THE CENTRALISER OF $E \bigotimes_{\lambda} F$

A. W. WICKSTEAD

If E is a real Banach space then $\mathscr{R}(E)$ is the space of all bounded linear operators on E, and $\mathscr{K}(E)$ the subspace of M-bounded operators, i.e. the centraliser of E. Two Banach spaces E and F are considered as well as the tensor product $E \otimes_{\lambda} F$. There is a natural mapping of the algebraic tensor product $\mathscr{K}(E) \odot \mathscr{K}(F)$ into $\mathscr{K}(E \otimes_{\lambda} F)$. It is shown that $\mathscr{K}(E \otimes_{\lambda} F)$ is precisely the strong operator closure, in $\mathscr{R}(E \otimes_{\lambda} F)$, of its image.

1. Definitions and statement of results. A linear operator Ton a real Banach space E is *M*-bounded if there is $\lambda > 0$ such that if $e \in E$ and D is a closed ball in E containing λe and $-\lambda e$, then $Te \in D$. The centraliser of $E, \mathcal{K}(E)$, is the commutative Banach algebra of all *M*-bounded linear operators on E. Let K denote the unit ball of E^* , the Banach dual of E, equipped with the weak^{*} topology. We denote the set of extreme points of a convex set Cby $\mathscr{C}(C)$. In [2], Theorem 4.8 it is shown that a bounded linear operator T on E is *M*-bounded if and only if each point of $\mathscr{C}(K)$ is an eigenvalue for T^* , the adjoint of T. Thus there is a real valued function \tilde{T} on $\mathscr{C}(K)$ such that $T^*p = \tilde{T}(p)p(p \in \mathscr{C}(K))$.

An *L*-ideal in a real Banach space is a subspace I with a complementary direct summand J such that $||i|| + ||j|| = ||i + j||(i \in I, j \in J)$. The sets $I \cap \mathscr{C}(K)$ for I a weak*-closed *L*-ideal in E^* form the closed sets of the structure topology on $\mathscr{C}(K)$. The map $T \mapsto \tilde{T}$ is an isometric algebra isomorphism of $\mathscr{Z}(E)$ onto the bounded structurally continuous real valued functions on $\mathscr{C}(K)$ with the supremum norm and pointwise multiplication ([2], Theorem 4.9).

We shall consider two Banach spaces E and F, K will retain its meaning and M will denote the corresponding subset of F^* . We use $E \odot F$ to denote the algebraic tensor product of E and F. We shall consider the norm

$$\left\|\sum_{i=1}^n e_i \otimes f_i
ight\|_{\lambda} = \sup\left\{\left|\sum_{i=1}^n k(e_i)m\left(f_i
ight)
ight| \colon k \in K, \ m \in M
ight\}\,.$$

 $E \odot_{\lambda} F$ will denote $E \odot F$ with this norm, and $E \bigotimes_{\lambda} F$ its completion.

We may identify $E \bigotimes_{\lambda} F$ concretely in a number of ways. The formula $(k, m) \mapsto \sum_{i=1}^{n} k(e_i) m(f_i)$ defines a real valued function on $K \times M$. Such functions are continuous and affine in each variable. $||\sum_{i=1}^{n} e_i \otimes f_i||_{\lambda}$ is the same as the supermum norm for such a function, so we may identify $E \bigotimes_{\lambda} F$ with a subspace H, the closure of

these functions, in $C(K \times M)$, the continuous real valued functions on $K \times M$. We shall have need to call upon:

LEMMA. Every extreme point of the unit ball of H^* is of the form $h \mapsto h(p, q) (p \in \mathscr{C}(K), q \in \mathscr{C}(M))$.

Let $R: C(K \times M)^* \to H^*$ be the restriction map, and let B be the unit ball of $C(K \times M)^*$. If f is an extreme point of the unit ball of H^* , then $R^{-1}f \cap B$ is a weak* closed face of B which is nonempty by the Hahn-Banach theorem. By the Krein-Milman theorem, $R^{-1}f \cap B$ has an extreme point, which must be extreme in the unit ball of $C(K \times M)^*$, so is of the form $h \mapsto \pm h(p, q)$ for $p \in K, q \in M$. By replacing p by -p, if necessary, we may ensure a positive sign. If p (say) is not extreme, then $p = 1/2(p_1 + p_2)$, $p_1, p_2 \in K, p_1 \neq p_2$. $h(p, q) = 1/2h(p_1, q) + 1/2h(p_2, q)(h \in H)$ as these functions are affine in each variable. As the functions of H separate the points of $K \times M$, this contradicts the extremality.

COROLLARY.

$$\left\|\sum_{i=1}^{n} e_i \otimes f_i\right|_{\lambda} = \sup\left\{\left|\sum_{i=1}^{n} p(e_i)q(f_i)\right| \colon p \in \mathscr{C}(K), q \in \mathscr{C}(M)\right\}.$$

We consider the centraliser of $E \bigotimes_{\lambda} F$. We have quite easily:

PROPOSITION. If $S_i \in \mathscr{Z}(E)$, $T_i \in \mathscr{Z}(F)$ $(1 \leq i \leq n)$ there is $U \in \mathscr{Z}(E \bigotimes_{\lambda} F)$ such that if $e_j \in E$, $f_j \in F(1 \leq j \leq m)$ then $U(\sum_{j=1}^m e_j \otimes f_j) = \sum_{j=1}^m \sum_{i=1}^n (S_i e_j) \otimes (T_i e_j)$.

To show that U exists (as a bounded linear operator) we need only show that the linear operator defined on $E \odot_{\lambda} F$ by this formula is bounded. This is so because,

$$igg| iggle_{i,j} \left(S_i e_j
ight) \otimes \left(T_i f_j
ight) iggree_{\lambda} \ = \sup\left\{ \left|\sum_{i,j} p(S_i e_j) q(T_i e_j)
ight| \colon p \in \mathscr{C}(K), \, q \in \mathscr{C}(M)
ight\} \ = \sup\left\{ \left|\sum_{i,j} \widetilde{S}_i(p) \widetilde{T}_i(p) p(e_j) q(f_j)
ight| \colon p \in \mathscr{C}(K), \, q \in \mathscr{C}(M)
ight\} \ \leq \sup\left\{\sum_i \left|\widetilde{S}_i(p)
ight| \left|\widetilde{T}_i(p)
ight| \left|\sum_j p(e_j) q(f_j)
ight| \colon p \in \mathscr{C}(K), \, q \in \mathscr{C}(M)
ight\} \ \leq \sum_i \left|\left|S_i
ight|\right| \left|\left|T_i
ight| \sup\left\{\left|\sum_j p(e_j) q(f_j)
ight| \colon p \in \mathscr{C}(K), \, q \in \mathscr{C}(M)
ight\} \ = \sum_i \left|\left|S_i
ight|\right| \left|\left|T_i
ight|\right| \left|\sum_j e_j \otimes f_j
ight|_{\lambda}.$$

It remains to show that each extreme point of the unit ball of $(E \bigotimes_{\lambda} F)^*$ is an eigenvalue for U^* . If we denote by $p \otimes q$ the functional $\sum_{j} e_j \otimes f_j \mapsto \sum_{j} p(e_j)q(f_j)$ then we have

$$egin{aligned} U^*(p\otimes q)&\Big(\sum\limits_j e_j\otimes f_j\Big)=(p\otimes q)\,U&\Big(\sum\limits_j e_j\otimes f_j\Big)\ &=(p\otimes q)\sum\limits_{i,j}\left(S_ie_j
ight)\otimes\left(T_if_j
ight)\ &=\sum\limits_{i,j}p(S_ie_j)q(T_if_j)\ &=\sum\limits_{i,j}\widetilde{S}_i(p)\widetilde{T}_i(p)p(e_j)q(f_j)\ &=\Big[\sum\limits_i\widetilde{S}_i(p)\widetilde{T}_i(p)\Big]\Big[(p\otimes q)&\Big(\sum\limits_j e_j\otimes f_j\Big)\Big]\,. \end{aligned}$$

It is immediate that $U^*(p \otimes q) = [\sum_i \widetilde{S}_i(p) \widetilde{T}_i(p)](p \otimes q).$

We thus have an embedding of $\mathscr{Z}(E) \odot \mathscr{Z}(F)$ in $\mathscr{Z}(E \bigotimes_{\lambda} F)$ in an obvious way. The remainder of this paper is devoted to a proof of the following result.

THEOREM. $\mathscr{Z}(E \bigotimes_{\lambda} F)$ is the closure, for the strong operator topology, of the canonical copy of $\mathscr{Z}(E) \odot \mathscr{Z}(F)$ in $\mathscr{B}(E \bigotimes_{\lambda} F)$.

2. The proof. For this proof we shall identify the element $\sum_{i=1}^{n} e_i \otimes f_i \in E \odot F$ with the function $k \mapsto \sum_{i=1}^{n} k(e_i) f_i$ from K into F. This is continuous affine function vanishing at 0. The set of all F-valued continuous affine functions of K which vanish at 0 we shall denote by $A_0(K, F)$, and norm it by $||a|| = \sup\{||a(k)||: k \in K\}$, which corresponds to the norm on $E \odot_2 F$. We may thus identify $E \bigotimes_{\lambda} F$ whith the closure, H, in $A_0(K, F)$ of the functions with finite dimensional range.

If $\sum_{i=1}^{n} S_i \otimes T_i \in \mathscr{Z}(E) \odot \mathscr{Z}(F)$ then $\pi: p \mapsto \sum_{i=1}^{n} \tilde{S}_i(p)T_i$ is a function from $\mathscr{C}(K)$ into $\mathscr{Z}(F)$ which is bounded and continuous for the structure topology on $\mathscr{C}(K)$ and the strong operator topology on $\mathscr{Z}(F)$. If U is the image of $\sum_{i=1}^{n} S_i \otimes T_i$ in $\mathscr{Z}(H)$ (using the proposition and the identification of H with $E \otimes_{\lambda} F$) then we have

$$(Uh)(p) = \pi(p)h(p) \quad (h \in H, p \in \mathscr{C}(K)).$$

This is because, if $\varepsilon > 0$, we may find $\sum_{j=1}^{m} e_j \otimes f_j \in E \odot F$ with $||h - \sum_{j=1}^{m} e_j \otimes f_j||_2 < \varepsilon$ and then

$$egin{aligned} &\|(Uh)(p)-\pi(p)h(p)\|&\leq \Big\|\,(Uh)(p)-U\Bigl(\sum\limits_{j=1}^m e_j\otimes f_j\Bigr)(p)\Big\|\ &+ \Big\|\,U\Bigl(\sum\limits_{j=1}^m e_j\otimes f_j\Bigr)(p)-\pi(p)h(p)\,\Big\|\ . \end{aligned}$$

But

$$egin{aligned} &U\Bigl(\sum\limits_{j=1}^{m}e_{j}\otimes f_{j}\Bigr)(p)=\sum\limits_{i,j}\left(S_{i}e_{j}
ight)\otimes\left(T_{i}e_{j}
ight)(p)\ &=\sum\limits_{i,j}p(S_{i}e_{j})(T_{i}e_{j})\ &=\sum\limits_{i,j}\widetilde{S}_{i}(p)p(e_{j})(T_{i}e_{j})\ &=\Bigl(\sum\limits_{i}\widetilde{S}_{i}(p)T_{i}\Bigr)\Bigl(\sum\limits_{j}p(e_{j})f_{j}\Bigr)\ &=\pi(p)\Bigl(\Bigl(\sum\limits_{j=1}^{m}e_{j}\otimes f_{j}\Bigr)(p)\Bigr)\,. \end{aligned}$$

Thus $||(Uh)(p) - \pi(p)h(p)|| \leq ||U||\varepsilon + ||\pi(p)|| ||\sum_{j=1}^{m} e_j \otimes f_j - h)(p)|| \leq (||U|| + ||\pi(p)||)\varepsilon$, which can be made as small as desired, so that $(Uh)(p) = \pi(p)h(p)$.

Let V(K) denote the set of extreme points, p, of K for which there is $x \in E$ with p(x) = ||x||, then V(K) is weak* dense in $\mathscr{C}(K)$. To show this it will suffice to prove that $K = \overline{\operatorname{co}}(V(K))$, the weak* closed convex hull of V(K), for then $\mathscr{C}(K) \subset \overline{V(K)}$ by Milman's theorem. If $\overline{\operatorname{co}}(V(K)) \neq K$ we may, by Hahn-Banach separation, find $x \in E$ with $k(x) \leq \alpha < k_0(x)$ for some real α , all $k \in \overline{\operatorname{co}}(V(K))$ and some $k_0 \in K$. Then $\{k \in K : k(x) = ||x||\}$ is a nonempty weak* closed face of K. This possesses an extreme point, which cannot lie in $\overline{\operatorname{co}}(V(K))$, yet which is in V(K) by its construction, a contradiction.

If $p \in V(K)$, $q \in V(M)$ then $p \otimes q$ is extreme in the unit ball of $(E \bigotimes_{\lambda} F)^*$. Fix $e \in E$, $f \in F$ with ||e|| = e(p) = 1, ||f|| = f(p) = 1. Define injections $P: E \to E \bigotimes_{\lambda} F, Q: F \to E \bigotimes_{\lambda} F$ by $P(x) = x \otimes f, Q(y) = e \otimes y$. P, Q are isometric injections so the image of the unit ball of $(E \bigotimes_{\lambda} F)^*$ under P^* (respectively Q^*) is K (respectively M). P^* , Q^* are continuous and affine, so $P^{*-1}(p)$ and $Q^{*-1}(q)$ intersect the unit ball of $(E \bigotimes_{\lambda} F)^*$ in weak* closed faces, as must $P^{*-1}(p) \cap Q^{*-1}(q)$. This intersection is nonempty, for $P^*(p \otimes q) = p$, $Q^*(p \otimes q) = q$. This is because for $x \in E$, $(P^*(p \otimes q))(x) = (p \otimes q)(Px) = (p \otimes q)(x \otimes f) = p(x)q(f) = p(x)$, with a similar proof for Q^* . This face must have an extreme point which is extreme in the unit ball of $(E \bigotimes_{\lambda} F)^*$, so is $p' \otimes q'$ for $p' \in \mathscr{C}(K)$, $q' \in \mathscr{C}(M)$. But now $p = P^*(p \otimes q) = P^*(p' \otimes q') = p'$ and also q = q', so that $p \otimes q$ is itself extreme.

It follows that if $U \in \mathscr{Z}(H)$ then all points $p \otimes q$ for $p \in \mathscr{C}(K)$, $q \in \mathscr{C}(M)$ are eigenvectors for U^* . For let $p_{\tau} \to p$, $q_{\delta} \to q$ be nets with $p_{\tau} \in V(K)$, $q_{\delta} \in V(M)$. The continuity of the map $(k, m) \mapsto k \otimes m$ from $K \times M$ into $(E\bigotimes_{\lambda} F)^*$ implies that $p_{\tau} \otimes q_{\delta} \to p \otimes q$. But $U^*(p_{\tau} \otimes q_{\delta}) =$ $\widetilde{U}(p_{\tau} \otimes q_{\delta})(p_{\tau} \otimes q_{\delta})$. The reals $\widetilde{U}(p_{\tau} \otimes q_{\delta})$ are bounded (by ||U||) so we may suppose (by choosing a subnet if necessary) that $\widetilde{U}(p_{\tau} \otimes q_{\delta}) \to$ λ . Now $U^*(p \otimes q) = \lim U^*(p_{\tau} \otimes q_{\delta}) = \lim \widetilde{U}(p_{\tau} \otimes q_{\delta}) \lim (p_{\tau} \otimes q_{\delta}) =$ $\lambda(p \otimes q)$.

Suppose $U \in \mathcal{Z}(H)$, $p \in \mathcal{E}(K)$ and $h, h' \in H$ with h(p) = h'(p). If

 $q \in \mathscr{C}(M)$ then

$$egin{aligned} q((Uh)(p) &= (p \otimes q)(Uh) = \widetilde{U}(p \otimes q)((p \otimes q)(h)) \ &= \widetilde{U}(p \otimes q)(q(h(p))) \ &= \widetilde{U}(p \otimes q)(q(h'(p))) = q((Uh')(p)) \ . \end{aligned}$$

Thus (Uh)(p) = (Uh')(p). We may thus define a linear operator $\pi(p)$ on F by $\pi(p)y = (Uh)(p)$ whenever h(p) = y. $\pi(p)$ is clearly linear, is well defined, and has domain the whole of F since we may take $h = e \otimes y$ where e(p) = 1.

 $\pi(p)$ has norm at most ||U||, for we may find $e_n \in E$ with $e_n(p) = 1$, $||e_n|| \leq (n+1)/n$, and then

$$egin{aligned} \|\pi(p)y\| &= \|U(e_n\otimes y)(p)\| \leq \|U(e_n\otimes y)\| \ &\leq \|U\| \, \|e_n\otimes y\| = \|U\| \, \|y\|(n+1)/n \;. \end{aligned}$$

Thus $||\pi(p)y|| \leq ||U|| ||y||$. In fact $\pi(p) \in \mathscr{C}(F)$ because if $y \in F$, $q \in \mathscr{C}(M)$ and $e \in E$ with p(e) = 1 then

$$egin{aligned} q(\pi(p)y) &= q(\,U(e\otimes y)(p)) = (p\otimes q)(\,U(e\otimes y)) \ &= \widetilde{U}(p\otimes q)(p\otimes q)(e\otimes y) = \widetilde{U}(p\otimes q)q(y) \;. \end{aligned}$$

We thus have a function $\pi: \mathscr{C}(K) \to \mathscr{Z}(F)$ with $(Uh)(p) = \pi(p)h(p)(p \in \mathscr{C}(K))$. Also π is norm bounded, and we let $||\pi||$ denote $\sup \{||\pi(p)||: p \in \mathscr{C}(K)\}$.

 π is continuous for the structure topology on $\mathscr{C}(K)$ and the weak operator topology on $\mathscr{C}(F)$. Suppose $y \in F$, $g \in F^*$ and $x \in E$ then $k \mapsto g(U(x \otimes y)(k))$ is a continuous affine function on K vanishing at 0, so may be identified with an element of E. If $p \in \mathscr{C}(K)$ then

$$egin{aligned} g(U(x\otimes y)(p)) &= g(\pi(p)(x\otimes y)(p)) \ &= g(\pi(p)x(p)y) = x(p)(g(\pi(p)y)) \ . \end{aligned}$$

Thus $x \mapsto g(U(x \otimes y))$ is an element of $\mathscr{Z}(E)$, so the function $p \mapsto g(\pi(p)y)$ is structurally continuous.

By [2], Proposition 3.10 π has an extension, $\overline{\pi}$, to $\overline{\mathscr{C}(K)}\setminus\{0\}$ which is continuous for the weak* topology on $\overline{\mathscr{C}(K)}\setminus\{0\}$ and the weak operator topology on $\mathscr{X}(F)$ (the result there is stated for real valued functions but the proof remains valid in this context). We note for later reference that $\pi\mathscr{C}(K) = \overline{\pi}(\overline{\mathscr{C}(K)}\setminus\{0\})$. We propose now to show $\overline{\pi}$ is still continuous when $\mathscr{X}(F)$ is given its strong operator topology.

Provisionally we define $\tilde{\pi}(k)$, for $k \in \overline{\mathscr{C}(K)} \setminus \{0\}$, to be that linear operator on F such that

$$ilde{\pi}(k)y = U(x \otimes y)(k)/k(x)$$

with $x \in E$, k(x) > 0. This definition coincides with that of π if $k \in \mathscr{C}(K)$, and is well defined because if $k_{\gamma} \in \mathscr{C}(K)$ and $k_{\gamma} \to k$ for the weak^{*} topology then

$$egin{aligned} &\widetilde{\pi}(k)y = U(x \otimes y)(k)/k(x) = \lim U(x \otimes y)(k_{\gamma})/k_{\gamma}(x) \ &= \lim \pi(k_{\gamma})y \,\,. \end{aligned}$$

Clearly $\tilde{\pi}(k)$ acts linearly on F, and it is bounded because

$$egin{aligned} ||(\widetilde{\pi}(k)y)|| &= ||U(x\otimes y)(k)||/|k(x)| \ &= \lim ||U(x\otimes y)(k_7)||/|k_7(x)| \ &= \lim ||\pi(k_7)y|| \leq ||\pi|| \, ||y|| \ . \end{aligned}$$

Also $||\tilde{\pi}|| = \sup \{||\pi(k)||: k \in \overline{\mathscr{C}(K)} \setminus \{0\}\} = ||\pi||$. $\tilde{\pi}$ is locally a quotient of a function that is clearly strong operator continuous and a nonvanishing scalar function, so is strong operator continuous. In fact $\tilde{\pi}$ is the same as $\bar{\pi}$ as both are extensions of π to $\overline{\mathscr{C}(K)} \setminus \{0\}$ which are continuous for the weak* topology on $\overline{\mathscr{C}(K)} \setminus \{0\}$ and the weak operator topology on $\mathscr{Z}(F)$.

We do not know if π itself is continuous when $\mathscr{K}(F)$ is given the strong operator topology. All that we shall require is that if $D \subset \mathscr{K}(K)$ and 0 does not lie in the weak* closure of D, then $\pi|_D$ is continuous for the structure topology on D and the strong operator topology on $\mathscr{K}(F)$. For suppose $d_{\tau}, d \in D$ and $d_{\tau} \to d$ for the structure topology, then $\pi(d_{\tau'}) \to \pi(d)$ for the weak operator topology whenever $(d_{\tau'})$ is a subnet of (d_r) . Let $(d_{\tau''})$ be a weak* convergent subnet of $(d_{\tau'}) \to$ $\pi(d)$ for the weak operator topology whilst $\pi(d_{\tau''}) = \overline{\pi}(d_{\tau''}) \to \overline{\pi}(d')$ for the strong operator topology, and hence also for the weak operator topology. Thus $\pi(d) = \overline{\pi}(d')$ and $\pi(d_{\tau''}) \to \pi(d)$ for the strong operator topology. I.e. every subnet of $(\pi(d_{\tau}))$ has a subnet converging to $\pi(d)$, so in fact $\pi(d_{\tau}) \to \pi(d)$ for the strong operator topology.

We now seek, given $h_i \in H(i = 1, 2, \dots, n)$ and $\varepsilon > 0$, to find $\pi': \mathscr{C}(K) \to \mathscr{K}(F)$ which is of finite dimensional range and continuous for the structure topology, such that

$$||\pi'(p)h_i(p) - \pi(p)h_i(p)|| \leq \varepsilon \quad (p \in \mathscr{E}(K), 1 \leq i \leq n) .$$

 π' is the image of an element of $\mathscr{Z}(E) \odot \mathscr{Z}(F)$ so defines an element U' of the copy of $\mathscr{Z}(E) \odot \mathscr{Z}(F)$ in $\mathscr{C}(E \bigotimes_{\lambda} F)$. We then have

$$||(U'h_i)(p) - (Uh_i)(p)|| \leq arepsilon \quad (p \in \mathscr{C}(K), \, 1 \leq i \leq n) \;.$$

The function $k \mapsto ||(U'h_i)(k) - (Uh_i)(k)||$ on K is continuous and convex, so by [1], Lemma II.7.1, $||(U'h_i) - (Uh_i)|| \leq \varepsilon (1 \leq i \leq n)$. This will show that U is in the strong operator closure of the copy of $\mathscr{K}(E)$.

 $\mathscr{Z}(F)$ in $\mathscr{Z}(E\bigotimes_{\lambda} F)$.

We first prove that [3], Proposition 4.8 remains valid in this context. I.e. if $x \in E$ then $P = \{p \in \mathscr{C}(K): |p(x)| \ge \alpha\}$ is structurally compact provided $\alpha > 0$. If $(C_s)_{s \in S}$ is a family of nonempty structurally closed subsets of P with the finite intersection property, let $C_s = P \cap F_s$ with each F_s a weak* closed L-ideal in E^* . Set $Q = \{k \in K: |k(x)| \ge \alpha\}$ then each $F_s \cap Q$ is nonempty and this family has the finite intersection property. As Q is weak* compact and these sets are weak* closed, $\bigcap(F_s \cap Q) = (\bigcap F_s) \cap Q \ne \emptyset$. $\bigcap F_s$ is a weak* closed L-ideal and for some $k \in K \cap (\bigcap F_s) |k(x)| \ge \alpha$. But x attains its supremum at an extreme point, p, of $K \cap (\bigcap F_s)$ which is an extreme point of K by [2], Proposition 1.15. As $K \cap (\bigcap F_s)$ is symmetric, $p(x) \ge \alpha$ so that $p \in E(K) \cap (\bigcap F_s) = \bigcap (p \cap F_s) = \bigcap C_s$. We note also that such a set P does not contain 0 in its weak* closure, so $\pi|_P$ is continuous for the strong operator topology.

Given $h_i \in H$, $\delta > 0$, we may find a weak* closed subset Q_i of $\overline{\mathscr{C}(K)}$, not containing 0 and with $Q_i \cap \mathscr{C}(K)$ structurally compact, such that $||h_i(k)|| < \delta$ if $k \in \mathscr{C}(K) \setminus Q_i$. For we can find $\sum_{j=1}^m e_j \otimes f_j \in E \odot F$ with $||\sum_{j=1}^m k(e_j)f_j - h_i(k)|| < \delta/2(k \in K)$. Now let $P_j = \{k \in \mathscr{C}(K): |k(e_j)| ||f_j|| \ge \delta/2m\}$, which is weak* closed, does not contain 0, and is such that $P_j \cap \mathscr{C}(K)$ is structurally compact. Define $Q_i = \bigcup_{i=1}^m P_j$, then Q_i will have all the desired properties except possibly that on the norm. If $k \in \overline{\mathscr{C}(K)} \setminus Q_i$ then

$$egin{aligned} ||h_i(k)|| &\leq \left\| \sum_{j=1}^m k(e_j) f_j \, \right\| + \left\| \sum_{j=1}^m k(e_j) f_j - h_i(k)
ight\| \ &< \sum_{j=1}^m |k(e_j)| \, ||f_j|| + \delta/2 \ &\leq m(\delta/2m) + \delta/2 = \delta \ . \end{aligned}$$

We may thus find a weak* open neighbourhood of 0 in $\overline{\mathscr{C}(K)}$, O_0 , with structurally compact complement in $\mathscr{C}(K)$, such that $O_0 \subset \{k \in \overline{\mathscr{C}(K)}: ||h_i(k)|| < \varepsilon/(2||\pi|| + 1)(1 \le i \le n)\}$. Indeed if we take $\delta = \varepsilon/(2||\pi|| + 1)$ and choose Q_i as above we take O_0 to be $\overline{\mathscr{C}(K)} \setminus \bigcup_{i=1}^n Q_i$, which has the desired properties. If $k \in \overline{\mathscr{C}(K)}$ we let $U_k = \{T \in \mathscr{X}(F):$ $||T(h_i(k))|| < \varepsilon/3(1 \le i \le n)\}$, an open symmetric neighbourhood of the origin in $\mathscr{X}(F)$ for the strong operator topology. Thus $\overline{\pi}^{-1}(\overline{\pi}(k) + U_k)$ is an open subset of $\overline{\mathscr{C}(K)} \setminus \{0\}$ (by the continuity of $\overline{\pi}$ for the strong operator topology) and hence of $\overline{\mathscr{C}(K)}$. The set $\overline{\mathscr{C}(K)} \cap \bigcap_{i=1}^n h_i^{-1}(h_i(k) + B)$ (where B is the open ball in F of centre the origin and radius $\varepsilon/(3(||\pi|| + 1)))$ is also weak* open, hence so is

$$O_k = (\overline{\pi}^{-1}(\overline{\pi}(k) + U_k)) \cap \bigcap_{i=1}^n h_i^{-1}(h_i(k) + B)$$

for each $k \in \overline{\mathscr{C}(K)} \setminus \{0\}$, and we have $k \in O_k$. Now let $\{0, k_1, k_2, \dots, k_r\}$ be a finite set of distinct points of $\overline{\mathscr{C}(K)}$ with $\overline{\mathscr{C}(K)} = O_0 \cup \bigcup_{j=1}^r O_{k_j}$.

Let $W = \bigcap_{j=1}^{r} U_{k_j}$, an open convex symmetric neighbourhood of the origin in $\mathscr{X}(F)$ for the strong operator topology. Because $\mathscr{C}(K) \setminus O_0$ is structurally compact and π is continuous on this for the strong operator topology on $\mathscr{K}(F)$, $\pi(\mathscr{C}(K) \setminus O_0)$ is strong operator compact. Thus there exist $\{T_1, T_2, \dots, T_s\} \subset \mathscr{K}(F)$ such that $\bigcup_{i=1}^{s} (T_i + W/2) \supset \pi(\mathscr{C}(K) \setminus O_0)$. Define G to be the linear span of $\{T_i: 1 \leq i \leq s\}$ in $\mathscr{K}(F)$, and let Φ be defined on $\pi(\mathscr{C}(K) \setminus O_0)$ with values in 2^{σ} by

$$arPsi(S) = \{g \in G \colon ||\, g\, || < ||\, \pi\, || + 1, \, g \, - \, S \in W\!/\!2\}^{-}$$
 .

For some $i, T_i - S \in W/2$ and $T_i \in \pi(\mathscr{C}(K) \setminus O_0)$ so $||T_i|| \leq ||\pi||$, so that $\Phi(S)$ is certainly nonempty. It is clear that $\Phi(S)$ is closed and convex.

We show that Φ is lower semi-continuous, for the unique vector topology on G, and the weak and strong operator topologies on $\pi(\mathscr{C}(K)\backslash O_0)$ which coincide by the compactness of $\pi(\mathscr{C}(K)\backslash O_0)$ for the latter topology. If $D \subset G$ is open we must show that $\{S \in \pi(\mathscr{C}(K)\backslash O_0):$ $\Phi(S) \cap D \neq \emptyset\}$ is open. Suppose $S_0 \in \pi(\mathscr{C}(K)\backslash O_0)$ with $\Phi(S_0) \cap D \neq \emptyset$. By the definition of Φ , we can find $x_0 \in D$ with $||x_0|| < ||\pi|| + 1$, $x_0 - S_0 \in W/2$. As W is open, there is a symmetric strong operator neighbourhood of the origin in $\mathscr{C}(F)$, V, such that $x_0 - S_0 + V \subset W/2$. Now if $S \in (S_0 + V) \cap \pi(\mathscr{C}(K)\backslash O_0)$ we claim $\Phi(S) \cap D \neq \emptyset$, for $x_0 - S =$ $(x_0 - S_0) + (S_0 - S) \in (x_0 - S_0) + V \subset W/2$. It is now clear that $x_0 \in \Phi(S) \cap D$, completing the proof that Φ is lower semi-continuous.

As G is finite dimensional we can apply a selection theorem (e.g. [4], Theorem 3.2') to assert the existence of a continuous selection for Φ, ϕ . We note that $\phi(\pi(\mathscr{C}(K) \setminus O_0))$ is contained in the closed ball in G of centre the origin and radius $||\pi|| + 1$. We extend ϕ to ψ defined on the whole of $\pi(\mathscr{E}(K))$ with values in the same ball and with ψ continuous for the weak operator topology on $\pi(\mathscr{E}(K))$. Let $\beta(\pi(\mathscr{E}(K)))$ be the Stone-Cech compactification of $\pi(\mathscr{E}(K))$ (for the weak operator topology), and ρ the natural injection of $\pi(\mathscr{E}(K))$ into $\beta(\pi(\mathscr{E}(K)))$. Since the weak operator topology is uniformisable ρ is a homeomorphism, so that $\phi \circ \rho^{-1}$ is a continuous function from the closed set $\rho(\pi(\mathscr{E}(K) \setminus O_0))$ into G. Let σ be a continuous extension of $\phi \circ \rho^{-1}$ to the whole of $\beta(\pi(\mathscr{C}(K)))$ with values in the required ball in G, which exists by Tietze's extension theorem. Now $\psi = \sigma \circ \rho$ is the desired function. Define $\pi' = \psi \circ \pi$, a function from $\mathscr{C}(K)$ into G that is bounded and continuous for the structure topology on $\mathscr{C}(K)$, since π is continuous for the structure topology on $\mathscr{C}(K)$ and the weak operator topology on $\mathcal{Z}(F)$ whilst ψ is continuous for the weak operator topology on $\pi(\mathscr{C}(K))$. We claim π' has the required property.

If $p \in \mathscr{C}(K) \setminus O_0$ then $p \in O_{k_j}$ for some j. Then $||h_i(p) - h_i(k_j)|| < \varepsilon/3(||\pi|| + 1)$ and we also have $\pi'(p) - \pi(p) \in \overline{W/2} \subset W$. Thus for $1 \leq i \leq n$,

$$egin{aligned} &\|\pi(p)h_i(p)-\pi'(p)h_i(p)\|\ &\leq \|\pi(p)h_i(p)-\pi(p)h_i(k_j)\|+\|\pi(p)h_i(k_j)-\pi'(p)h_i(k_j)\|\ &+\|\pi'(p)h_i(k_j)-\pi'(p)h_i(p)\|\ &\leq \|\pi(p)\|\|\|h_i(p)-h_i(k_j)\|+(arepsilon/3)+\|\pi'(p)\|\|\|h_i(k_j)-h_i(p)\|\ & ext{ (since }\pi(p)-\pi'(p)\in W\subset U_{k_j})\ &\leq \|\pi\|(arepsilon/3)(\|\pi\|+1))+(arepsilon/3)+(\|\pi\|+1)(arepsilon/3)(\|\pi\|+1))\ &$$

On the other hand if $p \in O_0 \cap \mathscr{C}(K)$ then

$$egin{aligned} &\|\pi(p)h_i(p)-\pi'(p)h_i(p)\|\ &\leq (\|\pi'(p)\|+\|\pi(p)\|)\|h_i(p)\|\ &\leq (2\|\pi\|+1)(arepsilon/(2\|\pi\|+1))=arepsilon \ . \end{aligned}$$

Thus π' has the desired properties.

So far we have shown that $\mathscr{Z}(E\bigotimes_{\lambda}F)$ is contained in the strong operator closure in $\mathscr{B}(E\bigotimes_{\lambda}F)$ of the copy of $\mathscr{Z}(E) \odot \mathscr{Z}(F)$ there. It remains only to show that for any Banach space, $X, \mathscr{Z}(X)$ is strong operator closed in $\mathscr{B}(X)$. Indeed if $T_{\lambda} \to T$ for the strong operator topology with $T_{\gamma} \in \mathscr{Z}(X)$, p is an extreme point of the unit ball of X^* and $x \in X$, then

$$(T^*p)(x) = \lim (T^*_r p)(x) = \lim T_r(p)p(x)$$
.

Thus $\lim \widetilde{T}_{r}(p)$ exists and $T^*p = (\lim \widetilde{T}_{r}(p))p$, so $T \in \mathscr{Z}(X)$.

References

1. E. M. Alfsen, *Compact convex sets and boundary integrals*, Ergebnisse der Matematik 57, Springer Verlag, Germany, 1971.

2. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces II, Ann. of Math., 96 (1972), 129-173.

3. E. G. Effros, On a class of real Banach spaces, Israel J. Math., 9 (1971), 430-458.

4. E. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361-382.

Received November 18, 1974 and in revised form March 17, 1976.

THE QUEEN'S UNIVERSITY OF BELFAST, NORTHERN IRELAND