ON CERTAIN g-FIRST COUNTABLE SPACES

KYUNG BAI LEE

In this paper strongly* o-metrizable spaces are introduced and it is shown that a space is strongly* o-metrizable if and only if it is semistratifiable and o-metrizable (or symmetrizable); g-metrizable spaces are strongly* o-metrizable and hence quotient π -images of metric spaces. As what F. Siwiec did for (second countable, metrizable and first countable) spaces, we introduce g-developable spaces, and it is proved that a Hausdorff space is g-developable if and only if it is symmetrizable by a symmetric under which all convergent sequences are Cauchy.

1. o-metrizable spaces. Let X be a topological space and d be a nonnegative real-valued function defined on $X \times X$ such that d(x, y) = 0 if and only if x = y. Such a function d is called an o-metric [16] for X provided that a subset U of X is open if and only if d(x, X - U) > 0 for each $x \in U$. An o-metric d is called a strong o-metric [17] if each sphere $S(x; r) = \{y \in X: d(x, y) < r\}$ is a neighborhood of x; a symmetric if d(x, y) = d(y, x) for each x and y; a semimetric if d is a symmetric such that $x \in \overline{M}$ if and only if d(x, M) = 0.

For a space X, let g be a map defined on $N \times X$ to the power-set of X such that $x \in g(n, x)$ and $g(n + 1, x) \subset g(n, x)$ for each n and x; a subset U of X is open if for each $x \in U$ there is an n such that $g(n, x) \subset U$. We call such a map a CWC-map (=countable weaklyopen covering map). Consider the following conditions on g:

(1) if $x_n \in g(n, x)$ for each n, the sequence $\{x_n\}$ converges to x, (2) if $x \in g(n, x_n)$ for each n, the sequence $\{x_n\}$ converges to x, and

(3) each g(n, x) is open.

Note that (1) is equivalent to: $\{g(n, x): n \in N\}$ is a local net at x, and (2) is equivalent to: $\{g^*(n, x): n \in N\}$ is a local net at x, where $g^*(n, x)$ is defined by $x \in g^*(n, y)$ if and only if $y \in g(n, x)$.

X is said to be g-first countable [1, 20] if X has a CWC-map satisfying (1); first countable if X has a CWC-map satisfying (1) and (3). Semistratifiable spaces [8] are characterized by spaces having CWC-maps satisfying (2) and (3); symmetrizable spaces [4] by spaces having CWC-maps satisfying (1) and (2); semimetrizable spaces [11] by spaces having CWC-maps satisfying (1), (2) and (3).

The following proposition may be found in [18], but we will

give its proof for later use.

PROPOSITION 1.1. A space is o-metrizable if and only if it is a g-first countable T_{i} -space.

Proof. Let g be a g-first countable CWC-map for a space X. Set $d(x, y) = 1/\inf \{j: y \notin g(j, x)\}$. A subset U of X is open if and only if for each $x \in U$, there exists an n = n(x) such that $g(n, x) \subset U$, and hence $g(n, x) \cap (X - U) = \emptyset$, which is equivalent to $d(x, X - U) \ge 1/n$. Conversely, let d be an o-metric on X. Set g(n, x) = S(x; 1/n). Then g is a g-first countable CWC-map.

Part of the following theorem appears in [18]. The remaing part is easily verified using a similar technique to 1.1.

THEOREM 1.2. The following are equivalent:

(1) X is a first countable T_1 -space,

(2) X is o-metrizable by an o-metric under which all spheres are open,

(3) X is o-metrizable by an o-metric d such that $x \in M$ if and only if d(x, M) = 0, and

(4) X is strongly o-metrizable.

The following is a kind of dual character of strongly *o*-metrizable spaces.

DEFINITION 1.3. A space X is said to be strongly^{*} o-metrizable if it has an o-metric d such that $S^*(x; r) = \{y \in X: d(y, x) < r\}$ is a neighborhood of x for each $x \in X$ and r > 0.

Ja. A. Kofner [13] proved that semistratifiable o-metrizable spaces are symmetrizable. But symmetrizability is not a sufficient condition for semistratifiability. In fact,

THEOREM 1.4. For an o-metrizable space X, the following are equivalent:

(1) X is semistratifiable,

(2) X is symmetrizable and semistratifiable,

(3) X has an o-metric d such that each $S^*(x; r)$ is open,

(4) X has an o-metric d such that d(M, x) = 0 if $x \in \overline{M}$, and

(5) X is strongly^{*} o-metrizable.

Proof. $(1 \Rightarrow 2)$. See [13, Theorem 11]. $(2 \Rightarrow 3)$. Let f, g be a symmetrizable, a semistratifiable CWC-map for X, respectively. Set $h^*(n, x) = \text{Int}(f(n, x) \cup g(n, x))$. Note that $h(n, x) \subset f^*(n, x) \cup g^*(n, x)$. This implies that h is an o-metrizable CWC-map (cf. Proposition 1.1) with an additional condition: each $h^*(h, x)$ is open.

Now set $d(x, y) = 1/\inf \{j \in N : y \notin h(j, x)\}$. By the proof of 1.1, d is an o-metric for X. Futhermore, $S^*(x; 1/n) = h^*(n, x)$, which is open.

 $(3 \Rightarrow 4)$. Let d be an o-metric for X such that each $S^*(x; r)$ is open. If d(M, x) = r > 0, $M \cap S^*(x; r) = \emptyset$. This implies $x \in \overline{M}$.

 $(4 \Rightarrow 5)$. Assume $x \notin \text{Int } S^*(x; r)$ for some r > 0. This implies that $x \in \text{cl}(X - S^*(x; r))$. Therefore, $d(X - S^*(x; r), x) = 0$, which is a contradiction.

 $(5 \Rightarrow 1)$. Let d be a strong^{*} o-metric for X. Set g(n, x) =Int $S^*(x; 1/n)$ for each n and x. Now it is easily shown that g is a semistratifiable CWC-map for X.

Note that strong *o*-metrizability and strong* *o*-metrizability are independent. In fact, a space is semi-metrizable if and only if it is strongly and strongly* *o*-metrizable.

COROLLARY 1.5. A g-metizable space [19] is strongly^{*} o-metrizable.

Proof. A g-metrizable space has a σ -cushioned pair-net, and hence is semi-stratifiable [13 or 15]. Now apply 1.4.

A mapping f from a metric space X to a space Y is called a π mapping [19] if for each $y \in Y$ and each neighborhood U of y,

$$d(f^{-1}y, X - f^{-1}U) > 0.$$

F. Siwiec posed a question ([20], 1.19): Is every g-metrizable space a quotient π -image of a metric space? Ja A. Kofner answers the question.

COROLLARY 1.6. Every g-metrizable space is a quotient π -image of a metric space.

Proof. Kofner has shown that a strongly^{*} o-metrizable space has a symmetric satisfying the weak condition of Cauchy ([14], Theorem 1), and hence is a quotient π -image of a metric space ([13], Theorem 19). Now 1.5 completes the proof.

EXAMPLE 1.7. (1) A countable M_1 -space which is not o-metrizable. Example 9.4 of [6].

(2) A strongly^{*} o-metrizable space which is neither semimetrizable nor g-metrizable. Let X be the space of Example 5.1 in [9], Y a semimetrizable nonmetrizable space. The topological sum of X and Y.

(3) Example 1 in [14] is an example of a space possessing a symmetric with the weak condition of Cauchy but which is not strongly* o-metrizable.

2. g-developable spaces. Considering definitions of g-first countable spaces, g-metrizable spaces and g-second countable spaces, symmetrizable spaces might be called g-semimetrizable spaces. (See the characterization of symmetrizable spaces by means of CWC-maps in §1.) Developable spaces are characterized by means of COC-maps (=countable open covering maps) by Heath [11]: If $x, x_n \in g(n, y_n)$ for each n, then the sequence $\{x_n\}$ converges to x. The g-setting of developable spaces is the following.

DEFINITION 2.1. A space is *g*-developable if it has a *CWC*-map g with the following property: If $x, x_n \in g(n, y_n)$ for each n, the sequence $\{x_n\}$ converge to x.

Let $\gamma = (\gamma_1, \gamma_2, \gamma_3, \cdots)$ be a sequence of covers of a space X such that γ_{n+1} refines γ_n for each n. Such a sequence is said to be *semi-refined* [7] if $\{st(x, \gamma_n): x \in X, n \in N\}$ is a *weak base* [1] for X. Burke and Stoltenberg [4] shows that a T_1 -space has a semi-refined sequence if and only if it is symmetrizable.

If X has a g-first countable CWC-map g such that $\gamma = (\gamma_1, \gamma_2, \gamma_3, \cdots)$, where $\gamma_n = \{g(n, x): x \in X\}$, is a semi-refined sequence for X, then X is g-developable. Conversely, let g be a g-developable CWC-map for a space X. If we set $\gamma_n = \{g(n, x): x \in X\}$ for each $n, \gamma = (\gamma_1, \gamma_2, \gamma_3, \cdots)$ is a semirefined sequence for X. Thus, a g-developable space is symmetrizable. F. Siwiec [20] proved symmetrizable spaces are semimetrizable if they are Fréchet. The same proof says the following.

PROPOSITION 2.2. A Hausdorff space is developable if and only if it is g-developable and Fréchet.

As D. K. Burke [5] showed, every semimetric space can be semimetrizable by a semimetric under which every convergent sequence has a Cauchy subsequence. Unfortunately, this is not true for symmetric spaces. On the other hand, Morton Brown [3] noted that a T_1 -space is developable if and only if it is semimetrizable by a semimetric under which all convergent sequences are Cauchy. Analogously we are able to characterize symmetrizable spaces with a symmetric under which all convergent sequences are Cauchy. THEOREM 2.3. A Hausdorff space X is g-developable if and only if X is symmetrizable by a symmetric under which all convergent sequences are Cauchy.

Proof. Let g be a g-developable CWC-map for X, and $\gamma = (\gamma_1, \gamma_2, \gamma_3, \cdots)$ the semirefined sequence mentioned above, that is, $\gamma_n = \{g(n, x): x \in X\}$. Now define a symmetric d by $d(x, y) = 1/\inf\{j \in N: y \notin st(x, \gamma_j)\}$. Let $\{x_n\}$ be a sequence converging to x. Since X is Hausdorff and g a g-first countable CWC-map, $\{x_n\}$ is eventually in g(k, x) for each $k \in N$. For any $\varepsilon > 0$, choose $k, h \in N$ such that $1/k < \varepsilon$ and $x_n \in g(k, x)$ for all $n \geq h$. Then $g(k, x) \supset \{x_h, x_{h+1}, \cdots\}$. This implies that $d(x_m, x_n) < \varepsilon$ for any $m, n \geq h$.

Conversely, let d be a symmetric for X under which all convergent sequences are Cauchy. It is easily verified that d satisfies the Aleksandrov-Nemytskii condition

(AN) For any $x \in X$ and any $\varepsilon > 0$, there exists a $\delta = \delta(x, \varepsilon)$ such that $d(x, y) < \delta$ and $d(x, z) < \delta$ imply $d(y, z) < \varepsilon$.

For each x and n, choose $\delta = \delta(x, n)$ such that $d(x, y) < \delta$ and $d(x, z) < \delta$ imply d(y, z) < 1/n, let $g(n, x) = S(x; \delta(x, n))$. Now it is not difficult to show that g is a desired g-developable CWC-map.

COROLLARY 2.4. A Hausdorff g-developable space is a quotient π -image of a metric space.

EXAMPLE 2.5. (1) In symmetric spaces, g-developability and the weak condition of Cauchy are not equivalent. In fact, there exist strongly^{*} o-metrizable spaces which are not g-developable. Non-developable semimetric spaces are such examples.

(2) Non-metrizable Moore spaces are g-developable but not g-metrizable.

Question 2.6. The auther could not determine the following

- (1) Is a g-metrizable space g-developable?
- (2) Is a g-developable space semistratifiable?

ACKNOWLEDGMENT. The author thanks the refree for helpful suggestions to revise this article.

References

1. A. V. Arhangel'skii, *Mappings and spaces*, Russian Math. Surveys, **21** (1966), 115-162.

2. D. A. Bonnett, A symmetrizable space that is not perfect, Proc. Amer. Math. Soc., **34** (1972), 560-564.

KYUNG BAI LEE

3. Morton Brown, *Semimetric spaces*, Summer Institute on Set-theoretic Topology, Madison, Wisconsin, Amer. Math. Soc., Providence, I.R., 1955, 62–64.

4. D. K. Burke and R. A. Stoltenberg, Some properties of π -images of metric spaces, 1970, (unpublished).

5. D. K. Burke, Cauchy sequences in semimetric spaces, Proc. Amer. Math. Soc. 33 (1972), 161-164.

6. J. G. Ceder, Some generalizations of metric spaces, Pacific. J. Math., 11 (1961), 105-125.

7. M. M. Coban, Mappings and metric spaces, Soviet Math. Dokl., 10 (1969), 258-260.

8. G. D. Creede, Concerning semistratifiable spaces, Pacific. J. Math., 32 (1970), 47-54.

9. S. P. Franklin, Spaces in which sequences suffice II, Fund. Math., **61** (1967), 51-56. 10. R. W. Heath, A regular semimetric space for which there is no semimetric under which all spheres are open, Pacific. J. Math., **12** (1961), 810-811.

11. ____, Arcwise connectedness in semimetric spaces, Pacific J. Math., **12** (1962), 1301-1319.

R. E. Hodel, Metrizability of topological spaces, Pacific J. Math., 55 (1974), 441-459.
Ja. A. Kofner, On a new class of spaces and some problems of symmetrizability theory, Soviet Math. Dokl., 10 (1969), 845-848.

14. _____, Symmetrizable spaces and factor mappings, Math. Notes of Acad. Sci. USSR, 14 (1973), 967-972.

K. B. Lee, Linearly semistratifiable spaces, J. Korean Math. Soc., 11 (1974), 39-47.
S. I. Nedev, Generalized metrizable spaces, C. R. Acad. Bulgare Sci., 20 (1967), 513-516.

17. ____, Continuous and semicontinuous o-metrics, Soviet Math. Dokl., 11 (1970), 975-978.

18. ____, o-Metrizable spaces, Trans. Moscow Math. Soc., 24 (1971), 213-247.

19. V. I. Ponomarev, Axioms of countability and continuous mappings, Bull. Acad. Sci. Math., 8 (1960), 127-134.

20. F. Siwiec, On defining a space by a weak base, Pacific J. Math., 52 (1974), 233-245.

Received September 18, 1975 and in revised form February 6, 1976.

SEOUL NATIONAL UNIVERSITY, SEOUL, KOREA