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LINKS WHICH ARE UNKNOTTABLE BY MAPS

HOWARD LAMBERT

Let L be a piecewise linear (PL) link of two components
in the Euclidean 3-sphere Sz (i.e., L = L1 U L2 where Ll9 L2 are
disjoint polygonal simple closed curves in S3. In Theorem 1
of this paper we give a geometric condition on L which im-
plies it is unknottahle. In Theorem 2, we show that there
is an infinite class of links of two components which are
unknottable.

We call a continuous (PL) map /: S3 —• S3 strongly 1 — 1 on L
if f\L is a homeomorphism onto f(L), f(S3 — L)f]f(L)= 0 and
/ is locally 1 — 1 at each point of L. In Theorem 1 of [3], the link
Lo = LQ1 U LQ2 where L01 is unknotted and Lo2 is the square knot is
shown to have the property that there is no strongly 1 — 1 map /
on Lo such that /(L01) and f(L02) are unknotted. Gall L "unknottable"
if there does not exist a strongly 1 — 1 map f on L such that /(LJ
and f(L2) are unknotted. This paper and [3] resulted from an at-
tempt to generalize HempeΓs result [2] that given any knot K in
Sz there exists a strongly 1 — 1 map f on K such that f(K) is
unknotted.

Let S1 be a (PL) orientable surface such that Bd S1 = Lι and L2

intersects and pierces S1 in a finite number of points. Let N(L) —
N(Lj) U N(L2) be a regular neighborhood of L such that Sλ Π N(Lj)
is an annulus and S1 Π N(L2) consists of transverse disks. Call Sί

essential if Sx — Int N(L) is incompressible [7] and boundary incom-
pressible [7] in S8 - Int

DEFINITION 1. L is boundary incompressibly unlinked with re-
spect to L1 (B.I.U.) if, whenever Sλ is essential, we have St Π L2 =
0 . L is said to be 1-linked [5] if Llf L2 do not bound disjoint
orientable surfaces in S\

THEOREM 1. If L is 14inked, B.I.U. and L1 is knotted, then
L is unknottahle.

Proof. Suppose there exists a f: S3-+S3 which is strongly 1 — 1
on L and /(LJ, f(L2) are unknotted. Let Όγ be a disk in S3 such that
Bd A = /(Li) and f(L2) intersects and pierces Dι in a finite number
t of points. Suppose also that t is chosen to be smallest possible.
Now, following the techniques used in [7], we adjust / so that it
is transverse to Dlf in particular D[ = /"'(A) Π (S3 — Int N(L)) is an
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orientable surface with one boundary component in BάNiLJ which
is a longitude of iN^A) and t boundary components in Bd N(L2), each
of which is a meridian of N(L2). Now suppose D[ is compressible
in S3 — Int N(L), i.e. there exists a disk Q in S3 — Int N(L) such
that Q Π D[ = Bd Q D A = Bd Q and Bd Q does not bound a disk in
D[. Now if the loop /(Bd Q) separates a point of A Π /(I^) from
Bd Du we may apply Dehn's lemma [4] to conclude that t was not
minimal. If /(Bd Q) separates no point of A Π f(L2) from Bd A>
then we may cut out a small regular neighborhood of BdQ in D[
and add two parallel copies of Q to form a new orientable surface
D" with less genus than D[. We may then redefine the map / so
that D" = /"'(A) Π (S3 - Int N(L)). If D[ is boundary compressible,
then there exists a disk Q such that Int Q Π A = 0 and Bd Q con-
sists of two arcs, one in Bd N(L2), the other in D[ and the arc in
D[ together with any arc in BάD[ do not bound a disk in D[. In
this case we may use a modified version of the loop theorem (see
[6]) on the loop /(Bd Q) in S3 - Int f(N(L)) to conclude that t was
not minimal. Hence we may assume that D[ is incompressible and
boundary incompressible. Since L is B.I.U. we have t = 0. Then
/(L2) bounds a disk JD2 which is disjoint from A We may adjust
/ so that /^(A)* f~ι{D2) are disjoint orientable surfaces, contradict-
ing the assumption that L is 1-linked, and the proof is complete.

We now define the class of links L13 U L2j illustrated in Figures
1 and 2. Each L13- is a curve with j full twists (j is any positive
or negative integer and one of the full twists is shown in the figure).
If j Φ 0, then in [1] it is shown that Lιό is knotted.

FIGURE 1 FIGURE 2

LEMMA 1. L13 U L2j is 1-linked for all j .

Proof. Suppose L13 , L2j bound disjoint orientable surfaces Slj9

S2j, respectively. Let D' be a disk bounded by L2j such that Lu

intersects and pierces Dr in two points and the two components of
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L13 — Dr self link each other. By cut and paste techniques (see [7]
or we used some of these methods in Theorem 1) we may assume
that (Int Df) Π S23 = 0 and D' Π S13 consists of one arc connecting
the two points of D' Π L13 . Let D" be a disk whose boundary con-
sists of the arc Dr Π S13 and one of the two arcs of L13 — D'. Assume
D" Π D' = Ώf Π S13 and the other arc of L13 — Dr intersects and pierces
D" in one point. But it now follows that there is a curve in S2j Π D"
which is not homologous to zero in Sz — L13, contradicting that S13 Π
S2j = 0 .

In Figure 3 we view L13 as being contained in a cube with two
handles C where N(L13) c Int C a S 3 - L2j. Let H19 H2 be the two
annuli illustrated in Figure 3, where Hι Π H2 is an arc.

FIGURE 3

LEMMA 2. Each link L13 U L23 , j Φ 07 is boundary incompressibly
unlinked (B.I.U.).

Proof. Suppose S ; is an orientable surface in the solid torus
T = S3 — Int N(L2j) with one boundary component L13 and each of
the remaining t boundary components is a meridian of N(L2j) in
Bd N(L2j). Suppose also that S = S' — Int N(L13) is incompressible
and boundary incompressible in T — Int N(L13). We may choose the
cube with two handles C so that S' Π C consists of an annulus Ao

and s disks A19 •••, As (see Figure 3). Now, by following the tech-
niques used in Lemma 1 of [3], we may adjust S' so that S' Π Hx

is one arc parallel to H1 Π H2 in jff1# (To see this, put Sf in general
position relative to H1 and push arcs of Sr Π H1 with both endpoints
in the same component of Bd H1 ofE H1 and then off C, i.e. we reduce
s by 1 or 2 and hence we may suppose s = 0.) By the same re-
asoning we may suppose further that S' Π H2 consists of one arc
parallel to H, Π H2 in H2. Let N^H^, N(H2) be regular neighborhoods
of Hlf H2, resp., taken in T — Int C. Let T' be the solid torus
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C U NiHJ U N(H2). Then T - Int T is homeomorphic to the product
space (S1 x S1) x /. None of the three simple closed curves of S'Π
Bd V is homotopic to the t curves of S' Π Bd Γ. (Note that one
component of S' Π Bd T" bounds a disk in Bd T and the other two
go once around the longitude of T' and j times, j Φ 0, around the
meridian of T'.) Since S is incompressible and boundary incom-
pressible, it follows that π^S Π (Γ — Int T')) injects into the abelian
group π,(T - Int Γ;) Hence S Π (Γ - Int T) consists of one disk and
one annulus, so t = 0 and the proof of Lemma 2 is finished.

Theorem 1, Lemma 1 and Lemma 2 now imply the following:

THEOREM 2. Each of the links L13 U L2j9 j Φ 0, is unknottable,
i.e. there does not exist a strongly 1 — 1 map f on Lι5 U L2j such
that /(Z/ϋ) and f{L2j) are unknotted.
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