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SOME CONVERGENCE PROPERTIES OF THE
BUBNOV-GALERKIN METHOD

S. R. SINGH

We generalize the Bubnov-Galerkin method to approximate
the resolvent of the m-sectorial operator associated with a
densely defined, closed, sectorial form in a Hubert space.
Some special cases of interest are also discussed.

1* Introduction* The Bubnov-Galerkin method [3] was original-
ly devised to approximate the solutions of the equations of the form

( 1 ) (*-A)f=g

where A is an operator in a Hubert space, Sίf, g is a vector in J%?
and z is a complex number. The method proceeds with solving the
following set of equations:

, n

where (. |.) denotes the scalar product in Sίf and {φt} c £2f(A) is
some linearly independent (Li.) set in Sίf. £&{•) denotes the domain.
The questions of interest are the existence and the convergence of
the solutions of equation (2). Until recently, the only cases that re-
ceived a detailed treatment have been when A is compact, bounded
or essentially self-adjoint [3, 6]. However, recently the following
result was proven by Masson and Thewarapperuma [2]:

R.I. Let A be symmetric, bounded below by 6, z be at a non-
zero distance from [b, <*>) and {φt} be the orthonormal set formed
from {A%} where h is in &(A{) for each i. Then lim^oo \\Σj%iajΦj -
(z — A^gW = 0, where | |. | | denotes the norm in ^f and AF is the
Friedrichs extension of A.

Consider the following set of equations:

(3 ) Σ ad[z(Φi I Φi) - t(Φ« Φi)\ = (Φi\9) ί = l, - , n ;

where t is a densely defined, closable, sectorial, sesquilinear form in
Sίf. The sector of t will be denoted by S and since it causes no
loss of generality, the vertex will be taken to be one. In the present
note we determine the limit of fn — Σ?=i asΦs a s n becomes large.
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R.I. and some other generalizations of it, will follow from our main
result (Theorem 1).

2* Results* Define a new scalar product (. | .)t on &(t) by
(u I v)t = Re. t(u, v), [1, pp. 309-10] and complete &(t) in the new
metric to a Hubert space Sίft. Let the closure of t be t. We have
that &(t)a&r(ϊ) = ^ c ^ The norm in 3ίf% will be denoted by
||.|| f. Also < f̂(X, Y) will denote the space of bounded operators
with ^ ( . ) c l and range JSP( )<= Γ, and <^(X) = ̂ ( X , X).

LEMMA 1. Lei t &# as m equation (3), {̂ J c ^ ( ί ) and g e
Equation (3) is equivalent to

(4 ) Σ aAΦi I [1 - T(z)]φj)t = -(φt I B^), i = 1, , ra
ii

JB e ̂ ( ^ Jgt), Γ(^) = ( ^ - C) e &(<%%) and Bt is the
restriction of B to

Proof. Since tι = (t — Re. ί) is a bounded form on <^t [1> P 314],
there is a C e ^ ( ^ ) such that

ίt(u, v) = (u I Ci X; u, v e

Also from Ref. [4] pp. 332-3, it follows that there is a unique ΰ e
such that ^(J5) = .^T and for w e

(5 ) (u [ ω) = (w I Bα))f .

In particular, in equation (3), (φt \ g) = (̂ ^ | ΰ f̂)ί and

The assertion now follows from direct substitution.

LEMMA 2. In the notation of Lemma 1, we /wye ίfeαί I?t, C are
closablβ, B is closed and invertible and B~\l + C) = At where At is
the unique m-sectorial operator associated with t.

Proof. Since Bt and C are bounded and densely defined, they
are closable. Since B is bounded and 3ϊ(B) — 3ί?y it is closed.
Invertibility of B has been proven in Reference [4] p. 333.

Now, &{\B-\1 + C)]) c ^ = ̂ ( f ) and for u,ve

(u I B-'il + C)v) = (u I B" 1^

= (u I (1 + C)̂ )* (equation (5))

= ί(u, v)

From the closability of ί, this result extends for %, i; e ̂ t . The
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result now follows from Theorem 2.1, Chapter 6, Reference [1].

THEOREM 1. In addition to the assumptions of Lemma 1 and
2, let {φi} be Li. and complete in §ίft, and z be at a nonzero distance
from S. fn = Σi=i ajφj of equation (3) is then defined for each n
and lim^oo \\fn - (z - At)~ιg || = 0.

Proof. From Lemma 1, equation (3) is equivalent to equation
(4). Also without loss of generality, we may assume {̂ J to be an
orthonormal basis in 3ί?%. It is straightforward to check that (4) is
equivalent to

(1 ~ Tn(z))fn = -PnBg

where Tn(z) = PnT(z)Pn, and Pn is the ortho-projection on the n-
dimentional subspace of 3(?t determined by {&}, i — 1 to n. It
follows, for h e 3ίfu that

Also, since z is at a nonzero distance from S, dist. (1, W(T(z))) =
d' > 0, where W( ) denotes the numerical range. Further, since the
spectrum of Tn, σ(T.)<z(W(T(z)) U {0}), for each n, (1-Tn{z))~ιe

Q with || (1 - TMT1 \\t ^ Vd where d = min. (1, d'). Also
T(z))-1 e

Hence for

[(1 - TJtz)Yι ~ (1 - 2Όs)Πfc||(
= ιi(i - Γ.^-KΓ.^) - f(«)xi - r^r^i i*

f - T(z)Γk\

n—>co

Further, for c/ e

and hence

where

/ - -(1 - f^) )- 1 ^ - -(1 - zBt

= (z — A^g (Lemma 2)
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Assertion of the theorem follows by observing that | | . ||t ^ | | . ||.
For a symmetric t, s = [b, oo) with some b > — oo, C = 0 and A$ = B"1

is self-adjoint.
In the following, fn will stand for Σ j = 1 α ^ as defined by equa-

tion (2).

COROLLARY 1. Let A be densely defined sectorial operator and
z be at a nonzero distance from its sector, {φt} be a Li. basis in
We have that l i m ^ || fn - (z - AF)-'g || = 0.

Proof. Define t of Theorem 1 by t(u, v) = (u \ Av), u, ve
t is closable from Theorem 1.27, Chapter 6 of [1]. Since fe} is a
Li. basis in &(A) and £&(A) is dense in £&(ΐ) = <%?, it is a Li.
basis in Sίft. The result now follows from the fact that At of
Theorem 1 now becomes AF [1, pp. 325-6].

COROLLARY 2. Let A be symmetric, bounded below by b, z be
at a nonzero distance from [b, oo) and {$5j be a Li. basis in &(A).
Then l i m _ \\fn - (z - Ar)"g || = 0.

Proof. The result follows from Corollary 1, by noticing that
the sector of A is [b, oo).

If the set {φt} is taken to be {Aιh} for some h e ̂ (A1) for i =
0, 1, 2, the Bubnov-Galerkin method is called the method of
moments [7]. Since {Alh} satisfies the conditions of Corollaries 1
and 2, the convergence of the method of moments also is established
by these results. The result R.I [2] thus is a special case of
Corollary 2.

In Corollaries 1 and 2 we have considered the case of a densely
defined A. In these results one can replace this condition by requiring
that the form domain of A be dense. However since the Friedrichs
extension is defined only for a densely defined A, the limit operator
At may not be AF. This situation is of a particular interest in
Physics which we describe in brief.

Let A be given, formally, by A — AιΛ- A2, where AL and A2

are symmetric but &{A) — Sf{A^) Π &(A2) is not dense. However
if the form domain of A is dense, the self-adjoint operator At

associated with the form t(u, v) = (u \ (At + A2)v) is a legitimate
operator to describe a physical system [5]. This construction enables
one to include a larger class of interactions in the treatment than
the requirement that A be densely defined [5]. It is obvious that
the Bubnov-Galerkin method enables one to compute the resolvent
of At in this case also, which is of prime importance in Physics.
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