/n and S(K,)= S(K,) + €. But
clearly A(K,AK,)—0 and lim S(K,)= S(K,)+ €, which violates (b).
Conversely, if A(K)AK,)<& then K=K, NK,CK, and also
A(Ky— K)= A (K)AK,) < 8 implying S(K)< S(K,)+ € by (i). But by
the monotonicity of S, S(K,)= S(K) implying lim S(K,) < S(Ko)+ €
(since A (K,AK,) < & for n sufficiently large, where § = §(K, €)) valid for
all € >0 and thus lim S(K,) = S(K,) and (b) is verified.

The proof that condition (ii) implies (d) is similar (K = K, E = K,
for n sufficiently large). Conversely if (ii) is violated for K € ¥ and
€ =€,>0, for each integer n there corresponds an E =E, CK,
E, € X, and satisfying A (E,)<1/n* whereas S(E,)= —¢, Set K, =
U{E;: j = n}, implying S(K,)= S(E,)= — €, K, D K,.;, and A (K, )—0,
violating (d) since S () = 0.

ProposITION 1.6. Let S: ¥ — R satisfy S(KUT)+S(KNT)=
S(K)+ S(T) for all K, T € . Then for any K, € #, 1 =j = n,
> S() = 3 S(K).
)= )=
where

1={g€G: T ni®)zi}.

iI=n

Proof. Well known, readily shown by induction on n the given
condition being the case n = 2.

2. Full nets and regular set functions S. In this section
we investigate necessary and sufficient conditions on S to insure that it is
“successfully”” averaged on full nets. First a notationally convenient
definition and a basic result from [3]:

DerFniTION 2.1, For any function S:%,— R let M(K)=
A(K)'S(K), the average of S on K, for K € ¥..

THEOREM 2.2.  If Sis any regular set function on ) and {A.} € ¥,

lim M;(A,)=inf{M(K): KE XK. N K.}
=inf {Ms(K): K € #. N ¥,}.

Now since o & % (for o/ #J and G nondiscrete) the question
remains as to whether Theorem 2.2 (or some modification) remains true
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for {A,} € ¥ without further restriction on S. The following example
due to Banach [1], after simple reworking, shows this is not the case:

ExampLE 2.3. There exists a finitely additive translation invariance
measure m, on the Borel sets of the circle — realized as [0, 1) — and a
Borel subset N of Lebesgue measure zero, A (N) = 0, for which my(N) =
my([0, 1)) = 1.

COROLLARY 2.4. There exists a finitely additive translation in-
variant measure m on X = #(R) such that m(N)=m([0,1))=1 for a
Lebesgue null Borel set N C [0, 1).

Proof. For A €3, define m(A)=Z{m{(A +n)N[0, 1)}):
n € Z}, m, as in Example 2.3. That m has the desired properties is
readily verified, where N is the set referred to in Example 2.3.

ProposITION 2.5. There is a regular set function S on ¥ = ¥#(R)
such that given any 1 = —1 there exists a sequence {C,}={C,(l)} in ¥
satisfying lim, M;(C,) = I. Moreover, it follows that we may also take
| = —o above, and in general Ms(C,) need not tend to a limit at all for
appropriate {C,} € %.

Proof. Of course A, = [0, n] is a full sequence in R. Consequently
by Proposition 1.2 (v) if B,=B,(l)= U{i+N: i=1,2,---,[— In]},
where [x] is the greatest integer=x and N is from Corollary 2.4,
C =C.(I)=A,UB, is also a full sequence since B, is a (Haar) null
set. Now if § = — m where m is from Corollary 2.4 it is immediate that
S(C.)= —[—In], A(C,) = n, and consequently M;(C,)= —[— In]/n—1
as asserted. The final sentence of Proposition 2.5 follows easily from the
first.

Whether an analogue of Proposition 2.5 is valid in a general
amenable, unimodular, nondiscrete G has not been investigated but
should follow from known methods of creating translation invariant
functionals in amenable groups. At any rate, we see that in general full
nets do not ‘“‘average” a general regular S and some restriction is
necessary. Our basic result is the following sufficient condition, and a
corollary:

THEOREM 2.6. If S is regular and continuous at &, then for any
{A.}E F we have

(1) lim My(A,) = inf{M(K): K € %.} = inf{M(K): K € %N .}.
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CoROLLARY 2.7. If S is regular and inf{Ms(K): K € ¥.} is finite,
then equation (1) above is valid for any {A.} € Z.

The proof of Theorem 2.6 proceeds by a series of lemmas:

LEMMA 2.8. Let X be a set, 3 a field of subsets of X, and w a finitely
additive nonnegative measure on 3 normalized by u(X)=1. Then for
any T,€%, 1=i=k,

(i) there exists a sequence {e,} C X (not necessarily distinct) such
that for 1=i =k,

un(T)=N"3{xr(e,.): n=N}—>u(T.)) as N— +x.

(ii) Moreover if u gives all points measure 0, the terms e, in (i) may
be chosen to all be distinct, and in fact we may find a countably infinite
family of such sequences {e%} satisfying (i) with e®=¢e%) iff n = m and
j =r and such that ux(T,) is the same when computed on all sequences
{e?}.

Comment. The proof is in fact constructive, informally speaking.

Proof. Partition U{T,:1=i=k} into 2*—1 disjoint subsets
N{C,:1=i=k} where C, €{T, T} and not all C, = T. Ignoring those
subsets which have measure 0, list the remaining in some order:
E, .-+, E, (r=2*—1). Therefore all E, are pairwise disjoint, of positive
w measure, and any 7, is the union of an appropriate subfamily of the E;
and a set of u measure 0. Now to the {E,} correspond disjoint intervals

I, of [0, 1) of the same (Lebesgue) measure, e.g. E, <> [0, u(E,)) and
E o[pw(U{E:i<j}), u(U{E:i=j}) for 1<j=r

Note that u(U{E,: 1=i=r})=u(U{T,:1=i=k}), and consequently
if the I, do not cover [0, 1) we must have X — U{T,: 1 =i = k} of positive
w measure (and therefore # ). Now let {x,} be a sequence in [0, 1)
uniformly distributed in the classical sense, e.g. the fractional part of na
for any irrational a. The sequence {e,} is chosen as follows: if x, € I
choose e, to be any point in E, and if x, is not in any I, (implying the I; do
not cover [0, 1)) choose e, to be any point in X — U{T,: 1=i=k}#J.
It is immediate that any sequence {e,} chosen in this fashion satisfies
(). Part (ii) follows since any set of positive measure must now contain
an infinity of points and consequently may be written as the disjoint
union of a countable infinity of infinite sets. Now it is not difficult to see
that if the selection of the {e,} as above is done recursively we need not
repeat any term, and moreover, by the preceding sentence, in a countable
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infinity of ways with no term used twice in the entire array. Finally, that
un(T;) is independent of the sequence is trivial from the construction
since it only depends on the distribution of {x,,-- -, xx} in [0, 1).

LEMMA 2.9.  Using the notation of Lemma 2.8, let %' be a countable
subfamily of %. Then

(1) there exists a sequence {e,} C X (not necessarily distinct) such
that un(T)— u(T) as N— +© for all TE Y

(i) moreover if u gives all points measure 0, the terms e, in (i) may
be chosen to all be distinct.

Comment. The full analog of Lemma 2.8 (ii) is in fact seen to be
valid but is of no use here.

Proof. List the sets in 2’ sequentially as {T;}, and by Lemma 2.8 for
each k =1,2,---. Choose a sequence {e, «} such that uy(T;)— u(T;) for
1 =i = k (computed with respect to {e, . }). Therefore there is an index N;
such that for 1=i =k,

@ w(T)=Ni' 3 fnlen): n =N <

Next let {w,} be any sequence tending to + %, and let {M,} be any
sequence of positive integers chosen such that X, MN, = w,N,
(n=2,3,---) with N, as in (2). This may be arranged by letting M,
tend to + o sufficiently rapidly, e.g. if M,.,= w,N,/N,_, (n =2,3,---).
Then the desired sequence {e,} is obtained by successively running
through the first N, terms of {e, ,} M, times, the first N, terms of {e, .} M,
times, etc. The verification of (i) is now a simple exercise in Cesaro means
whereas (ii) follows from (ii) of Lemma 2.8 upon modifying the construc-
tion above appropriately.

LEMMA 2.10. Let K€ ¥, and B € J. Then there is a countable
subfamily 5' C ¥, such that given any b € B, and € > 0 there corresponds
aT=T(b,e)E KX such that TC Kb and A(Kb—-T)<e.

Proof. Fix a positive integer n, and by [3, 1.7 (i)] choose U =
U, € %,N . such that U C K and A (K — U)< 1/n. As in the proof of
[3, 1.5], choose O = O, an open symmetric neighborhood of the identity
e such that UO>C K. Since B C OB is compact there is a finite cover
U{Ob:1=i=k} of B, b €B for 1=i=k. Consider the sets
UOb,---,UOb.: for b€ B, b€ Ob iff b € Ob, and consequently
Ub C UOb, CUO* C Kb implying A(Kb— UOb))=A(Kb— Ub)=
A(K—-U)<1/n, and thus the finite family UOb, 1=i=k, inner-
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approximates all Kb, b € B, to within 1/n in measure. The family
obtained by taking all the UOb, for n = 1,2, - - - is the required countable
family J'.

LemMa 2.11. Let {f,} be a uniformly bounded sequence of n
measurable functions on a finite measure space (X, ) such that:

O [ fodi =0, all n, G lim, 20 p—aes
then
€)) flf,, |du —0, (2) |f.| =0 in measure on X.

Proof. Fix e€>0 and let E,=E,(e) be defined by E,=
{x € X: fi(x)> — € for all k = n}. Then since lim,f,(x)=0 n—a.e. we
must have w(E,) 1 w(X) (or w(E;)|0) by Fatou. Also if X,=
{x € X: f.(x) <0} we obtain

ozjx; fodu = — en(E,)— Mu(E)

. Consequently lim, frdu =

fa
x;

— e (X) is valid for all € >0, and therefore l_i_n_1,,fxr f.dw = 0. But this

where M is a uniform bound for all

implies f fodu —0 and also f f.du = —f f.du —0 and thus
Xz Xn Xn

[ 1

LEmMMA 2.12. Let K€ #, and A € ),. Then there is a sequence
{e.} C A such that if for TC A we set

du — 0. Of course (2) is an immediate consequence of (1).

un(T)= NS {xe(e): n =N} and  gu(b) = un(K'b N A)
then
gv(b)—=> A(A)Y'A(K'b N A) in measure on KA.

Proof. Upon applying Lemma 2.10 with K replaced by K™' and B
by KA we obtain a countable #' C ¥, such that given any b € KA and
€ >0thereisaset T € #'suchthat TC K'b and A(K™'b — T) < e. Now
set X ={TNA:TEX'}. Then since A(K'bNA)-TNA)=
A(K'b—T)NA)=A(K'b - T)< ¢, we see that the countable family
2’ approximates {K'b N A: b € KA} from within arbitrarily closely in
measure. Now apply Lemma 2.9 (with u =A(A)'A, X =A4, 2={KN
A: K € J}) and let {e,} C A be a sequence such that ux(T)— u(T)=
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A(A)Y'A(T) for all TEZ'. Since gn(b)= un(K'b N A)= un(T) for
TCK'bNA, the inner approximating property of 3’ implies
limygu(b)Z A(A)'A(K'b N A) for all b in KA. Now set fyu(b)=
gv(b)—A(A)'A(K'bN A), and apply Lemma 2.11 (with X = KA,
p =A|KA): first trivially |fy| = 1, and hypothesis (ii) has just been
verified above. It remains to verify (i):

LA fn(b)dr(b) = LA gN(b)dA(b)—LA AMA)Y'A(KT'b N A)dr(b)

NS xewsedd® -2y [ [ xew@dr@)dare)

n=N J K.

=N ;N s Xken (D) dA (D)= A(A)! L {f“ XKa(b)d)\(b)} dA(a)

(since e, EK'bN A iff b€ Ke, and a € K™'b iff b € Ka)

=N"'> A(Ke, NKA)=A(A)'| A(KaNKA)dA(a)

=N )\(Ke,,)—/\(A)"f A(Ka)dr(a)=A(K)—A(K)=0.

We now conclude that |fy|—0 in measure on KA, which is the
assertion of Lemma 2.12.

We are now in a position to prove the following strengthened form
of [3, 2.3].

ProrosiTioN 2.13 (The Fundamental Inequality, Strong Form): If
A€EJXN, and K € J, and S is continuous at <, then

AMA)'S(KA)= A(K)'S(K).

Proof. Fix K€ #, and A € ¥, and let {e,} C A be the sequence
described in Lemma 2.12. We consider

N7 S(Ke)=S(K);
=N
by Proposition 1.6, since U{Ke¢;:j=N}C KA,

N 2 S(I;)=S(K)
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where
L=10N)= {beKA: T x (b))

= {b EKA: ';N XK"bnA(e,,)gj}
={bEKA: gu(b)=j/N},

using the notation of Lemma 2.12. But by the same Lemma,
gn(b)—=> A(A)'A(K'bNA)=A(A)'A(K™) in measure on KA, and
consequently for any € >0 we must have

B) AX{pEKA:gu(b)ZA(A)Y"AM(K)+e€}))—0 as N— +ox,

i.e. for j/INZA(A)'A(K™")+€ we have A(I))—>0 as N— + o (uni-
formly for j = N(A(A)'A(K™ ")+ €). Now write

N7 2, S()=N" ZAS(L): jIN < AA)'A(K )+ e j= N}
+ N7 {S): jINZAA)Y'A(K ") +e j=N}

Since I, C KA always and consequently S(K A)= S(I;) always, the first
term on the right is bounded below by N [N(A(A)'A(K™") + €)]S(KA)
where [ X] is the greatest integer less than X. On the other hand, since
the I; are nested the second sum is trivially bounded below by S (I;) where
J=[NA(A)'A(K")+ €)]. Therefore

(4) NTINQAAY'MK)+e]S(KA)+ SUnvamyaxya) = S(K)

for all positive integers N and € >0. But for fixed e >0 upon letting
N — + in (4) we obtain

A(A)Y'A(K )+ €)S(KA)= S(K)

since S is continuous at & and A(Inaayux—eea)—0 by (3). The
proposition follows upon letting € | 0.

Theorem 2.6 follows immediately from Proposition 2.13 since an
analogue of [3, 2.4] may now be proved with %, instead of %, N ¥, in the
last inequality. Corollary 2.7 is immediate since inf{M(K): K € ¥.}
finite trivially implies S must be continuous at ¢J. Note in particular
that the Corollary shows that if inf{M;(K): K € %.} is finite then so is
inf{Ms(K): K € %,N .} (this much is trivial) and they are equal in case
F#J, i.e. if G is unimodular and amenable.
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Moreover, we have the following partial converse to Theorem 2.6:

THEOREM 2.14. If S is regular and for all {A}EF#D
lim, M (A, ) exists (possibly depending on {A,}), then the limit is in fact
independent of {A,}JEF and equals inf{M;(K): K€ X.}=
inf{Ms(K): K € %,N ¥.}. Moreover (assuming F # () this is the case iff

(i) inf{M(K): K€ H,NH.} = —x or

(i) S is continuous at .

Proof. From the comment immediately preceding the statement of
Theorem 2.14, we see that

inf{M;(K): K € #.} <inf{M;(K): K€ ¥X,N K.}

iff the former is —o and the latter is finite. If this is the case let
{K,} C . be chosen such that Ms(K,)= A(K,)'S(K,)— — . Next, fix
any {A,}€ o C %, implying lim, Ms(A,)=inf{M;(K): K€ ¥X,N ¥}
(> — ) by Theorem 2.2. Now since [A, ]« # J implies A (A,) = A(K) it
follows that lim,A(A,)= +«. We now wish to expand {A.,} a-la
Proposition 1.2 (v) by {B,} where each B, is an appropriately chosen
disjoint union of right translates of a set K, for “large” n while A (B, ) is
of smaller order than A (A, ) whereas S(B,) is of larger order than S(A,).
The technical details follow, where for simplicity and without loss of
generality we assume M (K,)< —n and A(K,) T +o (if Kg, 1=si=r,
are disjoint

M(U{Kg:1=i=r})=(A(K))'S(U{Kg:1=i=r})

= (rA(K))" (2 (S(Kg):1=i= r}> = A(K)"'S(K) = My(K)).

Now consider the real sequence {2n’?A (K,)} which tends monotonically
to + o, and choose «a, such that @ > «, implies A (A,) = 2A(K)). Then for
each a > «, define the positive integer n = n(a) by

2RPA(K) = A(AL) <2(n +1)PA(K,.)

and note in particular that lim, n(a)= + since lim,A(A,)= + . For
@ > a, then choose B, to consist of N, disjoint right translates of K,
where N, =[A(A.)/n'"?A(K,)]=2n = 2. For completeness take B, = &
for all other a. Consequently, for a > a,,

A(B,) = N.A(K,) = [A(A,)/n A (KA (K,)
= (A(A)/nA KA (K,) = A (AN,
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and therefore lim, A (A,)'A(B,) = 0. Thus by Proposition 1.2 (v) we have
{C.} € F where C, = A, UB, for all a. Also by the subadditivity of S,
for a > «a,

S(B.)= N.S(K.) g% (A(A)n ") (A (K.) ' S(K,)),

since [x]=1x for [x] =2, and consequently

M;(C.) = A(C)'S(G) = A(C)S(B.)
= A(G) M (A) (A (AL) 'S (B.))
= (MG AMA M (K, )2n?) < A(C)'A (AL (— n'?)2),

since M,(K,)< — n. Therefore lim M,(C,)= —» since A(C,)'A(A,)
—1and n =n(a)— +x as a ‘“‘gets large”. It is now easy to combine
{A.} and {C,} into a single net in & on which M, does not converge by
stipulating that A, (or C,)is “further out” than C, (and A,) iff a > a’.

We have shown that if inf M is different on %, and ¥, N ¥, then
lim, Ms(A,) does not necessarily exist for {A,} € %. But conversely, by
[3, 2.4], if they are equal then lim, Ms(A,) always equals this common
value for {A,} € % Thus lim, Ms(A,) exists for all {A,} € Z iff inf M
is equal on X, and #,N ¥., and in this case lim, Ms(A,) always equals
the common value.

The last assertion is now also clear since (i) or (ii) imply inf M; is the
same on ¥, and ¥, N ¥. (see Theorem 2.6 for (ii)). Conversely, if the
common value is — « then (i) is true whereas if they are both finite and
equal (ii) is trivially true.

We conclude this section with the following:

ProrosiTioN 2.15.

1. (strong converse to Proposition 2.13): If A(A,)'S(KA))=
MK 'S(K) forall K € #, and one A, € K, then S is continuous at .

2. Siscontinuous at J iff {K,} C ¥, and K, D K., always implies
inf Ms(K,)> — .

Comment. The second assertion essentially shows that S is con-
tinuous at & iff a “Lipschitz condition” holds at (J.

Proof. 1. Choose {K,} C¥ such that K, D K,,, and A(K,)—0. By
the regularity of A we may find {U,} C¥#, such that K, C U, and
A(U, - K,)—0. We may assume U, D U,,, also by considering U} =
N {Uy: k = n} if necessary. Clearly A(U,)— 0 and S(U,) = S(K,), so if
we initially assume {K,}C%, and show S(K,)— S(Z)=0 then the
general case follows. Upon taking K = K, in the inequality,
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A(A)'S(KIA) = A (A)'S(KLAp) = A (KL)'S(K,),

since K, C K, and S is monotonic. Since K, C K, C K, (compact), the
modular function A is bounded away from 0 and + « on K, uniformly in
n and consequently

A(K.) = CAK,)™

for an appropriate C >0 independent of n. Consequently (since S(K,)
=0)

A(A)'S(K A = CA(K,)'S(K,),
or
A(A) 'S (K AN (K,)/C = S(K,)=0.

But this clearly implies S(K,)— 0 since A (K,)— 0 with n (and the other
terms on the left are independent of n) and we are done.

2. Assume S is continuous at J and {K,}C¥. with K, D
K.... As in the proof of 1 take {U,} C ¥, with U, D K, and A(U,) <
2A(K,) and without loss of generality assume U, D U,.,. Then

M. (U,) = A(U,)'S(U,) = A(U,) 'S (K,) <2 A(K,) 'S (K,) = 1 M. (K,).

Consequently M;(U,) bounded below implies Ms(K,) bounded below.
Therefore we need only verify (2) for {K,}CJ¥#, The fundamental
inequality implies, upon fixing any A = A, € ¥,

A(A)'S(K, Al = A(Ay)'S(K,Ag) = A (K)'S(K,)
= CA(K,)'S(K,) = CM(K,)

for some C >0 independent of n by the same argument as in the proof of
(1). Thus A(A))'S(K,A,)/C =inf Ms(K,), and we are done as the
converse implication is trivial.

3. Regular set functions S and their relation to
summing sequences. The question arises as to how useful the
Fglner sequences (or nets) are with respect to averaging regular set
functions. One might initially suspect that they would be rather successful
but the following simple example shows otherwise:

ExamMpLE 3.1. It is readily verified that S(E)= — A(E") is regular
where E’ is the interior of E. Moreover, it is easy to see that
inf{M(K): K € #.} = inf{M(K): K€ ¥#,N ¥#.} = —1 and S is continu-
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ous at J. However, if we take G = R and consider the strong summing
sequence {A,} where

[0,n] , neven
A= {

[0,n]N I, n odd, where I denotes all irrational numbers.

Then Ms(A,) alternates between 0 and 1 and, of course, has no limit as
n— +o,

Consequently, even if S is continuous at J, strong Fglner summing
sequences need not average S. This appears to be since S may be rather
““discontinuous” with respect to A whereas the Fglner condition is not
quite so sensitive. Nevertheless, in Theorem 3.3 we shall state conditions
on S which are sufficient for the utilization of Fglner-like sequences in the
averaging of S. For technical simplicity we assume G is o-compact and
consequently consider sequences rather than nets [2, Theorem 4 and
Proposition 1]. Before proceeding to the theorem we need the following:

Lemma 3.2. (i) If K and A are in ¥, 6 >0, and
AMKAAA)<ar(A),
there exists A* = A(8,a) EH, A* C A such that A\(Ka — A) <, for all
a€A* and A(A*)=Z A(A)(A — (a/8)A(KT)).

(i) Also, if K€ ¥, and & > 0 are fixed and {A,'} is a (right) strong
Folner summing sequence in the unimodular group G, there exists{A %} C X,
A% C A, suchthat A\(A,)'A(A%*)—1and

AM(Ka—A,)<8 forall a€ A%

Proof. Let E={a € A: AX(Ka— A)=§}. E is clearly measurable
and moreover

L AMKa - A)d\(a) = j UK ) X,(a(b)d)\(b)} dA(a)

- LA_A {L_ XKa(b)d)\(a)} dr(b)

= LAA {L )(K--b(a)dA(a)} dA (b)
= LH A(K7'b)dA(b) = A(KA — A)A(K™)= A(KAAA)A(K™)

< aX(AN(K).
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But clearly
fA(Ka—A)dA(a)zf ddr(a)=8A(E),

and consequently
A(E) = (a/8)A(KTHA(A),

implying if A*=A —E, A(Ka—A)<¥d fora€ A* and
AMA*)=A(A)= A(E) = (1- (a/8)A(KDA(A),

as needed. Statement (ii) follows upon taking A = A, and choosing
A*= A7 as indicated in (i) since for any K in %,

AMKAAA,)< anA(A)

where a, — 0 by inversion invariance and the defining property of {A '}
and consequently A(A,)'A(A %)= (a./8)A(K)—1.
We are now ready to prove:

THEOREM 3.3. Let G be unimodular and amenable, S be a regular
set function which is continuous at & and upper continuous on ¥, and
{A.}C X, satisfy A(A,)'A(gA,AA,)—0 for all g € G (i.e. {A;'} is a
(right) weak Fglner summing sequence in G). Then

lim Ms(A,) = inf{My(K): K €%.} = inf{M(K): K € %,N ¥.}.

Proof. The second equality follows from continuity at J. We first
prove the result for a (right) strong Fglner summing sequence {A,'} in G,
1.e.

AA) ' AMKAAA)=A(A)A(AK'AAL)—0

for all K € %, K# &, where unimodularity has been used to obtain
inversion invariance of A. Fix K€ ¥, and € >0. Since S is upper
continuous at K by Proposition 1.5 (i) there is a 6 = 8(e, K) > 0 such that
K*e X, K*CK, and A(K - K*)<é implies S(K*)< S(K)+e. Now
for this K and 8 >0, apply Lemrma 3.2 (ii) to obtain the sequence
{A*}. First, since

AMKa—A,)=A(Ka—-(KaNA,))=AK-(KanNA,a")<8é
foralla € A} (setting K* = (Ka N A,)a"') we have

S(KaNA,)=S(KaNA,)a")<S(K)+e.
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Next let {e,} be the sequence in Lemma 2.12 corresponding to K and
A = A,. Moreover, in light of Lemma 2.9 and the proof of Lemma 2.12,
the {e,} also may be chosen so that u,(A*)— w(A,)=A(A%)'A(A})(in

the notation of Lemma 2.8). Following the proof of Proposition 2.13 (and
using similar notation),

N'S S(L)SN™' 2 S(Ke,NA,)
j=N

j=EN

=N1T Y SKeNA)=N' > (S(K)+e)

j=N,;EAX J=EN, 6 EAL
= un(AD(S(K) + €,
where

1={2€6: 3 x®)2 ]

= {a EA,: iSEN )(Kel(a)ij}

={a€A,: gn(a)Zj/N}C A.
Consequently for any positive integer j,,

Uo/N)S(An) + S(Lp) = (A7) (S(K) + €).
Now fix p>0 and choose j,=[N(A(A,)"'A(K)+p)]. Upon letting
N — + « and reasoning as at the end of the proof of Proposition 2.13 we
obtain
(A (A)A(K) +p)S(A) = A(A,) A(AT)(S(K) + €).

Next letting p | 0 first and then n—+ o we finally obtain (since
A(AL)A(AY)— )

(Hnrﬁ )\(An)“S(A,,)> A(K)< S(K) + e,
and since the left side does not depend on ¢,
lim My(A,) = A(K)'S(K)=M(K) forall K€,
and consequently,

lim My(A,) = inf{M(K): K € .} = inf{Ms(K): K € %, N .}
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and the theorem is proved if {A;'} is strong Fglner. However, if {A;'} is
weak Fglner by [2, Theorem 15] there exist A% C A, such that

AA)AAHD=AAD)AATH—1
and {A %'} is strong Fglner. Now S(A,)= S(A?%) implies
M;(A.) = A(A,)'S(A) = A(A)'S(AT)
=(A(AT)'S(AT)A(A)TA(AT)
= Ms(AT)(A(AL)TA(AY)),

and consequently,

lim Ms(A,) = lim Ms(A %)

which equals inf{M(K): K € ¥.,} as we have already shown and the
theorem is proved in general.

Comment. Lemma 3.2 and Theorem 3.3 were proved assuming
implicitly that KA is measurable. Otherwise, as by our convention, A
denotes inner measure and straightforward modifications of the proofs
cover this contingency.
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