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AVERAGING STRONGLY SUBADDITIVE SET
FUNCTIONS IN UNIMODULAR AMENABLE GROUPS II

W. R. EMERSON

This paper continues work initiated in Part I. The central
question is one of characterizing a net {Aa} of Borel sets in the
group G which averages a so-called regular set function S on G
in the sense that λ(Aa)~1S(Aa) has a limit (depending only on
S), where Λ is Haar measure. In Part I a sufficient condition for
{Aa} to always average was derived; here we show that a
"natural" relaxation of this condition is no longer sufficient for
all regular S, at the same time essentially characterizing those S
which may still be averaged. Moreover, the role of F0lner
summing sequences is considered in this context. Finally, proper-
ties of regular set functions are derived which may be of
independent interest.

1. Definitions, notation, and some generalities. The
notation and terminology is the same as [3]. We also will have frequent
cause to refer to the results and techniques of [3], and consequently there
is a strong dependence. Throughout the topological group G is assumed
locally compact and noncompact and equipped with a fixed right
invariant Haar measure λ, % = JK{G) is the set of all precompact Borel
subsets of G, 3f+ = {K G %\ λ(K) >0}, %0 = {KeW: K open}, and for
Λ K C G w e define [A]κ={gGG: KgCA}. Finally as in [3], λ(E)
denotes inner measure in case E is not measurable, e.g. some [A]κ or
KA.

DEFINITION 1.1. A net {Λα} of sets in J£+ is said to be:
1. Admissible, {Aa}<Ξsέ, iff limaλ(Aa)

1λ([Aa]κ)= I for all
K GΞ JtQf

2. Full, {Aa}<Ξ&, iff l iπ^λCAJ 'λ t fAjK)- ! for all K E 3Γ0,
3. Stable, {Aa}E^ iff lim λ(KAay

1λ(Aa)= 1 for all KE%0,

4. Translative, {Aa}<Ξ3~, iff λ(Aa)
ιλ(kAaAAa)->0 uniformly for

kEK, for all K (Ξ 5Γ0.

Comment. 3£0 in the above definition may be equivalently replaced
by any subfamily of % which is cofinal under inclusion.

The following result gives some basic properties of these nets, some
already proved in [3] and the others straightforward and left to the
reader:
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PROPOSITION 1.2. (i) si? 0 iff 9ϊ 0 iff <fϊ<Z i# SΓ/0 iff G is
unimodular and amenable.

(ii) // G is discrete, sέ = 2F = £f = 2Γ, and otherwise dC& and
£f C3~ properly and no other inclusions hold.

(iii) {Λα}E £f(2Γ) iff {A~1} is strong (weak) summing (in the sense
of [2]) in unimodular G.

(iv) {Aa}Esί and {Ba} from % such that λ(Aay
ιλ(Ba)-*0 implies

{Ca}Esi where Ca = AQ U Ba.
(v) {Aa}<Ξ&and \Ba} from X such that λ{Aa)

xk{Ba)->0 implies
{Ca}<E& where Ca = Aa U Ba.

The following definition from [3] is needed:

DEFINITION 1.3. f c = { J ( G %\ λ(K) = λ(K)} is called the class of
weak continuity sets in G.

NOTE. Every compact set is a weak continuity set.

We conclude this section with the definition of the set functions S
which we shall consider as well as the basic "rearrangement" inequality
for such S:

DEFINITION 1.4. (a) A set function S: 3{—> R is said to be regular
iff

(i) S^O ? S(0) = O?

(ii) S(A UB)+S(A ΠB)^S(A)+S(B) for all A,BEJ{,
(iii) S(Ag) = S(A) for all A E X, gE G.
(b) A set function S: Jf-^R is said to be upper continuous at

Ko E % iff {Kn} C X and Λ (K0AKn) -> 0 implies

\unS(Kn)^S(K0).

(c) A set function S: 3Γ—>•/? is said to be upper continuous on %
iff S is upper continuous at each KQ E JC.

(d) S: J{-^ R is said to be continuous at 0 iff {Kn} C5Γ such that
KnDKn+ι and λ(Kn)-*0 implies S(Kn)-*S(0).

Equivalent formulations for regular S are contained in:

PROPOSITION 1.5. (i) The regular set function S is upper continuous
at K{) iff for every e > 0 there corresponds a 8 = δ(Ko,e)>0 such that
K E 9ίf, K C Ko and λ(K0-K)<8 implies S(K)< S(K0)+e.

(ii) The regular set function S is continuous at 0 iff given K E JK and
e >0 ί/ιer<? corresponds a δ = δ(K,e)>0 such that E C K, EE%, and
λ(E)<δ implies S(E)> - e.
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Proof. If (i) is violated at Ko for e = e0 > 0 then for δ = 1/n we may
choose K = KnCK0 with λ(K0- Kn)< 1/n and S(Kn)^ S(K0)+ e0. But
clearly λ(K0ΔKn)->0 and limS(K n)^ S(K0)+ e0 which violates (b).
Conversely, if λ(K0ΔKn)< 8 then K = KnΠK0CK0 and also
λ(K0- K)^ λ(K0ΔKn)< 8 implying S(K)<S(K0)+e by (i). But by
the monotonicity of S, S(Kn)^ S(K) implying lim S(Kn) < S(K0)+ e
(since A (K0ΔKn) < 8 for n sufficiently large, where δ = 8(K, e)) valid for
all 6 > 0 and thus ]im S(Kn) ̂  S(K0) and (b) is verified.

The proof that condition (ii) implies (d) is similar (K = Ku E = Kn

for n sufficiently large). Conversely if (ii) is violated for K G l and
6 = e0 > 0, for each integer n there corresponds an E = En C K,
En E 3T, and satisfying λ(En)< ί/n2 whereas S(En)^ - e0. Set Kn =
U{Ej'. j ^ π}, implying S(Kn)^ S(En)^ - e0, Kn D Kn+U and λ(Xn)-^0,

violating (d) since S(0) = 0.

PROPOSITION 1.6. Let SiJί-^R satisfy S(K U T)+ S(K Γι T)^
S(K) + S(T) for all K, T E 9£ Then /or any Ky E 3ίf, 1 ̂  / ̂  n,

7 = 1 7 = 1

where

Proof. Well known, readily shown by induction on n the given
condition being the case n = 2.

2. Full nets and regular set functions S. In this section
we investigate necessary and sufficient conditions on S to insure that it is
"successfully" averaged on full nets. First a notationally convenient
definition and a basic result from [3]:

DEFINITION 2.1. For any function S:J{+-+R let MS(K) =
λ(K)ιS(K), the average of S on K, for K G X+.

THEOREM 2.2. IfS is any regular set function on % and {Aa} E si,

lim Ms{Aa) = inί{Ms(K): K e Xe Π X+}
a

= inί {Ms(κy. K<ΞWC nau.

Now since M^S* (for dj^<Z) and G nondiscrete) the question
remains as to whether Theorem 2.2 (or some modification) remains true



356 W. R. EMERSON

for {Aa}E 9 without further restriction on 5. The following example
due to Banach [1], after simple reworking, shows this is not the case:

EXAMPLE 2.3. There exists a finitely additive translation invariance
measure m0 on the Borel sets of the circle — realized as [0,1) — and a
Borel subset N of Lebesgue measure zero, A (N) = 0, for which mo(N) =

COROLLARY 2.4. There exists a finitely additive translation in-
variant measure m on % = J{(R) such that m(N)= m([0, 1))= 1 for a
Lebesgue null Borel set N C [0, 1).

Proof For A G X, define m(Λ) = Σ {mo({(A + n) Π [0,1)}):
n G Z}, m0 as in Example 2.3. That m has the desired properties is
readily verified, where N is the set referred to in Example 2.3.

PROPOSITION 2.5. There is a regular set function S on % = %{R)
such that given any / ^ - 1 there exists a sequence {Cn} = {Cn(l)} in 3>
satisfying limnMs(Cn)= I. Moreover, it follows that we may also take
I = -co above, and in general Ms(Cn) need not tend to a limit at all for
appropriate {Cn}G^.

Proof Of course An = [0, n] is a full sequence in R. Consequently
by Proposition 1.2 (v) if Bn=Bn(l)= U{i + N: / = 1,2, , [-/n]},
where [x] is the greatest integer^x and N is from Corollary 2.4,
Cn = Cn(l) = An U Bn is also a full sequence since Bn is a (Haar) null
set. Now if 5 == - m where m is from Corollary 2.4 it is immediate that
S(Cn)= -[- In], λ(Cn)= n, and consequently Ms(Cn) = -[-/«]/«->/
as asserted. The final sentence of Proposition 2.5 follows easily from the
first.

Whether an analogue of Proposition 2.5 is valid in a general
amenable, unimodular, nondiscrete G has not been investigated but
should follow from known methods of creating translation invariant
functionals in amenable groups. At any rate, we see that in general full
nets do not "average" a general regular S and some restriction is
necessary. Our basic result is the following sufficient condition, and a
corollary:

THEOREM 2.6. // S is regular and continuous at 0, then for any
{Aa}E & we have

(1) lim Ms(Aa) = inί{Ms(K): K G X+} = inί{Ms(K): KE3f{0Π 5TC}.
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COROLLARY 2.7. // S is regular and inί{Ms(K): K G X+} is finite,
then equation (1) above is valid for any {Aa}G 3*.

The proof of Theorem 2.6 proceeds by a series of lemmas:

LEMMA 2.8. Let X be a set, X a field of subsets of X, and μ a finitely
additive nonnegative measure on X normalized by μ(X) = 1. Then for
any T , ε X , l i i έ k ,

(i) there exists a sequence {en}CX (not necessarily distinct) such
that for 1 g i S k,

as N->+«>.

(ii) Moreover if μ gives all points measure 0, the terms en in (i) may
be chosen to all be distinct, and in fact we may find a countably infinite
family of such sequences {e^} satisfying (i) with e(i)= e$ iff n = m and
j = r and such that μN(Tt) is the same when computed on all sequences

Comment. The proof is in fact constructive, informally speaking.

Proof Partition U {Γ,: l^i^k} into 2k - 1 disjoint subsets
Π {C,: 1 ̂  i ^ k} where Q G {Tt, T] and not all C, = T\. Ignoring those

subsets which have measure 0, list the remaining in some order:
Ex, , Er (r ^ 2k - 1). Therefore all E} are pairwise disjoint, of positive
μ measure, and any Γ, is the union of an appropriate subfamily of the Eί

and a set of μ measure 0. Now to the {E,} correspond disjoint intervals
I, of [0,1) of the same (Lebesgue) measure, e.g. £Ί<->[0,μ{Eλ)) and

E,<»[μ(U{El:i<j}),μ(U{Ei:i^j})) for Kj^r.

Note that μ (U {E,: 1 ̂  i; ^ r}) = μ (U {Γ,: 1 ̂  / ̂  /c}), and consequently
if the Jy do not cover [0, 1) we must have X - U {Tt: 1 ^ i ^ /c} of positive
μ measure (and therefore ^ 0 ) . Now let {xn} be a sequence in [0,1)
uniformly distributed in the classical sense, e.g. the fractional part of na
for any irrational a. The sequence {en} is chosen as follows: if xn G 7y

choose en to be any point in E}, and if xn is not in any /, (implying the J, do
not cover [0,1)) choose en to be any point in X - U {Γ,: 1 ^ / ̂  k} ^ 0 .
It is immediate that any sequence {en} chosen in this fashion satisfies
(i). Part (ii) follows since any set of positive measure must now contain
an infinity of points and consequently may be written as the disjoint
union of a countable infinity of infinite sets. Now it is not difficult to see
that if the selection of the {en} as above is done recursively we need not
repeat any term, and moreover, by the preceding sentence, in a countable
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infinity of ways with no term used twice in the entire array. Finally, that
μN(Ti) is independent of the sequence is trivial from the construction
since it only depends on the distribution of {xu , xN} in [0, 1).

LEMMA 2.9. Using the notation of Lemma 2.8, let Σ' be a countable
subfamily of Σ. Then

(i) there exists a sequence {en}CX (not necessarily distinct) such
that μN(T)-^ μ(T) as N-+ + «> for all TET;

(ii) moreover if μ gives all points measure 0, the terms en in (i) may
be chosen to all be distinct.

Comment. The full analog of Lemma 2.8 (ii) is in fact seen to be
valid but is of no use here.

Proof. List the sets in Σ' sequentially as {T-,}, and by Lemma 2.8 for
each k = 1,2, . Choose a sequence {enΛ} such that μ N (7;)->μ(7]) for
l^i^k (computed with respect to {enΛ}). Therefore there is an index Nk

such that for 1 ̂  / ̂  fc,

(2)

Next let {wk} be any sequence tending to +o°, and let {Mk} be any
sequence of positive integers chosen such that Σk<nMkNk^ wnNn

(n = 2,3, ) with Nk as in (2). This may be arranged by letting Mk

tend to + oo sufficiently rapidly, e.g. if Mn_j g wnNn/Nn^ (n = 2,3, ).
Then the desired sequence {en} is obtained by successively running
through the first Nι terms of {enA} M, times, the first N2 terms of {en2} M2

times, etc. The verification of (i) is now a simple exercise in Cesaro means
whereas (ii) follows from (ii) of Lemma 2.8 upon modifying the construc-
tion above appropriately.

LEMMA 2.10. Let K G J{0 and B G %. Then there is a countable
subfamily J/C C 3f0 such that given any b G B, and e > 0 there corresponds
aT= T(b9 e) G T such that TCKb and λ (Kb -T)<e.

Proof. Fix a positive integer n, and by [3, 1.7 (i)] choose U =
Un G % Π JCC such that UQK and λ (K - U) < ί/n. As in the proof of
[3, 1.5], choose O = On an open symmetric neighborhood of the identity
e such that UO2Q K. Since B C OB is compact there is a finite cover
U{Obii ί^i^k} of β, kEB for l^i^k. Consider the sets
UObu - - , UObk: for b E B, bt G Ob iff fe G O6f and consequently
Ub C [/<% C [/O2fe C Kfc implying λ(Kb - UObt)^ λ(ffi> - Ub) =
λ(K - U)<l/n, and thus the finite family UObh 1 ̂  f ̂  fc, inner-
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approximates all Kb, b E JB, to within 1/n in measure. The family
obtained by taking all the UOh for n = 1,2, is the required countable
family 3T.

LEMMA 2.11. Let {/„} fee α uniformly bounded sequence of μ
measurable functions on a finite measure space (X, μ) such that:

( i ) I f n d μ = 0 , a l l rc, ( i i ) l i m n / n ^ O f t - a . e . ;

then

(1) ί \fn I dμ ->0, (2) |/n | ->0 m measure on X.

Proof Fix 6 > 0 and let En = En(e) be defined by £ π =
{x E X : / f c(x)> - e for all /c ̂  n}. Then since lirnn/n(jc)^0 μ - a.e. we
must have μ(En) ] μ{X) (or μ ( £ : ) j θ ) by Fatou. Also if X~ =
{x E X: fn(x)< 0} we obtain

0^ ί fndμ^-eμ(En)-Mμ(E'n)
J Xn

where M is a uniform bound for all \fn \. Consequently limn fndμ^

- eμ(X) is valid for all 6 > 0, and therefore limn fndμ ^ 0. But this

implies fn dμ -* 0 and also /n dμ = - fndμ ->0 and thus

Jχ; Jx; Jx;
!/„ I d/x -^ 0. Of course (2) is an immediate consequence of (1).

J X

LEMMA 2.12. Let KE.3ίQ and A E 3f{+. Then there is a sequence
{en}CA such that if for T C A we set

N-ιΣ{χΛen):n^N} and gN(b) = μN{K~ιb Π A)

then

gN{b)^ λ(Ayιλ{K-χb C\ A) in measure on KA.

Proof Upon applying Lemma 2.10 with K replaced by K~ι and B
by KA we obtain a countable %' C 3C0 such that given any b E KA and
β > 0 there is a set T E 3Γ such that T C X~!fe and A (Kιb - T) < e. Now
set Σ' = { T Π Λ : Γ E J ' } . Then since λ((K~ιb Π A)-T Π A) =
λ {{Kxb - T) Π A) ^ λ ( X " ^ - Γ) < β, we see that the countable family
Σ' approximates {K~ιb Γ\ A: b E. KA} from within arbitrarily closely in
measure. Now apply Lemma 2.9 (with μ = λ(A)~ !λ, X = A, X = {K Π
A : K G 3ίΓ}) and let { e J C A be a sequence such that μ N (T)-> μ ( T ) =
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λ(Λ)-'λ(T) for all ΓeX' . Since gN(b) = μ^K^b Π A ) ^ μN(T) for
T QK'ιb Γ\ A, the inner approximating property of Σ' implies
limNgN(6)^λ(Λ)-1λ(K;-16nΛ) for all b in KA. Now set /*(*>) =
gN(ft)-λ(A)-1λ(K-'6n A), and apply Lemma 2.11 (with X = KA,
μ = λ|KA): first trivially |/N | ^ 1, and hypothesis (ii) has just been
verified above. It remains to verify (i):

f fN(b)dλ(b)=ί gN(b)dλ(b)-ί λ(A)-1λ(K-ιbΓ)A)dλ(b)
JKA JKA JKA

wfe)Λ(ί»)-A(A)-'f if χκ-b(a)dλ(a)\dλ(b)
JKA UA )

χKeχb)dλ{b)-λ{AΓ ί if χKa(b)dλ(b)}dλ(a)
JA IJKA )

(since en £ K~ιb ΠA iff b E Ken and a E Kιb iff b e Kα)

^iV"1 Σ λ(KennKA)-λ(A)-> f A ( K α Π ί : A ) d λ ( α )
n^N J A

f
J A

We now conclude that |/N |-^0 in measure on KA, which is the
assertion of Lemma 2.12.

We are now in a position to prove the following strengthened form
of [3, 2.3].

PROPOSITION 2.13 (The Fundamental Inequality, Strong Form): //
A G 3C+ and K E J{0 and S is continuous at 0, then

λiAY'SiKA)^ λ(Kι)ιS(K).

Proof. Fix K G 3Γ0 and A G JC+ and let {en}CA be the sequence
described in Lemma 2.12. We consider

N-ιΣs(Ke,)=s(κy,

by Proposition 1.6, since U {Ke,: / ^ N) C
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where
Il=Il(N)=\bEKA: Σ *UΌ^/

= {b(ΞKA:gN(b)^j/N},

using the notation of Lemma 2.12. But by the same Lemma,
g N ( i ) ^ A ( A ) " 1 A ( Γ 1 i n Λ ) i λ ( A ) - 1 A ( Γ 1 ) in measure on KA, and
consequently for any e > 0 we must have

(3) λ({/)GKΛ:g N (fe)^A(A)-'λ(r ')+e}HO as JV^+oo,

i.e. for y'/N ^ λ (A )-'λ (£- ')+€, w e h a v e λ(J,-)-»0 as N-> + <» (uni-
formly for / ̂  JV(A(A)-'A(r')+e). Now write

JV-1 Σ S(I,)=N-J Σ {Sil,): j/N <λ(A)-iλ(K-i)+e, j g N}

Since I} C KA always and consequently S(KA)^ S(Ij) always, the first
term on the right is bounded below by Nί[N(λ(Aylλ(Kι)+ e)]S(KA)
where [X] is the greatest integer less than X. On the other hand, since
the Ij are nested the second sum is trivially bounded below by S(/y) where
/ = [N(λ(A)-ιλ(K-ι)+e)]. Therefore

(4) r 1 [ N ( A ( Λ r 1 λ ( r 1 ) + e]S(KA)+ S(I[N(λ(ArHK->)+e)])^ S(K)

for all positive integers JV and e > 0. But for fixed e > 0 upon letting
jV —> + oo in (4) we obtain

(λ (A )~ιλ (Kι) + e)S(KA )^S(K)

since S is continuous at 0 and λ(/[N(A(A)-iλ(K-i)+e)])—>0 by (3). The
proposition follows upon letting e | 0.

Theorem 2.6 follows immediately from Proposition 2.13 since an
analogue of [3, 2.4] may now be proved with 3ίf0 instead of %c Π % in the
last inequality. Corollary 2.7 is immediate since inϊ{Ms(K): K G 3Γ+}
finite trivially implies S must be continuous at 0 . Note in particular
that the Corollary shows that if inf {M s(l£): K E J{+} is finite then so is
inf {Ms(K): K EiJ{0Π jf{c) (this much is trivial) and they are equal in case

0 , i.e. if G is unimodular and amenable.
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Moreover, we have the following partial converse to Theorem 2.6:

THEOREM 2.14. // S is regular and for all {Aa}
\\maMs(Aa) exists (possibly depending on {Aα}), then the limit is in fact
independent of {Aa}£ & and equals inί{Ms(K): KEJί+} =
inf {MS(K): K G 3*Ό Π J{c}. Moreover (assuming &^ 0 ) this is the case iff

(i) inf {MS(K): K G % Π Xc} = - oo or
(ii) S is continuous at 0 .

Proof. From the comment immediately preceding the statement of
Theorem 2.14, we see that

inf {MS(K): K G %+} < inf {MS(K): KEJί0Π Xc}

iff the former is - oo and the latter is finite. If this is the case let
{Kn}C%+ be chosen such that Ms(Kn) = λ(Kny

ιS(Kn)-+ -oo. Next, fix
any { Λ j E ^ C f , implying limα M s(Aα) = inf{Ms(K): K G Xo Π Xc}
(> - oo) by Theorem 2.2. Now since [Aa]κ/0 implies λ(Λα) ^ λ(K) it
follows that limαλ(Aα) = -foo. We now wish to expand {Λα} a-la
Proposition 1.2 (v) by {Ba} where each Ba is an appropriately chosen
disjoint union of right translates of a set Kn for "large" n while λ(J5α) is
of smaller order than λ(Aa) whereas S(Ba) is of larger order than S(Aa).
The technical details follow, where for simplicity and without loss of
generality we assume Ms(Kn)< - n and λ(Kn) f + oo (if Kgn 1 ̂  i: ̂  r,
are disjoint

Ms(U{Kgi: l^i^r}) = (rλ(K))ιS( U {Kgi: 1 ̂  i ^ r})

= MS(K)).

Now consider the real sequence {2n3/2λ(Kn)} which tends monotonically
to + oo, and choose a0 such that a > a0 implies A (Aa) ^ 2λ (X,). Then for
each a > a0 define the positive integer n - n(a) by

and note in particular that liman(a)= +oo since limαλ(Λα)= +°°. For
a > α0 then choose BQ to consist of Na disjoint right translates of Kn

where Na = [λ(Λα)/n1/2λ(Xπ)] ^ 2n g 2. For completeness take Bα = 0
for all other α. Consequently, for α > α0,

^ (A (Aβ )ln 1/2λ (Kπ ))λ («„) = A (Aa )/n1/2,
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and therefore limaλ(Aa)"ιλ(Ba) = 0. Thus by Proposition 1.2 (v) we have
{Ca}E& where Ca = Aα U Ba for all a. Also by the subadditivity of S,
for a > a0

since [jtji^i* for [jt]i^2, and consequently

Ms(ca) = λ(cay
ls(ca)^λ(cay

ϊs(Ba)

= (λ(Cβ)-1A(Aβ))(λ(Aβ)-1S(Bβ))

since Ms(Kn)<-n. Therefore l imM 5 (C α )=-oo since λ(Cay
ιλ(Aa)

—> 1 and n = n(α)-^+oo as α "gets large". It is now easy to combine
{Aa} and {Ca} into a single net in ^ on which Ms does not converge by
stipulating that Aα (or Ca) is ''further out" than Cα (and Aα) iff a > a'.

We have shown that if inf Ms is different on jf{+ and 3ΐ0 Π 3̂ c then
limαM s(Aa) does not necessarily exist for {Aa}E: &. But conversely, by
[3, 2.4], if they are equal then limα M s(Aα) always equals this common
value for {Aa} E ^ . Thus limαM s(Aa) exists for all {Aα} E ^ iff inf Ms

is equal on 3fC+ and 5Γ0Π 5ίf« and i n this case limαM s(Aa) always equals
the common value.

The last assertion is now also clear since (i) or (ii) imply inf Ms is the
same on 3f{+ and 3fCQ Π 9fCc (see Theorem 2.6 for (ii)). Conversely, if the
common value is - °° then (i) is true whereas if they are both finite and
equal (ii) is trivially true.

We conclude this section with the following:

PROPOSITION 2.15.

1. (strong converse to Proposition 2.13): // λ(Aoy
ιS(KAo) =

λ (K~ι)~ιS(K) for all K eJ£0 and one Ao E X+ then S is continuous at 0 .
2. S is continuous at 0 iff {Kn} C J(+ and Kn D Kn+X always implies

infMs(Kn)> -oo.

Comment. The second assertion essentially shows that S is con-
tinuous at 0 iff a "Lipschitz condition" holds at 0 .

Proof. 1. Choose {Kn}C% such that Kn D Kn+ι and λ(Kn)-^0. By
the regularity of A we may find {Un}C3£0 such that KnQUn and
λ(Un - Kn)->0. We may assume Un D Un+ι also by considering U*n =
Π{tΛ: k ^ n) if necessary. Clearly λ(t/π)->0 and S(C7n)^ S(KH), so if

we initially assume {Kn}C3£0 and show 5(Xn)-> S(0) = 0 then the
general case follows. Upon taking K = Kn in the inequality,
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since Kn C iCx and 5 is monotonic. Since KnCK}C Kι (compact), the
modular function Δ is bounded away from 0 and + oo on Kn uniformly in
n and consequently

for an appropriate C > 0 independent of n. Consequently (since S(Kn)

or

But this clearly implies S(Kn)-*0 since λ(Kn)—>0 with n (and the other
terms on the left are independent of n) and we are done.

2. Assume S is continuous at 0 and {Kn}C3£+ with Kn D
Kn+i. As in the proof of 1 take {UH}CX0 with UnDKn and λ(£/„)<
2λ(Kn) and without loss of generality assume [/„ D t/n+1. Then

Ms(J7n) = λίEΛΓSίt/,) ^ λ([/nΓS(ϋ:π)<i Λ(^Γ5(ί: n) = \Ms(Kn).

Consequently Ms(Un) bounded below implies Ms(Kn) bounded below.
Therefore we need only verify (2) for {Kn}C3£0. The fundamental
inequality implies, upon fixing any A = A0€Ξ 3Γ+,

for some C > 0 independent of n by the same argument as in the proof of
(1). Thus XiAoY'SiK.AoyC ^infMs(Kn), and we are done as the
converse implication is trivial.

3. Regular set functions S and their relation to
s u m m i n g sequences. The question arises as to how useful the
F0lner sequences (or nets) are with respect to averaging regular set
functions. One might initially suspect that they would be rather successful
but the following simple example shows otherwise:

EXAMPLE 3.1. It is readily verified that S(E) = - λ(E°) is regular
where E° is the interior of E. Moreover, it is easy to see that
inf {Ms (K): K G X+} = inf {MS(K): K 6 l o n J c } = - l and 5 is continu-
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ous at 0 . However, if we take G = R and consider the strong summing
sequence {Λn} where

([0, n] , n even

[0, n] (Ί /, n odd, where / denotes all irrational numbers.

Then Ms(An) alternates between 0 and 1 and, of course, has no limit as
n —» -hoo.

Consequently, even if S is continuous at 0, strong F0lner summing
sequences need not average S. This appears to be since S may be rather
"discontinuous" with respect to A whereas the F0lner condition is not
quite so sensitive. Nevertheless, in Theorem 3.3 we shall state conditions
on S which are sufficient for the utilization of F0lner-like sequences in the
averaging of S. For technical simplicity we assume G is σ-compact and
consequently consider sequences rather than nets [2, Theorem 4 and
Proposition 1], Before proceeding to the theorem we need the following:

LEMMA 3.2. (i) // K and A are in %+, δ > 0, and

λ(KA ΔΛ)<αλ(Λ),

there exists A * = A(δ, a) G 3ίΓ, A * C A such that λ(Ka - A)< δ, for all
a(ΞA* and λ(A *)i? λ(Λ)(l - (a^)A(iT1)).

(ii) Also, ifK G 3ίf+ and δ > 0 are fixed and {A 1} is a (right) strong
F0lner summing sequence in the unimodular group G, there exists {A *} C 3Γ,
A*nCAn such thatλ(Any

ιλ(A *n)-+ 1 and

λ(Ka-An)<δ for all a G A*.

Proof Let E = {a G A: λ (Ka - A) ̂  δ}. £ is clearly measurable
and moreover

ί λ(Kα-Λ)dλ(α)= ί i f χKa{b)dλ{b))dλ{a)
JE JE IJKA-A J

= f i f χKa(b)d\(a)} dλ(b)
JKA-A U E J

= f i f χκ-.t(
JKA-A UE

^ f
J KA-A

aλ{A)k{K~ι).
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But clearly

ί λ(Ka-A)dλ(a)^ I 8dλ(a) = 8λ(E),

and consequently

λ(E)^(a/8)λ(Kι)λ(A),

implying if A * = A - Ey A (Ka - A ) < δ for a E A * and

as needed. Statement (ii) follows upon taking A = An and choosing
A* = A*n as indicated in (i) since for any K in 3Γ+

λ(KAnAAn)<anλ(An)

where an —»0 by inversion invariance and the defining property of {An1}
and consequently λ(Any

ίλ(A*n)^(an/δ)λ(K-1))-^l.
We are now ready to prove:

THEOREM 3.3. Let G be unimodular and amenable, S be a regular
set function which is continuous at 0 and upper continuous on X, and
{An}CX+ satisfy λ(An)

ιλ(gAnAAn)->0 for all g E G (i.e. {A;1} is a
(right) weak F0lner summing sequence in G). Then

lim Ms(An) = inί{Ms(K): K &3ίf+} = inf{MS{K): K<ΞJ{on %c}.

Proof The second equality follows from continuity at 0. We first
prove the result for a (right) strong F0lner summing sequence {A^1} in G,
i.e.

for all K E 5ζ K^0, where unimodularity has been used to obtain
inversion invariance of A. Fix KEJ{+ and e>0. Since S is upper
continuous at K by Proposition 1.5 (i) there is a δ = 8(e, K) > 0 such that
K*E%, K*CK, and λ(K-K*)<8 implies S(K*)< S(K)+ e. Now
for this K and δ > 0 , apply Lenrma 3.2 (ii) to obtain the sequence
{A *}. First, since

A (Ka - An) = λ(Ka- (Ka Π An)) =λ(K-(KaΠ An)a~ι) < 8

for all a E A * (setting K* = (Ka Π An)a~x) we have

S(Ka Π An) = S((Kα Π A J α ' 1 ) < S(K)+ 6.
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Next let {en} be the sequence in Lemma 2.12 corresponding to K and
A = An. Moreover, in light of Lemma 2.9 and the proof of Lemma 2.12,
the {en} also may be chosen so that μn(A ί)-» μ(An) = λ(A *)~*A(A *) (in
the notation of Lemma 2.8). Following the proof of Proposition 2.13 (and
using similar notation),

JV-1 Σ S(Ij) ^ N-1 Σ S{Kej Π An)

^ N - Σ SiKe DA^^N-1 Σ (S(K)+e)

= μN(A*n)(S(K)+e),

where

= {a<ΞAn: gN(a)^j/N}CAn.

Consequently for any positive integer j0,

(jo/N)S(An)+ S(Iiΰ)^ μn(A*n)(S(K) + e).

Now fix p > 0 and choose jo=[N(λ(An)~ιλ(K) +p)]. Upon letting
N ^ + <χ> and reasoning as at the end of the proof of Proposition 2.13 we
obtain

Next letting p | 0 first and then n —> + oo we finally obtain (since

nή λ(K)< S(K)+ e,

and since the left side does not depend on e,

ϊhΐ Ms(An)^λ(K)-λS(K) = Ms(K) for all K <Ξ %+,

and consequently,

lim Ms(An) = inf{Ms(K): K e X+} = inf{Ms(X): K G 3T0 Π
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and the theorem is proved if {A 1} is strong F0lner. However, if {A;1} is
weak F0lner by [2, Theorem 15] there exist A* C An such that

and {AT1} is strong F0lner. Now S(An)^S(A*n) implies

Ms(An) = λiA^SiAn)^ λ(An)-ιS(A*n)

= (λ(A*ny
1S(A*n))(λ(An)

ιλ(A*n))

= Ms(A:)(λ(An)-1λ(A*)),

and consequently,

lim Ms (An) ^ l imM s (A *n)

which equals inί{Ms(K): K G l J as we have already shown and the
theorem is proved in general.

Comment. Lemma 3.2 and Theorem 3.3 were proved assuming
implicitly that KA is measurable. Otherwise, as by our convention, A
denotes inner measure and straightforward modifications of the proofs
cover this contingency.
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