LINKS WHICH ARE UNKNOTTABLE BY MAPS

Howard Lambert

Let L be a piecewise linear (PL) link of two components in the Euclidean 3 -sphere S^{3} (i.e., $L=L_{1} \cup L_{2}$ where L_{1}, L_{2} are disjoint polygonal simple closed curves in S^{3}. In Theorem 1 of this paper we give a geometric condition on L which implies it is unknottable. In Theorem 2, we show that there is an infinite class of links of two components which are unknottable.

We call a continuous (PL) map $f: S^{3} \rightarrow S^{3}$ strongly $1-1$ on L if $f \mid L$ is a homeomorphism onto $f(L), f\left(S^{3}-L\right) \cap f(L)=\varnothing$ and f is locally 1-1 at each point of L. In Theorem 1 of [3], the link $L_{0}=L_{01} \cup L_{02}$ where L_{01} is unknotted and L_{02} is the square knot is shown to have the property that there is no strongly $1-1$ map f on L_{0} such that $f\left(L_{01}\right)$ and $f\left(L_{02}\right)$ are unknotted. Call L "unknottable" if there does not exist a strongly $1-1 \operatorname{map} f$ on L such that $f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ are unknotted. This paper and [3] resulted from an attempt to generalize Hempel's result [2] that given any knot K in S^{3} there exists a strongly $1-1$ map f on K such that $f(K)$ is unknotted.

Let S_{1} be a (PL) orientable surface such that $\mathrm{Bd} S_{1}=L_{1}$ and L_{2} intersects and pierces S_{1} in a finite number of points. Let $N(L)=$ $N\left(L_{1}\right) \cup N\left(L_{2}\right)$ be a regular neighborhood of L such that $S_{1} \cap N\left(L_{1}\right)$ is an annulus and $S_{1} \cap N\left(L_{2}\right)$ consists of transverse disks. Call S_{1} essential if S_{1} - Int $N(L)$ is incompressible [7] and boundary incompressible [7] in $S^{3}-\operatorname{Int} N(L)$.

Definition 1. L is boundary incompressibly unlinked with respect to L_{1} (B.I.U.) if, whenever S_{1} is essential, we have $S_{1} \cap L_{2}=$ \varnothing. L is said to be 1 -linked [5] if L_{1}, L_{2} do not bound disjoint orientable surfaces in S^{3}.

Theorem 1. If L is 1-linked, B.I.U. and L_{1} is knotted, then L is unknottable.

Proof. Suppose there exists a $f: S^{3} \rightarrow S^{3}$ which is strongly 1-1 on L and $f\left(L_{1}\right), f\left(L_{2}\right)$ are unknotted. Let D_{1} be a disk in S^{3} such that $\mathrm{Bd} D_{1}=f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ intersects and pierces D_{1} in a finite number t of points. Suppose also that t is chosen to be smallest possible. Now, following the techniques used in [7], we adjust f so that it is transverse to D_{1}, in particular $D_{1}^{\prime}=f^{-1}\left(D_{1}\right) \cap\left(S^{3}-\operatorname{Int} N(L)\right)$ is an
orientable surface with one boundary component in $\operatorname{Bd} N\left(L_{1}\right)$ which is a longitude of $N\left(L_{1}\right)$ and t boundary components in $\mathrm{Bd} N\left(L_{2}\right)$, each of which is a meridian of $N\left(L_{2}\right)$. Now suppose D_{1}^{\prime} is compressible in $S^{3}-\operatorname{Int} N(L)$, i.e. there exists a disk Q in $S^{3}-\operatorname{Int} N(L)$ such that $Q \cap D_{1}^{\prime}=\operatorname{Bd} Q \cap D_{1}^{\prime}=\operatorname{Bd} Q$ and $\operatorname{Bd} Q$ does not bound a disk in D_{1}^{\prime}. Now if the loop $f(\operatorname{Bd} Q)$ separates a point of $D_{1} \cap f\left(L_{2}\right)$ from Bd D_{1}, we may apply Dehn's lemma [4] to conclude that t was not minimal. If $f(\operatorname{Bd} Q)$ separates no point of $D_{1} \cap f\left(L_{2}\right)$ from $\operatorname{Bd} D_{1}$, then we may cut out a small regular neighborhood of $\operatorname{Bd} Q$ in D_{1}^{\prime} and add two parallel copies of Q to form a new orientable surface $D_{1}^{\prime \prime}$ with less genus than D_{1}^{\prime}. We may then redefine the map f so that $D_{1}^{\prime \prime}=f^{-1}\left(D_{1}\right) \cap\left(S^{3}-\operatorname{Int} N(L)\right)$. If D_{1}^{\prime} is boundary compressible, then there exists a disk Q such that $\operatorname{Int} Q \cap D_{1}^{\prime}=\varnothing$ and $\operatorname{Bd} Q$ consists of two arcs, one in $\operatorname{Bd} N\left(L_{2}\right)$, the other in D_{1}^{\prime} and the arc in D_{1}^{\prime} together with any arc in $\operatorname{Bd} D_{1}^{\prime}$ do not bound a disk in D_{1}^{\prime}. In this case we may use a modified version of the loop theorem (see [6]) on the loop $f(\operatorname{Bd} Q)$ in $S^{3}-\operatorname{Int} f(N(L))$ to conclude that t was not minimal. Hence we may assume that D_{1}^{\prime} is incompressible and boundary incompressible. Since L is B.I.U. we have $t=0$. Then $f\left(L_{2}\right)$ bounds a disk D_{2} which is disjoint from D_{1}. We may adjust f so that $f^{-1}\left(D_{1}\right), f^{-1}\left(D_{2}\right)$ are disjoint orientable surfaces, contradicting the assumption that L is 1 -linked, and the proof is complete.

We now define the class of links $L_{1 j} \cup L_{2 j}$ illustrated in Figures 1 and 2. Each $L_{1 j}$ is a curve with j full twists (j is any positive or negative integer and one of the full twists is shown in the figure). If $j \neq 0$, then in [1] it is shown that $L_{1 j}$ is knotted.

Figure 1

Figure 2

Lemma 1. $L_{1 j} \cup L_{2 j}$ is 1-linked for all j.
Proof. Suppose $L_{1 j}, L_{2 j}$ bound disjoint orientable surfaces $S_{1 j}$, $S_{2 j}$, respectively. Let D^{\prime} be a disk bounded by $L_{2 j}$ such that $L_{1 j}$ intersects and pierces D^{\prime} in two points and the two components of
$L_{1 j}-D^{\prime}$ self link each other. By cut and paste techniques (see [7] or we used some of these methods in Theorem 1) we may assume that (Int $\left.D^{\prime}\right) \cap S_{2 j}=\varnothing$ and $D^{\prime} \cap S_{1 j}$ consists of one arc connecting the two points of $D^{\prime} \cap L_{1 j}$. Let $D^{\prime \prime}$ be a disk whose boundary consists of the arc $D^{\prime} \cap S_{1 j}$ and one of the two arcs of $L_{1 j}-D^{\prime}$. Assume $D^{\prime \prime} \cap D^{\prime}=D^{\prime} \cap S_{1 j}$ and the other arc of $L_{1 j}-D^{\prime}$ intersects and pierces $D^{\prime \prime}$ in one point. But it now follows that there is a curve in $S_{2 j} \cap D^{\prime \prime}$ which is not homologous to zero in $S^{3}-L_{1 j}$, contradicting that $S_{1 j} \cap$ $S_{2 j}=\varnothing$.

In Figure 3 we view $L_{1 j}$ as being contained in a cube with two handles C where $N\left(L_{1 j}\right) \subset \operatorname{Int} C \subset S^{3}-L_{2 j}$. Let H_{1}, H_{2} be the two annuli illustrated in Figure 3, where $H_{1} \cap H_{2}$ is an arc.

Figure 3
Lemma 2. Each link $L_{1 j} \cup L_{2 j}, j \neq 0$, is boundary incompressibly unlinked (B.I.U.).

Proof. Suppose S^{\prime} is an orientable surface in the solid torus $T=S^{3}-\operatorname{Int} N\left(L_{2 j}\right)$ with one boundary component $L_{1 j}$ and each of the remaining t boundary components is a meridian of $N\left(L_{2 j}\right)$ in $\operatorname{Bd} N\left(L_{2 j}\right)$. Suppose also that $S=S^{\prime}-\operatorname{Int} N\left(L_{1 j}\right)$ is incompressible and boundary incompressible in $T-\operatorname{Int} N\left(L_{1 j}\right)$. We may choose the cube with two handles C so that $S^{\prime} \cap C$ consists of an annulus A_{0} and s disks A_{1}, \cdots, A_{s} (see Figure 3). Now, by following the techniques used in Lemma 1 of [3], we may adjust S^{\prime} so that $S^{\prime} \cap H_{1}$ is one arc parallel to $H_{1} \cap H_{2}$ in H_{1}. (To see this, put S^{\prime} in general position relative to H_{1} and push arcs of $S^{\prime} \cap H_{1}$ with both endpoints in the same component of $\mathrm{Bd} H_{1}$ off H_{1} and then off C, i.e. we reduce s by 1 or 2 and hence we may suppose $s=0$.) By the same reasoning we may suppose further that $S^{\prime} \cap H_{2}$ consists of one arc parallel to $H_{1} \cap H_{2}$ in H_{2}. Let $N\left(H_{1}\right), N\left(H_{2}\right)$ be regular neighborhoods of H_{1}, H_{2}, resp., taken in T - Int C. Let T^{\prime} be the solid torus
$C \cup N\left(H_{1}\right) \cup N\left(H_{2}\right)$. Then T - Int T^{\prime} is homeomorphic to the product space $\left(S^{1} \times S^{1}\right) \times I$. None of the three simple closed curves of $S^{\prime \prime} \cap$ $\mathrm{Bd} T^{\prime}$ is homotopic to the t curves of $S^{\prime \prime} \cap \mathrm{Bd} T$. (Note that one component of $S^{\prime} \cap \mathrm{Bd} T^{\prime}$ bounds a disk in $\mathrm{Bd} T^{\prime}$ and the other two go once around the longitude of T^{\prime} and j times, $j \neq 0$, around the meridian of T^{\prime}.) Since S is incompressible and boundary incompressible, it follows that $\pi_{1}\left(S \cap\left(T-\operatorname{Int} T^{\prime}\right)\right)$ injects into the abelian group $\pi_{1}\left(T-\operatorname{Int} T^{\prime}\right)$. Hence $S \cap\left(T-\operatorname{Int} T^{\prime}\right)$ consists of one disk and one annulus, so $t=0$ and the proof of Lemma 2 is finished.

Theorem 1, Lemma 1 and Lemma 2 now imply the following:
Theorem 2. Each of the links $L_{1 j} \cup L_{2 j}, j \neq 0$, is unknottable, i.e. there does not exist a strongly 1-1 map f on $L_{1 j} \cup L_{2 j}$ such that $f\left(L_{1 j}\right)$ and $f\left(L_{2 j}\right)$ are unknotted.

References

1. R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971), 217-231.
2. J. Hempel, A surface in S^{3} is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc., 111 (1964), 273-287.
3. Howard Lambert, Unknotting links in S^{3} by maps, to appear in Proc. Amer. Math. Soc.
4. C. D. Papakyriakopoulos, Dehn's lemma and the asphericity of knots, Ann. of Math., 66 (1957), 1-26.
5. N. Smythe, Boundary links, Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, no. 60, Princeton, 1966, pp. 69-72.
6. J. Stallings, On the loop theorem, Ann. of Math., 72 (1960) 12-19.
7. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., (2) 87 (1968), 56-88.

Received October 8, 1975 and in revised form April 26, 1976.
University of Iowa

