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STANDARD REGULAR SEMIGROUPS

R. J. WARNE

We give a structure theorem for a class of regular semi-
groups. Let S be a regular semigroup, let T denote the
union of the maximal subgroups of S, and let E(T) denote
the set of idempotents of T. Assume T is a semigroup
(equivalents, T is a semilattice Y of completely simple semi-
groups (Ty: y e Y)). If Y has a greatest element and e, f, ge
E{T), e > /, and e > g imply fg — gf9 we term S a standard
regular gemigroup. The structure of S is given modulo
right groups and an inverse semigroup V in which every
subgroup is a single element by means of an explict mul-
tiplication. We specialize the structure theorem to orthodox,
-^-unipotent, and inverse semigroups, and to a class of semi-
groups with Y an ωY-semilattice.

Finally, we show that S is a regular extension of T by V in
the sense of Yamada [19].

Let us first state the structure theorem. Let Y be a semilattice
with greatest element. Let V be an inverse semigroup with semilattice
of idempotents Y such that each subgroup of V consists of a single
element. Let (/, o) be a standard regular semilattice Y of left zero
semigroups (Iy: y e Y). Let (J, *) be a standard regular semilattice
Y of right groups (Jy:y e Y). Suppose Iy Π Jv — {ey}, a single idem-
potent element, and e*ez = eyoez = eyz for all y, z e Y. Let Hy denote
the maximal subgroup of Jy containing ey. Let i—*Bi be a homo-
morphism of (/, °) into P(J), the semigroup of right translations of
(J, *); let b—>βb be a mapping of V into End(J, *), the semigroup
of endomorphism of (J, *), and let g be a mapping of V x V into
H = U (Hy: p 7 ) , a semilattice Y of groups (Hy: yeY) (with respect
to the multiplication * in J) such that l(a) jBt e Hyz for iely and
j G Jz, (b) Jrβb Q Hb-irb, (c) g(c, d)eH(cd)-icd. 2(a) hBey - hβy = h*ey

for feeJ and i/eΓ. (b) if j e Hz and i e 7Z, JJ5< = j (c) g(i/, 2) = eyz

for y , 2 e 7 . 3(a)

βcβd = βcdCg{c,d)(xCz = z-'*x*z for x,zeH)

(b) #(α, bφg(b, c) = g(ab, c)*(g(a, b)βc). Let (Γ, /, J, F, £, /3, ̂ r) denote
{(ΐ, α, i): α e F, i e Iaa~ι, j e Ja~ιa} under the multiplication (4)

(if a> 3){w, δ, v) = (ioβ(β6)(β6)-i, α6, flf(α, b)*jBwβb*v) .

We show (Theorem 3.14) that (Y, /, J, F, B, β, g) is a standard regular
semigroup, and, conversely, every standard regular semigroup is
isomorphic to some (F, /, J, V, B, β, g).
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If X is a semigroup, E(X) will denote the set of idempotents of
X Let &, £f, Sίf, and z& denote Green's relations (notation of [1]).

Using [1, Theorem 2.3], 34f is the identity congruence on V.
Hence, using a result of Munn [5, Theorem 2.3; see also 6], V is iso-
morphic to a subsemigroup U of the semigroup X of isomorphisms
between principal ideals of E(V) with E(U) = E(X).

In special cases, explicit multiplications for V have been given
(see for example [8] and [4]). Probably, the most familiar example
of V is the bicyclic semigroup.

The multiplication for J is described by means of "connecting
homomorphisms" between the Jy (i.e. if a e Jy, b e Jzt α*ί> = aζy,yz*bζz,yz

where ζy,w(y > w) is a homomorphism of Jy into Jw). The multiplica-
tion for / is similarly characterized (see Remarks 1.7, 1.8, and 3.15).

A regular semigroup X is termed locally inverse if e, /, g e E(X),
e > /, and e > g imply fg = #/. (Let X be a regular semigroup and let
e e E(X). Hence, if a e eXe, there exists y e X such that α = ατ/α =
(ae)y(ea) = a(eye)a. Thus, the semigroup βXβ is also regular. Hence,
using [1, Theorem 1.17], a regular semigroup X is locally inverse
if and only if eXe is an inverse semigroup for all e e E(X)). Thus,
a standard regular semigroup is a locally inverse semigroup such
that T is a semigroup and F has a greatest element.

Following Hall [3], a regular semigroup X is termed orthodox
if E(X) is a semigroup. In general, a standard regular semigroup
is not orthodox.

Yamada [18, Theorem 2] described the structure of locally in-
verse orthodox semigroups in terms of inverse semigroups (locally
inverse orthodox = generalized inverse in the sense of Yamada [18,
Theorem 1]).

A Cliffordian semigroup is a semigroup which is a union of its
subgroups. A semigroup S is Cliffordian if and only if S is a semi-
lattice Y of completely simple semigroups (Sy: y eY) (Clifford, [1,
Theorem 4.6]).

In §1, we show that the multiplication of a locally inverse
Cliffordian semigroup S is described by means of connecting homo-
morphisms between the Sy (Theorem 1.6) and give some consequences
of this theorem. The results of this section are applied repeatedly
in the sequel.

In §§2 and 3, we prove the converse and direct parts, respectively,
of our structure theorem (Theorem 3.14).

Let JV denote the nonnegative integers and let Y be a semilattice
with greatest element. If W = N x Y with (k, a)Λ(s, λ) = (ft, a), (s, λ),
or (ft, aΛx) according to whether ft > sf s > ft, or s = ft, we term W
an <*> Y-semilattice. A regular semigroup S is termed ω Γ-.5f-unipotent
if E(S) is an ω Y-semilattice of right zero semigroups (E{n,δ):{n, δ)e
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N x Y) and f{ni9)&f{»M*.*) e #(.,„; /<•.« e JS?(mi«) if and only if δ = λ.
If 2£(Λιί) is a single element for each (n, δ)eN xY, we term S an
α)Y-inverse semigroup.

Munn [5, Theorem 3.3] described the structure of simple ωY-
inverse semigroups. In [10, Theorem 4], Warne described the struc-
ture of simple ωΓ~^-unipotent semigroups such that e e E{n>δ)ff e E{m>λ),
and (n, δ) < (m, λ) implies e < /. When specialized to inverse semi-
groups, this result yields a theorem [10, Corollary 5] equivalent to
Munn's theorem (see also [15, Lemma 2.1]). In [11, theorem and
corollary], we show "simple" may be omitted. In [15, Theorem 6.1],
we give a structure theorem for ω F-JS^-unipotent semigroups.

Let S be a standard regular semigroup such that T is an ωY-
semilattice of completely simple semigroups (T{n>δ):(n, δ)eN xY).
If fintS)^fimAfin,s^E(T{n,δ));f{m>λ)eE(T(m,λ))) if and only if δ = λ,
we term S a standard regular semigroup of type ωY.

In §4, we specialize Theorem 3.14 to obtain the structure of
standard regular semigroups of type ωY (Theorem 4.2). In Theorem
4.2, the factor terms "g(c, d)" are omitted and V is an ωY-inverse
semigroup with each subgroup a single element. Hence, an explicit
multiplication for V is given by [15, Theorem 2.3]. Further speciali-
zation yields the structure of simple and bisimple standard regular
semigroups of type ω (T is an co-chain of completely simple semi-
groups—no condition of the ^-classes).

In §5, we describe the structure of standard orthodox, standard
^-unipotent, and standard inverse semigroups (Theorems 5.1, 5.3,
and 5.5 respectively). A standard regular semigroup is termed
standard orthodox (^-unipotent)(inverse) if T is a semilattice of
rectangular groups (right groups)(groups). The structure theorems
are obtained by specializing Theorem 3.14. In each of the theorems
the term "B", is omitted. In Theorem 5.3 and 5.5, Iy = {ey} for each
y e Y. In Theorem 5.5, Jy — Hy for each y eY.

Warne [9, page 206, paragraph 3] and Munn [5, page 66, par-
agraph 3] have exhibited inverse semigroups with identity on which
Sίf, Green's relation, is not a congruence. Using Lemma 2.13, these
semigroups are not standard.

Let S be a standard regular semigroup. If α e S , let ^(a)
denote the collection of inverses of a. Let t = {(a, b) e S2: aa', bbr e
E ( T y ) a n d a'a, b'b e E(TZ) f o r s o m e a' e J ? ( a \ V e ^ ( b ) , a n d y f z e Y } .

In § 5, we show t is a congruence on S9 S/t = V, ker t = T, and
S is a regular extension of T by S/t in the sense of Yamada [19].

We use the definitions of Clifford and Preston [1] unless otherwise
specified. In particular, ^ Sf, Sff, and Ξί will denote Green's
relations on a semigroup S, i.e., (a, b) e & if a U aS = b U bS; (α, b) e
Se if a U Sa = b U Sb; Sίf = & Π £?\ & = & ° J*f((a, b) e &r if there
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exists x e S such that (a, x)e& and (x, b) e ^f)). Ea will denote the
& -class containing α e S . A semigroup consisting of a single ϋ^-class
is termed a bisimple semigroup. A semigroup S which is a union
of a collection of pairwise disjoint subsemigroups (Sy: y 6 Y) where Y
is a semilattice and SySzQSyΛz for all y, z e Y is termed a semilattice
Y of the semigroups (Sy: y e Y). If Y — N with nAm — max (n, m), S
is termed an ω-chain of the semigroups (Sn: neN). A semigroup
S is termed regular if a e aSa for all aeS. If S is a regular semi-
group, for each a e S, there exists # e S such that α#α = a and s/α̂ / = y
(for example, if α = α#α, let 2/ = xax [1, Lemma 1.14]). The element
y is termed an inverse of a. A regular semigroup S is termed an
inverse semigroup if each a e S has precisely one inverse. A re-
ctangular band is the algebraic direct product of a left zero semigroup
U(x, y e U implies xy = x) and a right zero semigroup. A rectangular
group is the algebraic direct product of a group and a rectangular
band. A right group is a semigroup X such that a,beX implies
there exists a unique x e X such that ax = b. If S is a semigroup
we may define a partial order " < " on E(S) by the rule: e ^ / means
ef •= fe — e. A band is a semigroup S such that x2 = x for each
xeS. If S is a commutative band, (S, <) is a semilattice with
aΛb — α& and, conversely, every semilattice is a commutative band
with ab = αΛ6 [1, Theorem 1.12]. A semigroup S is termed simple
if S is its only ideal. If, furthermore, e, f e E(S) and e < / imply
e=f, S is termed completely simple. The structure of such S is known
modulo groups by theorem of Rees [1, Theorem 3.5].

1* Locally inverse ClifEordian semigroups* In this section, we
give a characterization of locally inverse Cliffordian semigroups
(Theorem 1.6) and related results to be used in the sequel.

In the remainder of this section, S will denote a locally inverse
Cliffordian semigroup, i.e. S is a locally inverse semilattice Y of
completely simple semigroups (Sy: y e Y).

LEMMA 1.1. If EeE(Sy) and y > z, there exists precisely one
e e E(SZ) such that E > e. Furthermore, SZLE £ Le and BESZ £ Re.

Proof. If y = z, take e — E. Suppose y > z. Using the proof
of [7, Theorem], there exists eeE(Sz) such that E > β. Let g, h e
E(SZ) with g £ E and h £ E. Hence, since S is locally inverse,
gh = λ#. Thus, (hg)(hg) = M## = Λflr, and, hence, /*,# e JB(Sf). Fur-
thermore, g(hg) = hg = (hg)g. Thus, hg < #. Thus, since Sz is
completely simple, % = g. Similarly, hg = h and, thus, g = h. The
proof of the second sentence of the lemma is contained in the proof
of [7, Theorem] for y > z. If y = z, apply the Rees theorem [1,
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Theorem 3.5].

Let AeSy and suppose that A e RE Π LF where E, Fe E(Sy). Let
e and / denote the unique idempotents of SM(y > z) under E and F
respectively. We define Aζy,z = eAf. It is shown in the proof of
[7, Theorem] that ζy,z is well defined (i.e. ζy,z does not depend on the
selection of E and F).

LEMMA 1.2. For y>z, ζV}Z is a homomorphίsm of Sy into Sz. Let
AeSy and BeSz. If y > z, AB = Aζy,zB. If z > y, AB = A(Bζz,y).

Proof. The proof of Lemma 1.2 is contained in the proof of
[7, Theorem].

LEMMA 1.3. If y eYy ζ ^ is ί/̂ β identity mapping of Sy.

Proof. Let i e S r Hence, AeREΓ\LF for some E,FeE(Sy).
Let e and / denote the unique idempotents of Sy under E and F re-
spectively. Hence, since Sy is completely simple, e = E and f - F,
Thus, i4ζ¥ι1f = βil/ = EAF = A.

Let yz = y Λz in the semilattice Y.

LEMMA 1.4. If AeSy and B e Sg, AB = Aζ^^ζ,,^.

Proo/. Let A e L f and FeE(Sy). Thus, utilizing Lemma 1.2
or 1.3, AB - A(tfB) = AζVt99(FB) = Aζy,yzFζy,yzB =

LEMMA 1.5. .Por a? > 3/ > «, ζα,,^,, = ζ-,.,,.

Proof. Let A 6 &,. and suppose that AeBEeLF for some E, Fe
E(SX). Let e and / denote the idempotents of Sy under E and F
respectively. Hence, AζXyy = eAf. By Lemma 1.1, eAeSyLF Q Lf

and A/ e RESy S JBe. Let e' and / ' denote the unique idempotents
of Sz under e and / respectively. Hence, Aζx>yζy>z — e'eAff — e'Af.
However, E > e > e' and ί7 > / > / ' . Hence, by Lemma 1.1, Aζ^ =

THEOREM 1.6. Lei {Sy. ί/ e Y) be a collection of pairwise disjoint
completely simple semigroups indexed by the semilattice Y. For
each y, zeY with y > z, let ζy>z be a homomorphism of Sy into Sy

such that
(1) ζy,y is the identity automorphism of Sy.
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( 2 ) ζz,yζy,z = ζx,z for x> y> z in Y.
Let S — U (Sy: y e Y) and define a product on S by the rule

(3) AoB = Aζy,yzBζz,yz

where the right hand product is taken in Syz. Then, (S, °) is a
locally inverse Cliffordian semigroup.

Conversely, let (S, °) be a locally inverse Cliffordian semigroup.
Then, S is the union of a collection of pairwise disjoint completely
simple semigroups (Sy: y e Y) indexed by a semilattice Y. For each
y, ze Y with y > z, there exists a homomorphism ζy>z of Sy into Sz

such that (1) and (2) are valid and the multiplication is given by (3).

Proof. The converse is a consequence of [1, Theorem 4.6] and
Lemmas 1.2-1.5. Let us now establish the direct part. Let xy —
xΛy. Let AeSx, BeSy, and CeSz. Hence, uzing (3), the fact ζyz>xyz

is a homomorphism, and (2).

A o(BoC) = Ao(Bζy>yzCζz,yz) = Aζx,xyz((Bζy,yzCζz,yχy2,xys)

Similarly, (A oB) oC = {Aζx>xyzBζy,v.yz)Cζz,%yz. Hence {A<>B)oC = A°ψoC)

by associativity in Sxyz. By (1) and (3), Sy is a completely simple
subsemigroup of S for all y eY. Thus, Sy is a Gliffordian semigroup
for each yeYbj [1, Theorem 2.52]. Hence, S is Cliffordian. Clearly,
S is a regular semigroup. Finally, let E e E(SX), f e E(Sy), and
g e E(SZ) and suppose that E > / and E > g. Hence, x > y and
x > z. Thus, using (3) and (1), / - E*f = Eζx,yf = foE - f(EζXtV).
Hence, Eζx>y > f(Eζx>y, f eE(Sy)). Thus, / - Eζx,y since Sy is a
completely simple semigroup. Similarly, g = Eζx>z. Hence, f°g =
Ky,yzgL,yz = £ ^ C M A i , , = Eζx>yzEζx,yz - JS7ζβf,β. Similarly, f/o/ =
Eζx,yz. Thus, g° f = f °g, and hence, S is locally inverse.

REMARK. In Theorem 1.6, we term {ζy,z:y, ze Y} the collection
of structure homomorphisms of S.

REMARK 1.7. In the statement of Theorem 1.6, we may replace
"completely simple semigroup" by "left zero semigroup" and "Cliffor-
dian semigroup" by "semilattice of left zero semigroups". Using
Theorem 1.6, a band E is left normal [17] if and only if J? is a
locally inverse semilattice of left zero semigroups. Hence, we have
obtained the Yamada-Kimura characterization of left normal bands
[17, Theorem 1].

REMARK 1.8. In the statement of Theorem 1.6, we may replace
"completely simple semigroup" by "right group" and "Cliffordian
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semigroup" by "semilattice of right groups".
The following result will be used in the sequel.

PROPOSITION 1.9. Let S be a locally inverse Cliffordian semi-
group. Then, Sfj &, and J%f are congruence relations on S.

Proof. Let S be a locally inverse Cliffordian semigroup. We
first show that ^ is a congruence relation on S. We will apply
Theorem 1.6 and its notation. Let (x, y) e £f in S. Hence, (x, y) e
£>? in Su for some ue Y. Let z e Sυ. Since ζUtUV is a homomorphism
of Su into Suv, xζu,uv £fyζu,uv in Suv. Using the Rees theorem [1,
Theorem 3.5], ̂  is a congruence relation on Suvi Hence,

z o χ = z ζ v , u v x ζ u , u v £ f z ζ V ) U V y Z U ) U V = z o y .

Thus, since Jίf is a right congruence on any semigroup, £f is a
congruence on S. Similarly, & is a congruence relation on S.

2. Structure theorem for standard regular semigroups (proof
of converse)* In this section, we will use a sequence of twenty-one
lemmas to establish the converse of our structure theorem for stan-
dard regular semigroups (Theorem 2.22).

Let S be a standard regular semigroup and let T denote the
union of the maximal subgroups of S. Hence, T is a semilattice Y
of completely simple semigroups (Ty:y e Y) where Y has a greatest
element yQ. Let {ζVtt: y, zeY} denote the set of structure homo-
morphisms of T. Let Ey = E(Ty). Select and fix eVo e Eyo. For each
y e Y, define ey = eyoζyQ,y. Let So = eVoSeVo.

LEMMA 2.1. E(S0) = {ey: y e Y}.

Proof. Since eyQey = eyoζyo,yey = ey, and, similarly, eyeyo = ey, ey e

E(S0) for all yeY. Suppose / e E(S0) and / e Ey, say. Hence,
/ <̂  eVo and ey < eyo implies fey = eyf. Thus, since Ty is completely
simple, / = ey.

LEMMA 2.2. y —+ ey defines an isomorphism of Y onto E(S0).

Proof. Let y, z e Y. Hence,

L E M M A 2 . 3 . So = {J (Bey n L e ; . y,ze Y).

Proof. Let x e Rey n Lez where y, zeY. Using Lemma 2.2, eVox =
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evo

evχ = eyx = x and, similarly, xeVo = x. Conversely, if x e So, let
or1 denote the unique inverse of x in So. Thus, using Lemma 2.1,
xx-1 — ey and x"1^ = ez for some | / , 2 e 7 , Hence, x £Rey Π ί/βz.

By the Rees theorem [1, Theorem 3.5], for yeY, Ty = Gy x
My x Ny where Gy is a group and My and Ny are sets under the
multiplication (g, i, j)(h, p, q) = (^Λ(i, p)ft, i, q) where (i, p)-+fy(j, p)
is a mapping of JV, x My into Gy. We note ey = (fv(jy, iy)~\ iy, jy),
say, where fy(jy, iy)'1 is the inverse of fy(jy, iy) in the group G> Let
Iy denote the set of idempotents of the iίf-class of Ty containing ey

and let Jy denote the ^-class of Ty containing ey. Hence, Iy =
{(Λ(iiff ί)"1* i iy); i e Λίy} and Jy = {(gr, iv, jf): sr e G and j e Ny}. Let
I = U (Λ: 1/ € Y) and / = U (J/ V € Γ).

LEMMA 2.4. I is a standard regular semilattice Y of left zero
semigroups (Iy:y e Y).

Proof. Let aely and belz. Thus, a ^fey and b£fez. Using
Proposition 1.9 and Lemma 2.2, ab£feyz. Furthermore, ahab~abeyzab —
abezeyab = dbezeyb = abeyzb — α6& = αδ. Thus, ab e Iyz.

LEMMA 2.5. J is a standard regular semilattice Y of right
groups (Jy:yeY).

Proof. Apply Proposition 1.9 and Lemma 2.2.

The next two lemmas are special cases of left-right duals of
[14, Lemmas 1.3 and 1.4]. Note our arbitrary representations of
the "ey" requires a slight modification in the proof of [14, Lemma 1.3].

LEMMA 2.6. Every element of T may be uniquely expressed in
the form x = ij where iely and j e Jy for some y eY.

If X is a set, Tx will denote the semigroup (iteration) of mappings
of X into X.

LEMMA 2.7. There exists a mapping j —> Aά of J into Tj and
a mapping p—>Bv of I into Tj such that IyA3 £ Iyz for j e Jz and
JyBp C Jyz for p e Iz. If j e J and pel, jp = pAjjBp. Furthermore,

and jp£?jBp(εT).

LEMMA 2.8. iAs = ers for ielr and j e J8.

Proof. First, we show that As — Ae& for j e J8. Since & is
a congruence relation on T, (i, β.) € & implies (ji, e8i) e & for all
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iel. Hence, using Lemma 2.7, (iAjf iAe) e ^?, for all i e I. Thus,
iA3 = iAβs for iel. Let i e Ir, say. Thus, since esi e Irs, we utilize
Lemma 2.7 to obtain (e8i)esr = e8i = iAese8Bi. Thus, by Lemmas 2.7
and 2.6, iAe& = ββi. Since i^fer, iζrtτB^erζVtra = e r s. Hence, iζ r ι r β e
I r s . Hence, using Theorem 1.6, esi = esr(iζr,*r) = e s r. Thus, ίA, =
iAeg = β 8 r .

DEFINITION [1, p. 10]. A transformation p of a semigroup S is
a right translation of S if (αδ)|0 — α(6|θ) for all a,beS.

LEMMA 2.9. For each i e /, Bt is a right translation of J.

Proof. Let r e Ju, s e Jυ and x e Ip, say. Hence, utilizing Lemmas
2.5 and 2.7, (rs)x = xArs(rs)Bx while r(sa;)= r ί ^ ^ s B J = xA8Ar{rBxAsBx).
However, using Lemma 2.8, rBxAs = r 5 e v p . Using Lemma 2.5, rβv p 6
JWVί). Hence, euvp(revp) — revp = 0V3,Arr.Beί;p. Hence, using Lemmas 2.7
and 2.6, rB€υp = revp. Thus, using Lemmas 2.7 and 2.6, (rs)Bx =
r e ^ s ^ = r(sBx).

LEMMA 2.10. i—> Bt is a homomorphism of I into P(J), the
semigroup of right translations of J.

Proof. Let r, sel and xeJ. Thus, proceeding as in the proof
of Lemma 2.9, x(rs) = (rs)AxxBrs and

(xr)s - rAx(a?J?rs) - (rAxsAxBr)(xBrB8) .

Thus x5 r 8 = xBrBs.

For each j / e Γ , let Hy denote the maximal subgroup of S con-
taining ey.

LEMMA 2.11. If iely and j e JZJ jB, e Hyz. If j e Hy, jB, = j .

Proof. Let iely and j e Jz. Since j&ez, jζz>yz&ezζZiyz = eyz and
Kz,yz€Jyz. Thus, β^iiβ^ = eyzjζz,yziζy>yzeyz = jζz,yziζy,yz = # . Hence,
since i i e Γ,,,, j ϊ e fΓy£. However, using Lemmas 2.7 and 2.8, j i —
iA. iS i = ^ j ' 5 , = jBt. Thus, i ^ e Hyz. If i e jffy, jBt = i ί = iβ yi =
iβy = i.

LEMMA 2.12. If j e J, i£ e ? ι - jen.

Proof. Utilize the proof of Lemma 2.11.

LEMMA 2.13. Let X be an inverse semigroup such that the union
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of the maximal subgroups of X is a subsemigroup. Then, 3$f is
a congruence relation on X.

Proof. Let H=[J(He:eeE(X))). Using [1, Theorem 1.7], H
is an inverse semigroup which is a union of groups. Hence, E(H)
is contained in the center of H by [1, Lemma 4.8], Let (a, b) e
Hence, αcΓ1 — δδ"1 and a~γa = b~xb. Let ce S. Thus,

bcc~ιb~ι = ba^acc^a^ab'1 = ba~1{acc~1a~1)ab'~ι

^a'1 — aa~ιacc~ιa~ι = (ac){ac)~ι

while {bc)"ιbc — c~ιb~ιbc = c~ιa~ιac = (αc)" 1 ^. Hence, (αc, δc) 6
Similarly, (cα, cb) e

LEMMA 2.14. S^f is a congruence relation on So.

Proof. Using Lemma 2.3, {Hy: y e Y} is the collection of maximal
subgroups of So. Let aeHy and b eHz, say. Since a£έfeyy aζy,yz3ίfeyz

and, thus, aζy,yzeHyz. Similarly, bζβtVz e Hyz. Thus, ab = aζy,yzbζz,yz e
Hyz. Hence, using Lemma 2.13, Sίf is a congruence relation on So.

LEMMA 2.15. There exists a homomorphism φ of So onto an
inverse semigroup V where E(V) =Y and each ^f-class of V con-
sists of a single element. Furthermore, (a, b) e J%f(sSQ) if and only
if Q>Φ — bφ. Thus, if hc = cφ~γ, {hc: ce V} is the collection of §{f-
classes of So.

Proof. Using Theorem 2.14 and [1, Theorem 7.36], So/J^ is an
inverse semigroup. Let a—>a denote the natural homomorphism of
So onto So/^. Suppose (a, b) e £έf(εSQ/βi). Hence, aa"1 = bb~ι and
orιa = b~γb. Thus, aa~ι = bb'1 and a~ιa — b~γb. Hence, (aaΓ1, δδ"1) e
J%?(εS0) and {a"ιa, b~ιb) e £έf{sS,). Thus, aa'1 = δδ"1 and α - 1α = δ"^ .
Hence, (α, δ) e έ%f, and, thus, a — b. Thus, each ^g^-class of So/^
consists of a single element. Using Lemma 2.2 and [1, Lemma 7.34],
ey—*y defines an isomorphism of E(S0/H) onto the semilattice Y.
Hence, we may extend this isomorphism to an isomorphism λ of SQ/^
onto a semigroup V with E( V) = Y. For a e So, define aφ = aX.

For each ce V, select a representative element vc ehe. For y eYf

let vy = ey. Hence, using Lemma 2.15 and its proof, vcvjl = ecc-ι
and v^ve — ββ-iβ for ce V.

LEMMA 2.16. Every element of S may be uniquely expressed in
the form ivj where i e Icc-i and j e Jc-ιc.
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Proof. Let xeS. Hence, xeBef) Lf where eeEy and / eEz

for some y, zeY. Thus, (e, ϊ)e& for some iely and hence (x, i) e
&. We note that ey^e^x^f^ez. Hence, Rey Π Lβg Φ Π Thus,
using Lemmas 2.3 and 2.15, Rey Π Z>e;J = ftc for some c e V. Thus,
vcvjι = ey and v71ve = ez. Hence, α = ia? = i e ^ = ivc(y7γx). We will
show that v7ιx e Te-ie. Using the proof of [1, Theorem 2.18], there
exists an inverse x' of x such that x' e Rf Π Z>e, aw' = e, and a'as = /.
Let xxf = (/,,($, r)"1, r, s) for some r e Λf̂  and s e iV̂ , and let 2; =
(fy(jy> f)~S ̂ > iy) Using the Rees theorem, βtfa;ί»'« = elί. Hence,
ez = vjιve = vr^yVe = i^βyίftB'sVβ = v^αjα^Vβ e v^xS. However, v~xx ~

ezv~γx G ezS. Again, using the Rees theorem, zeyxxf — xxr. Hence,
x = zeyx = zvevτιx. Thus, / = α'aj = cĉ Vĉ r1^ 6 Svjιx. However, v^a; e Sx~
Sf. Hence, v7ιx ei?βz n i / £ Γβ. Since e^Γ1^ = vjιx, vjιx e J2. Since
e, = T Γ1?;,, « = ezφ = {vcφ)~ιvcφ = c'c. Thus, vr1^ 6 Jc-ic. Hence, x = ivcj
where ielce-i and jeJc-ιc. Suppose ivcj = rvds where reldd~ι and
s e Jd-id. Since j&ec-hy vcj&vcec-ie = veggeec-u Hence, ίvci e
&iecc-ι = ΐ. Similarly, ivej£fj. Hence, ΐ ^ i e ̂  Π ί/̂ . Thus, ΐ^Pr
and i^g^s. Hence, ccr1 = dd"1, i = r, and <Γγc = d"^. Thus, c^Td(εF)
and, hence, c = d. Thus, ΐi j = ivβs. Therefore, ecc-άvcj = ecc~iivcs.
Hence, vci = ̂ cs. Thus, j = ββ-iβi = vr^βi = vr'^s = βc-ics = s.

LEMMA 2.17. If c, de V, vcvd = vcdg(c, d) where g is a function
of V xV into H=\J (Hy: yeY) such that g(c, d) e H{cd)-icd. Ify,ze
Y, g(y, z) = eyz.

Proof. Using Lemma 2.16, vcvd = ivxj where i e Ixx-i and j e
J*-iχ We first show x — cd. By the proof of Lemma 2.16, ivxj e
Rt Π Lj. However, {vevd{vcvdγ

ι)φ = {cd)(cdyι = βCβd,(β<i,-î . Hence, using
Lemma 2.15, {vcvd){vcvc)~ι = e{cd){cd)-i. Similarly, {vcvdγ\vcvd) = e{cd)-i{cd).

Thus, ajaj-1 - (cdKcd)-1 and a?-1^ - {cd)~ιcd. Thus, (a?, cd) e £έf{εV).
Hence, using Lemma 2.15, x — cd. Thus, vcvd = ivcdj. Let j" = g(c, d).
Hence, using Lemma 2.16, g is a function of F x 7 into J and
g{c, d) e J{cd)-Hcd). F u r t h e r m o r e , vβvd = β(cd){cd)~ιvcvd = e (cd) {cd)-άvcdg(c, d) =

*>cd0(c, d) We note t h a t ^(c, d) = e{ed)-ι(ed)g(c, d) = V7}vedg{c, d) =

v7dVcvdeS0. Thus, using Lemma 2.3, g(c, d)eH{cd)-icd. To obtain
the last statement of the theorem, utilize Lemma 2.2

If π G / and s e F , define %/3s = v71uv8.

LEMMA 2.18. For s e V, βs e End J and Jrβs C Hs-irs. Further-
more, if j eJ and s e 7 , i/9s = '̂βs

Proof. Let j19 j2eJ. Suppose ΛβΛ and i 2 e / r . Hence, using
Lemma 2.5, j\βsj2βs = (v71j1v8)(v71j2vs) = v71jιess-i(j2ess~i)vs = v71jj2V8

:=

s' Hence, /9S is a homomorphism of J into S. Since is a J
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union of groups, βs is a homomorphism of J into T. Since erβ8 =
V7\vs = e s _ w i ^ e r implies jβs^es-ιrs. Hence, JrβsQjs-irs. Thus,
& 6 End /. Let j e / , . Thus, v r 1 ^, = vr 1 ^, eβ-lβ = vr'jv, ββ_lβζβ-i,f,-ir. =
vT^'Vs-Gears'- Thus Jr/S8 C i ϊ s -i r s . If 8 e Y and i e J r , i/Ss = eje, = jββ.

If i 6 H and 2 e £Γ, define jCz = ί?" 1^. (Using Proposition 1.9
and Lemma 2.2, H is a semilattice F of the groups (Hy: y e Y).)

LEMMA 2.19. βcβd = βcdCalCtd).

Proof. Utilizing Lemma 2.17, jβcβd = vjιv7ιjvcvd = {vcvd)'ιjvcvd^
(vcdg(c, d)Yιjvedg(c, d) = jβcdCg{c,d).

LEMMA 2.20. ^(α, δc)βr(δ, c) - g(α6, c)(^r(α, δ)/9c).

Proof. Using Lemmas 2.17 and 2.5,

( V δ K = ^ ^ ( t t , &K = ^αδ#(α, b)eec-ivc

= vabecc-ι(g(a, b)ecc-ι)vc = vahvc{v~ιg{a, b)ve)

= vabeg(ab9c)(g(af b)βc) = e{abcUabc)-iVabeg(ab, c)(g(a, b)βc) .

Using Lemmas 2.17 and 2.18, g(ab, c)(g(a, b)βc) eJ{abc)-ιabc. However,

^αC*Vθ = va(vbcg(b, c)) = ^(^^(αj^^t ^flrία, &c)flr(6, c) .

We note that g(a, bc)g(b, c) ejiabc)-ιabc. Hence, using Lemma 2.16,
£(α, δc)βr(6, c) = flr(α6, c)(flr(α, δ)/3c).

If α, 6 G J, define α*δ = αδ. If α, 6 e /, define α° δ = ab.

LEMMA 2.21. S = {(i, α, i ) : aeV, ie Iaa-ι, and j e Ja~ia} under
the multiplication (i, α, j)(u, δ, «) = (i°e(αδ)(α6)-i, ab, g(a, b)*jBuβfz) .

Proof. Let i e Jαα-i, i e Jβ-iα, u 6 Iδ6-i, and z 6 Jδ-iδ. Using Lemmas
2.7, 2.8, and 2.2,

(ivj)(uvbz) = ivauA5jBuvhz

= ivaebh-ia-iajBuvbz

= ivaea~iaebb-ιjBuvbz

= ivavbvb

ιjBuvbz

= ivabg(a, b)jBuβbz

Using Lemmas 2.4,2.5,2.7,2.17 and 2.18, ioe( f l5 ) ( o 5 rie/(α M ( ( l 6)-i and
jr(α, b)*jBuβtzeJ{ah)~iab. Hence, using Lemma 2.16, (ivaj)d = (i, α, i)
defines an isomorphism of S onto the groupoid given in the statement
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of the lemma.

THEOREM 2.22. Let S be a standard regular semigroup. Then,
S is isomorphic to (Y, J, J, V, B, β, g) for some Y, I, J, V, B, β, g.

Proof. Utilize the remark before the proof of Lemma 2.21 and
Lemmas 2.2, 2.4, 2.5, 2.10-2.12, 2.15, and 2.17-2.21.

REMARK 2.23. A semilattice Y is said to be directed from above
if y, z 6 Y implies there exists w e Y such that w > y and w > z.
Theorem 2.22 is valid if we replace the condition " Y" has a greatest
element by " Y is directed from above" and "for each yeY, there
exists ey e Ey such that eyez = eyz for all y, z e 7" . Just replace SQ

b y t h e i n v e r s e s e m i g r o u p \J (eySey: y e Y) = U ( R e y Π L e \ y , zeY)
and note that for z < y, eyζyjZ = ez.

3* Structure theorem for standard regular semigroups (proof
of direct half)• In this section, we show that (Y, I, J, V, B, β, g) is
a standard regular semigroup and establish other results to be used
later in the sequel.

For brevity, let S = (Y, I, J, V, B, β, g).

LEMMA 3.1. S is a semigroup.

Proof. Utilizing (4) and (1), closure is easily established. Let
(if a, Λ = i and (i, a, j \ = j . Let x = {i, a, j), y = (u, 6, z), and w =
(Pf c, Q) Using the fact er ° es = ers for all r, s e Y and (4), ((xy)w\ =
(x(yw)\. Utilizing (4), the facts βc e End (J, *) and i —>£* is a homo-
morphism of (/, o) into P(J), 3(b), 3(a), l(c), the fact e*es = ers, l(b),
and 2(a),

\ = g(ab, c)*(g(a, b)*jB%βtz)Bpβ*q

= g(ab, c)*(g(a, b)βc)*(jBuβtz)Bpβ*q

= g(a, bc)*g(b9 c)*jBuβbβ*zBpβ*q

= 9(a, bc)*g{b, c)*(g(bt c)Γ*(jBuβbcyg(b, c)*zBvβ*q

= g(a, bc)*e{be)-ib*jB%βi.g(b, c)*zBpβΐq

= g(a, bc)*jBuβieg(b, c)*zBpβ*q

= g(a, bc)*jBuβtce{bc){hc)-ιβϊcg(b, c)*zBpβϊq

= 9(at bc)*(jB*e«eme)-i)βϊcg(b, c)*zBpβ*q

= g(a, bc)*jBuB.{bemc)~ιβfeg(b, c)*zBpβfq

- g(a, bc)*jBu.β[bcUbe)^βϊcg(b9 c)*zBPβ*q

= (x(yw))z.
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Hence, (xy)w = x(yw).

LEMMA 3.2. E(S) = {(i, α, i ) : a e Y and i J ^ = ea}.

Proof. Let (i, a, j) e E(S). Using 4, 2(a), l(a), and 2(c), a e Y
and i.B*i = j . Since J α is a right group, there exists yeJa such
that i*?/ = ea. Hence, using l(a), ea = i*2/ = jB?j*y = iB*ββ = iJS,.
Conversely, if α e F and /B, = βα, using (4), 2(c), and 2(a), (i, α, i) 6

LEMMA 3.3. Let (i, α, i), (%, 6, v) 6 S. ΓAβ^, (ί, α, j)&(u, 6, v) i/

Proof. First suppose that i — u. Hence, αα"1 = bb"1. Let a? G
ί(α~i6)(α-i6)-i Thus, using (1) and the fact Jb-ib is a right group,
there exists yeJb-ιb such that (g(a, a~ιb)*jBxβa-ib)*y — v. Thus,
using (4), (i, α, i)(x, a-1&, ?/) — (i, 6, v). Similarly, there exists p e
•ί(6-iβX6-iα)-i and qeJa-ia such that (ΐ, 6, v)(p, δ"1^, g) = (i, α, j). Thus,
(i, α, j)&(if b9 v). Conversely, suppose that (i, α, j)&(u, 6, v). Using
Thus, (4), io% = % and u°i = i. Hence, % — u.

LEMMA 3.4. S is a regular semigroup.

Proof. Let (i, α, i) e S. Using Lemma 3.3, (i, αα"1, βα α-i)^(i, α, j) .
By 2(b), ββα-iBi = eaa-i. Hence, using Lemma 3.2, (i, αα"1, eαα~i) e £;(S).
Thus each ^-c lass of S contains an idempotent.

LEMMA 3.5. Let (i, a, j), (w, b, z) e S. Then, (ΐ, α, j)£f(w, 6, s)
i/ α^ώ oTiϊ?/ i/ α"xα = δ- 1δ α^d (i, z) e

Proof. We first show that (i, a, j)J*f(w, 6, z) if cΓ^α = δ""^ and
(i, «) e £g?(ejh~\h). Since (i, J?) € £^(sJb-ιh), there exists y e JEΓβ-iβ such
that 2/*̂ ' = s. Since ^(α"1, α) e Ha-ia by l(c), there exists x e ίία-iα

such that x*g(arι, a)*j = 2. Using l(b), 2(b), 3 (a), 2 (a), and l(c),
g(a"\ a)*xβu-1Biβ*j = x*g(a-ι

f a)*j = z. Thus, (βα-iβ, α"1, xβa-i)(i, a, j) =
(ea-ia,a~la, z). However, (w,δ,(g(δ,δ^δ))"1)^-^,δ"^,z) = (w,δ,«). Hence,
((w, δ, (̂ r(δ, δ"^))"1)^"1,,, α"1, xβa-ι))(i, α, i) = (w, δ, «). Similarly, there
exists p e Hb-ιb such that ((i, α, (βr(α, α"1α))"1)(β6-i6, δ"1, pβh-ι))(w, δ, a;) =
(i, α, i ) . Hence, (i, α, j)J*f(w, δ, «). Conversely, suppose that
(i, α, j)£f{w9 δ, 2). Using (4) and (1), arιa = δ""^ and (i, 2) e

LEMMA 3.6. Let (ί, α, i), (w, δ, 2) 6 S. ΓΛβn, (ΐ, α, j)£έ?{w, b, z)
if and only if i — w, a = δ, απcί ( j , 2) 6
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Proof. Just note that each ^g^-class of V consists of a single
element, and combine Lemmas 3.3 and 3.5.

REMARK. Lemmas 3.3 and 3.5 and their proofs were suggested
by [16, Lemma 3.2] and its proof.

LEMMA 3.7. Let (i, a, j), (w, 6, z) e S. Then, (i, a, j)&(w, 6, z)
if and only if a&b(εV).

Proof. S u p p o s e t h a t a & b { s V ) . H e n c e , t h e r e e x i s t s x e V s u c h
that a&x and x£?b. Hence, aa~x = xx~ι and b~ιb = x^x. Thus,
using Lemmas 3.3 and 3.5, (ί, α, j)&(i> x, z)£f(w, δ, z). Conversely,
if (if α, $)3f(w, b, z), using (4), a

LEMMA 3.8. S is a bisimple semigroup if and only if V is a
bisimple semigroup.

Proof. Apply Lemma 3.7.

LEMMA 3.9 For each y eY, let Ty — {(i, y, j): iely and j e Jy).
Then, Ty is a completely simple semigroup.

Proof. First, we show that Ty is a simple semigroup. Let
(if V, ύ)f (u, y, v) 6 Ty. Hence, using l(a), 2(a), and 2(c), (i, y, j)(u, y9 v)
(if V, j'BuV) e Ty. Since Jy is a right group, there exists xeJy such
that i*# — v. Hence, using 2(b) and 2(a),

(u, y, ey)(i9 y, j)(ey, y, x) = (u, y, v) .

Next, we show Ty is completely simple. Let e, f e E(Ty) and suppose
that e < /. Hence, using Lemma 3.2, e = (if y, j) and / = (w, y, z),
say, where jBt = zBw = ey. Thus, (w, y, z)(i, y9 j) = (i, y, j) implies
w = ί. Hence, (i, y, j)(i, y, z) = (i, y, z) = (i, y, i). Thus, z = j and,
hence, (w, y, z) = (i, y, i).

LEMMA 3.10. Lei Γ = U (Ty: y e F). Tfee ,̂ T is a semίlattice
Y of the completely simple semigroup (Ty: y 6 Y).

Proof. Apply (4), 2(c), l(a), and 2(a).

LEMMA 3.11. T is the union of the maximal subgroups of S.

Proof. If x e Ty, x is contained in some subgroup of S (each
completely simple semigroup is a union of its subgroups by [1,
Theorem 2.52]). Thus, x 6 He for some e e E(S). Hence, T Q X, the
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union of the maximal subgroups of S. If c e X, cSίfe for some e e
E(S). Hence, e — (ΐ, y, j) for some y eY by Lemma 3.2. Thus,
using Lemma 3.6, c e Ty.

LEMMA 3.12. T is a locally inverse semigroup.

Proof. Let (ΐ, α, j), (u, b, v), and (w, c, z) e E(S) such that (i, a, i )>
(u, δ, v) and (£, a, j)>(w, c, z). Hence, (i, α, j)(u, δ, v)-{n, b, v)(i, a, i) =
(u, 6, v). Using Lemma 3.2, a, b e Y, and, hence, α > 6. Since i°eh —
u, i°u = i°(i°eb) = i°eb = u while uoi = uo(u°i) = u. Hence, i^ u.
Using (4), 2(c), 2(a) and l(a), jB*v = VJB?i = v. Hence, using the fact
jBueHb and veJb, a right group, jBu — eb. Hence, using Lemma
3.2, eb = vBu = (vBfj)Bu^ vBfjBu = vB*eb = vBt. Thus, efj^v.
Let {ζPιί: ί9, g e F} denote the set of structure homomorphisms of (/, *).
Thus, eb*jζa,b — v. Hence, jζa,b = v. We have shown that (ΐ, α, i) >
(%, 6, v) implies i > w, α > δ, and v = iζα,6. Similarly, (ί, α, jι) ̂  (w, c, z)
implies i > w, a > c, and 2 = iζβ,β. Since (/, o) is a locally inverse
semigroup, now — won. Using 2(c), 2(a), and l(a), (u, δ, v)(w, c, z) =
(uoebe,bc,vBZz) while (w, c, z)(u, b, v) = (woebc,bc, zB%v). Let {̂ Pιff:
p, g 6 Γ} denote the set of structure homomorphisms of (J, o). Hence,
won = wφC}beouφb>bc = wφc,bcoebcouφbybc = woe6 c. Similarly, w w r

Hence, ^oe6c = w°eδc. Furthermore,

= vBwoeb*z = vBu.βbe*z

β 2 J =

Similarly, s2?Jv = vζ6,6β. Hence, vβ*2; = jζa,cζc,bc = iζα,6c = Ka^u =
<δ ) 6 c = ̂ JSί^. Thus, (%, 6, v)(w, c, «) = (w, c, «)(w, 6, v).

THEOREM 3.13. (Y, /, J, F, J5, /9, g) is α standard regular semi-
group.

Proof. Utilize Lemmas 3.1, 3.4, and 3.10-3.12.

THEOREM 3.14. (F, J, J, F, .B, /S, ̂ ) is a standard regular semi-
group and9 conversely, every standard regular semigroup is iso-
morphic to some (Y, I, J, V, B, β, g).

Proof. Combine Theorems 2.22 and 3.13.

REMARK 3.15. Let / and H be as in the statement of Theorem
3.14. Using the proof of [1, Theorem 1.27], Theorem 1.6, and Pro-
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position 1.9, / ~ U (Hy x E(Jy): y e Y) where, if a e Hy, ceHz,be
E{Jy), and d e E(JZ), (a, b)(c, d) = (ac, bd) e Hyz x E(Jyz). The multi-
plications in H and E{J) are given by the corresponding speciali-
zations of Theorem 1.6. These specializations yeild theorems of
Clifford [1, Theorem 4.11] and Yamada and Kimura [17, Theorem 1]
respectively.

REMARK 3.16. Let ey = (eyt y, ey). Hence, using (4), 2(c), 2(a),
eyez = eyz. Thus, if we replace "Y has a greatest element" by "Y
is directed from above" in the definition of (Y, I, J, V, B, β, g), we
obtain the semigroup of Remark 2.23. Hence, Theorem 3.14 with
appropriate modifications characterizes these semigroups.

4* Standar dregular semigroups of type α)L Let S be a regular
semigroup such that T is a locally inverse ω F-semilattice A of com-
pletely simple semigroups {T{n,δ): (n, δ)e A}. If f^&f^Af^z
E{n,δ): f{m>λ) zE{m>λ)) if and only if δ = λ, we term S a standard regular
semigroup of type ωY. If 30 is the greatest element of Y", (°, <50) is
the greatest element of A. We give a characterization of standard
regular semigroups of type ωY(Theorem 4.2). A regular semigroup
S such that T is a locally inverse ω-chain of completely simple
semigroups (Tn: neN) (no further condition) is termed a standard
regular semigroup of type ω. We show that S is a simple (bisimple)
standard regular semigroup of type o) if and only if S is a standard
regular semigroup of type ω Y with Y a finite chain (a single element)
(Theorem 4.3) (Theorem 4.4). Hence, the structure of these semi-
groups is given by specializing Theorem 4.2.

To establish Theorem 4.2, we use a more general result on "split"
extensions (Theorem 4.1).

Let S be a standard regular semigroup. In the notation of §2,
let {hc:ceV} denote the collection of ^^-classes of So. For each
ce V, select vcehc. If vcvd — vcd for all c, deV, we term S a split
extension of T by V.

Let Y, V, /, J, if, and {ek} be as in the definition of (J, J, V, B, β, g).
Let i~*Bi be a homomorphism of (/, °) into P(J), and let v—+ βv be
a homomorphism of V into End (J, *) such that (l)(a) jBt e Hyz for
j e Jz and ί e Iy(b)Jrβb Q Hb-irb (2)(a) gBey = ^ = g % for g 6 / (b)
i ^ = j for i e Hz and i e Iz. Let (Γ, /, /, F, J5, /S) denote {(i, α, j):
αe V,ie /αα-i, and jf e Λ-iα} under the multiplication (3) (i, α, i)(^, δ, «) =

THEOREM 4.1. (Y, J, J, F, 5, /5) is α spίΐί extension of T by V.
Conversely, every such semigroup is isomorphic to some (Y, I, J, V,
B, β).
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Proof. Let S = (Y, I, J, V, B, β). If we let g(c, d) = β(βd)-iβd

for all c,deV, it is easily verified that (l)-(4) of the definition of
(Y, I, J, V, B, β, g) are valid. Hence, S is a standard regular semi-
group by Theorem 3.14. Let y0 denote the greatest element of Y.
Using 2(a) and Lemmas 3.9 and 3.2, (eyQ, y0, eyo)eE(Tyo). Using (4),
2(a) and the fact (J, *) is locally inverse, (eyo, 2/0, eyo)S(<V °̂> βVo) -
{(ββα-i» Λ, i) : α e V, j eHa~ιa}. Thus, using Lemmas 3.6,

K = {(βαα-i, α, i ) : i e fΓβ-iα} .

Let va = (βββ-i, α, eβ-iβ). Hence, vβι;6 = vα6. Thus, S is a split ex-
tension of T by B. Conversely, let S be a standard regular semi-
group which is a split extension of T by F. Hence, using Lemma
2.17, g(c, d) = β(cd)~icd for all c, d e F. Thus, using Theorem 3.14,
S = (Γ, I, J, F, B, /9, fl) with 0(c, d) - eicd)~icd. For brevity, let (Y, /,
J, 7, J5, /3) - 17. Using 3(a), l(a) and l(b) of the definition of S, c-+βΰ

defines a homomorphism of V into End (J, *), and (4) of the definition
of S reduces to (3) of the definition of U. Hence, S = U.

Let A be an ωY-semilattice. Let V = {(n, k)δ: n, keN, δ e Y)
under the multiplication

(n, k)δ(r, s)v = (n + r — min (k, r), k + s — min (fc, r))/(ifc,r,

where /(&, r) = δ, ^, or δ^ according to whether k > r, r > k, or
r = k. Let F( = i4.), I, J, ΛΓ, and {β(fc,δ)} be as in the definition of
(Y, /, J, F, B, β). Let (n, k)δ~+β{ntk)δ be a homomorphism of F into
End(/, *) and let i-^Bt be a homomorphism of (I, °) into P(J) such
that l(a) jB.eH^sn^) for jeJ{m,λ) and i e / ( W f ί , l(b) Jw^β^ku^

Hir+k-mίnir,n),f(r,n)). 2(s) ΛBβ(n>ί) = /̂S(%,δ) = Λ*β(n,β, fθΓ Λ 6 J (b) jBt = j
if jeH{n>δ) and iel{n>δ). Let I δ = U (!(»,«"- ^ e iSΓ) and let Jδ =
U {J(n,5): n e iS )̂. Let (o)7, /, J, 5, /3) denote U (I, x Jδ:δe Y) under
the multiplication (3): if i e I(n>δ)f j e J{k>δ)f u e I{r>v)f and zeJis,v),

(if J)(U, 3) = (i°β(» + r-mln(*,f),/(k,f)), JBuβ*rt8)ηZ) .

THEOREM 4.2. (<#Y, /, /, B, β) is a standard regular semigroup
of type ωY, and conversely every such semigroup is isomorphic
to some {ωY, I, J, B, β).

Proof. Let S be a standard regular semigroup of type ωY.
Using Lemmas 2.1 and 2.2, E(SQ) = {ein,δ):neN, δe Y} = A. Fur-
thermore, elntδ)<&elmtX)(εS0) if and only if δ = λ. Hence, use [15,
Lemma 2.1, Theorem 2.3, and Corollaries 2.2 and 2.4] to show S is
a split extension of T by F (given in the definition of (ωY, I, J, B, β)).
Hence, S = (A, I, J, V, B, β) by Theorem 4.1. Using [15, Corollary
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2.4], J{r,η)β{n,k)δ Q H{r+k_min{r>n)ff{r,n)) and ((n, k)δ(r, s)v)((n> &)*(*% s),)" 1 =

(n + r — min(&, r), f(k, r)). Hence, using Theorem 4.1 and [15,
Corollary 2.4], S = {(i, (n, k)δ, j): (n, k)δ eV,ie I{n,δ), /e/ ( f e ) δ ) } under the

mult ip l icat ion^, (nfk)δ, j)(u, (r, s)v, z) = (i°e{n+r__min{k,r)>f{k>r)), (n, k)δ(r9 s)v,

jBuβ{r,8)η*z). Hence, (i, (n, k)δ, j)ζ = (i, i) defines an isomorphism of
(A, 7, J, 7, B, β) onto (α>, F, /, J, £, /3). Conversely, consider S =
(o)7, 7, J, J5, /3). Using [15, Theorem 2.3 and Corollary 2.4], V is an
inverse semigroup with semilattice of idempotents A and each 3ίf-
class of V consists of a single element. Using [15, Corollary 2.4],
l(b) of the definition of (A, J, J, F, JS, β) is valid. Hence, ζ"1 defines
an isomorphism of S onto (A, J, J, F, B, β). By the proof of Theorem
4.1, (A, /, /, VB, β) = (A, I, /, V, B, β, g) with g(c, d) = β(cd)-icd. Hence,
using [15, Corollary 2.4] and Lemmas 3.2, 3.7, and 3.9-3.12, S is a
standard regular semigroup of type ωY.

THEOREM 4.3. S is a simple standard regular semigroup of
type ω if and only if S is a standard regular semigroup of type
ωY with Y a finite chain 0 > l > 2 > <Z — 1 where d is a positive
integer.

Proof Let S be a simple standard regular semigroup of type
ω. Hence, SQ is a simple semigroup. Thus, using Lemma 2.15 and
[15, Lemma 7.5 and Theorem 2.3], V is the semigroup described in
the definition of {ωY, /, J, J5, β) with Y the finite chain 0 > 1 > 2
• > d — 1 where d is a positive integer. Hence, using Theorem
3.14 (and its proof), [15, Corollary 2.4], Lemmas 3.2, 3.7, and 3.9-3.12,
S is a standard regular semigroup of type ω Y with Y the finite chain
0 > 1 > 2 > d — 1 where d is a positive integer. Conversely, let
S be a standard regular semigroup of type ω Y with Y a finite chain.
It is easily seen that S is a standard regular semigroup of type ω.
We next show that any standard regular semigroup of type ωY is
simple. Let S = (ωY, I, J, B, β). Let i e Iin>δ), j e J{k,δ)y u e I(r,v)9 and

v e J{s,η). Let q = e{n+uv)Bffin+l,8)vj^{k+U8)v. Using (1), q e H{8tV). Hence,

since J(s,v) is a right group, there exists beJ{8yV) such that g*δ = v.
Thus, (3), (2(a)), the fact c —• βc is a homomorphism of V into
E n d ( J , *), and (1), (u, e(n+ί),η)(ί, j)(e{k+uη), b)) = (u, v).

If A is a finite set, | A | will denote the number of elements of A.

THEOREM 4.4. S is a standard regular bisimple semigroup of
type ω if and only if S is a standard regular semigroup of type
ωY with |Γ | = 1.

Proof Apply Theorem 4.3, Lemma 3.7, and [15, Corollary 2.4],
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5* Some other classes of standard regular semigroups* A
regular semigroup S is termed standard orthodox (i^-unipotent) if
T is a locally inverse semilattice Y of rectangular groups (right
groups) (Ty:y e Y)((Jy: y e Y)) where Y has a greatest element. An
inverse semigroup S is termed standard inverse if T is a semilattice
Y of groups (Hy: y eY) where Y has a greatest element. In this
section, we give structure theorems for these classes of semigroups.

Let Y, V, I, J, {ek}9 H, β, and g be as in the definition of (Y, I, J,
V, B, β, g). Furthermore, assume that l(b), l(c), 2(c), 3(a), and 3(b)
of that definition are valid and that 2(a) gβy = g*ey for yeY and
geJ. Let (Y, I, J, V, β, g) denote {(i, α, j): aeV,ie Jββ-i, i e Jα-iα}
under the multiplication (4)

(i, α, i)(u, 6, ») = (ioβ(β6)(α6)-i, α&, #(α, b)*jβΐz) .

REMARK 5.1. (Y, I, J, F, /3, #) is a standard orthodox semigroup
and conversely every standard orthodox semigroup is isomorphic to
some (Y, /, J, V, β, g).

Proof. Let S be a standard orthodox semigroup. It is easily
seen that S is standard regular. We apply Theorem 3.14. Let j e J
and ue J. By the proof of Lemma 2.11, jBu = ju. Let {ζ^,/.^G Y)
denote the set of structure homomorphisms of T. Let j e Jy and uelz.
Hence, using the fact that Tyz is a rectangular group, ju — jζy)yzuζZiyz-=
jζy,yzezζz>yz = iβ,. Hence jBu = j*ββ. Let j eJ,ue Jw-i, and 2 e J6~i6.
Hence, using the fact ft e End (J, *) and l(b), jBuβfz = (j*ebb~i)βfz =
jβΐeb-ιΐz = jβ{z. Thus, (4) of Theorem 3.14 reduces to (4) in the
definition of (Y, I, J, F, /S, g).

Conversely, we show (Y, /, J, V9 β, g) is a standard orthodox
semigroup. First, we apply Theorem 3.14 to show that (Y, /, J, V, β, g)
is a standard regular semigroup. We define jBt = i*βy for j eJ and
ΐ e /„ Let uely, ve Iz, and i 6 /. Hence jBuBv — jeyez = j*eyz =
jJ5ttov. Let j,heJ and ΐ 6 Iy. Hence, (j*h)Bt = (3*h)*ey = j*(h*ey) =
j*(hBt). Thus, i—>Bi is a homomorphism of (I, 0) into P(J, *). Let
i e J^ and i e Jz. Let {7y,β: y, zeY} denote the set of structure homo-
morphisms of (J, *). Hence, for i e Iz, jBi — j*ez = j7y

<

jyzez7Zfyz. However,
egy9,Vz < ez, and eyz < ez. Hence, using the fact that (J, *) is locally
inverse and Jyz is a right group ezΎz>zy = eyz. Thus, jBt = 3^y,yzevz e
jϊ^,. Hence, l(a) of Theorem 3.14 is valid. By definition, i5 β y —
j*ey. If j" e Jϊy and i e Iyy jBi = i*βy = i. Hence, 2(b) of Theorem
3.14 is valid. Let jeJ, uelbb-ι, and zeJb~ib. As above, jβ*z —
jBuβϊz. Thus, (4) of Theorem 3.14 and (4) of the definition of (Y,
/, J, V, β, g) are equivalent. Hence, using Theorem 3.14, (Y, /, J,
V, β, g) is a standard regular semigroup. Let (i, #, i), (u, 2/, «) e Ty
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(note, Lemma 3.9). Hence, using 2(c) and 2(a), (i, y, j)(u, y, z) =
(i, V, j*z). Thus, using [1, Theorem 1.27], Ty is a rectangular group.
Hence, using Lemmas 3.9-3.11, (F, I, J, F, /3, g) is a standard orthodox
semigroup.

EEMARK 5.2. By a result of Preston, Yamada, and Clifford, [2,
Proposition 1], if T is a semilattice of rectangular groups, T is an
orthodox semigroup. Conversely, every Cliffordian semigroup which
is orthodox is a semilattice of rectangular groups.

Let F, F, J, and β be as in Theorem 5.1. For each y eY9 select
eyeE(Jy) such that e*ez = eyz for all y,zeY. Let Hy denote the
maximal subgroup of Jy containing ey. Let g be as in Theorem 5.1
and assume l(b), l(c), 2(a), 2(c), 3(a), and 3(b) of Theorem 5.1 are
valid. Let (Y, J, F, β, g) denote {{a, j):aeV, jeJa~ia} under the
multiplication (4) (a, j)(b, z) = (ab, g(a, b)*jβfz).

THEOREM 5.3. (F, /, F, β, g) is a standard ^ίf-unipotent semi-
group and, conversely, every standard J?f-unipotent semigroup is
isomorphic to some (F, J, F, βf g).

Proof. Let S be a standard ^-unipotent semigroup. Hence,
using [1, Theorem 1.27], S is standard orthodox. Using Theorem
5.1, S = (Γ, /, J, V, β, g). Let iely. Using Lemma 3.2 and the
proof of Lemma 5.1, (i, y, ey), (eyf yf ey)eE(S). Hence, using Lemma
3.5 and the fact each .S^-class of S contains precisely one idempotent,
i = ey. Thus, Iy = {ey} for each yeY. Hence, (ββα-i, α, j)Φ = (α, j)
defines an isomorphism of (Γ, /, J, F, /9, g) onto (F, /, F, β, g). Con-
versely, we show that S = (F, J, F, /5, ̂ r) is a standard ^-unipotent
semigroup. Let Iy = {β̂ }. Define e y o^ = β2/2 and let / = U (Iy: y e F).
Hence, (I, o) is a standard regular semilattice F of left zero semi-
groups (Iy:yeY). Then, φ~ι is an isomorphism of S onto (F,/ , J,
F, /5, g). Hence, S is a standard orthodox semigroup. Using Lemmas
3.2 and 3.5, each ^Sf-class of S contains precisely one idempotent.
Hence, it easily follows that S is standard =Sf-unipotent.

REMARK 5.4. A semigroup S is termed i/^-unipotent if each
,^-class of S contains precisely one idempotent [13]. Hence, a
standard regular semigroup is =S^-unipotent in the sense of [13] if
and only if it is standard ^-unipotent.

Let F, F, and β be as in Theorem 5.3. Let (H, *) be a semi-
lattice F of groups (Hy: yeY) and let ey denote the identity of Hy

and let g be as in Theorem 5.3 and assume l(b), l(c), 2(a), 2(c), 3(a)
and 3(b) of Theorem 5.3 are valid. Let (F, H, V, βt g) denote {(α, j):
aeV, j e Ha~ia} under the multiplication (4)
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(a, j){b, z) = (ab, g(a, b)*jβfz) .

THEOREM 5.5. (Y, H, V, β9 g) is a standard inverse semigroup,
and conversely every standard inverse semigroup is isomorphic to
some (Y,H, V,β,g).

Proof. Let S be a standard inverse semigroup. Then, S is
standard iίf-unipotent. Hence, using Theorem 5.3, S = (Y, J, V,
β , g). U s i n g L e m m a 3 . 2 , E(Y, J, V, β , g) = {(y, j ) ; yeY,je E ( J y ) } .
Let j e E(Jy). Hence, using 2(c) and 2(a), (y, j)(y, ey) = (y, ey) and
(y, ey)(y, J) = (y, i) Thus, j = ey. Hence, Jy = i3; for all 2/ e Y.
Thus, S = (Γ, iί, F, β, g). Conversely, let S = (F, iϊ, F, /S, g). Since
β*βz = e,,,,, S is standard ^"-unipotent by Theorem 5.3. Using Lemma
3.2, E(S) = {(y, ey): yeY.} Hence, E(S) is a semilattice. Thus, it
is easily seen that S is a standard inverse semigroup.

REMARK 5.6. A characterization of standard orthodox semigroups
may be obtained by combining a theorem of M. Yamada [18, Theorem
2] with Theorem 5.5.

6. The congruence *• Let S be a standard regular semigroup.
Let t = {(a, b) e S2: aa\ W e E(Ty) and a'a, Vb e E(TZ) for some a' e
^P(a), br 6 <->*"(&), and y, z e Y). We introduced ί in a special case
in [12] and used it in subsequent papers (see [15] and [16] for ex-
ample). We show t is a congruence on Sf S/t = V, and ker t (the
collection of ί-classes of S containing idempotents) = Γ. We note that
S is a regular extension of T by V in the sense of Yamada [19].

LEMMA 6.1. ^((i, a, j)) n (Jα-iβ x {α"1} x Jαα-i) ^ D

Proof. Let ?/ = αα"1 and let w e /β-iα Hence, using (1),
g(a, aΓ1)* jB%βa-i e Jϊβα-i for j e Ja-ιa. There exists v e Haa-ι such that
g(a, arι)*3Buβ*-iV = β̂ . Hence, using (4), (i, α, i)(w, α"1, v) = (i, y, ey).
However, using 2(b), Lemmas 3.2, 3.3, and 3.5,

(it a> J) = (if y> ev)(h a> 3) = (h <*>, 3)(u, α"1, ̂ )(i, α, i )

while (u, α"1, v)(i, a, j)(u, a~\ v) = (u, α"1, v)(ΐ, 2/, ey) = (u, α"1, v).

LEMMA 6.2. (i, α, i)ί(u, 6, v) i/ α^d ô î / if a — b.

Proof. Using Lemmas 6.1 and 3.9, there exists (i, a, j)' e J^{i, a, j)
and (u,b,v)' e ^(ufb,v) such that (i, α, i)(ί, a, j)' 6 Γββ-i, (t6,6, ι;)(%, δ, t;)' e
Tbh-h (i9 a, j)'(i, a> j) e Tα-iα, and (w, b, v)'(u, 6, v) e Tb-ιb. Hence,
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(i, a, j)t(u, δ, v) if and only if aa~ι — δίΓ1 and a~xa = δ^δ.

THEOREM 6.3. t is a congruence relation on S, S/t ~ V, and
ker t = T.

Proof. The first two assertions are easily seen. Using Lemmas
3.2, 3.9, and 3.10, ker t = T.

REMARK 6.4. Using Lemmas 3.9-3.11 and the fact (i, a, j)φ = α
defines a homomor phism of S onto V, S is a regular extension of
Γ by y in the sense of Yamada [19, page 4], Thus, using Theorem
6.3, S is a regular extension of T by S/t.
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